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Supplemental Methods 

Antibodies used for IHC, IF, Flow cytometry and WB 

IHC: Cyclin D2 (M-20, Santa Cruz Biotechnology), B220/CD45R (RA3-6B2, BD Bioscience), CD138 (281-2, 

BD Bioscience), BCL6 (N-3, Santa Cruz Biotechnology), CD3 (A0452, DAKO), CD5 (53-7.3, BD Bioscience), 

CD10 (EPR5904, LifeSpan Biosciences, Inc.), IgM (BA-2020, Vector Lab), TdT (005, Supertechs, Inc.), Ki-67 

(VPK451, Vectror Lab), Arf (5-C3-1, Santa Cruz Biotechnology), Myc (Y69, Abcam); IF: CD19 (6D5, 

Biolegend); Flow cytometry: B220/CD45R (553087, BD Biosciences); WB: p16Ink4a (M-156, Santa Cruz 

Biotechnology), Cyclin D2 (M-20, Santa Cruz Biotechnology), and Actin (C-11, Santa Cruz Biotechnology). 

Analysis of microarray gene expression data 

Arrays were corrected for background, normalized, and log2-transformed using the rma function of the 

affy Bioconductor package1-4. Present/absent calls were made using the mas5calls function of the affy 

package. Probe sets present in >20% of samples and for which the interquartile range was >log2(1.2) were 

retained for further analysis. The Bioconductor limma package5 was used to identify probe sets 

significantly up- or downregulated. For significance comparisons between premalignant groups (n=2 

each), a combination of P value <0.01 and fold-change >2 as the cut-off were used. A more stringent 

adjusted P value of <0.01 (Benjamini-Hochberg method6) and a fold-change >2 were used for comparisons 

between premalignant samples (n=2) and CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ tumors (n=10). 

To compare gene expression profiles of CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ tumors and subpopulations of 

normal mouse B-cells7, we used probe sets common to both array platforms and corrected for batch 

effects with ComBat8. Probe sets were filtered after batch correction to retain only those that passed 

filtering criteria described above for both data sets. In total, 9490 probe sets were retained for 

unsupervised hierarchical clustering based on Pearson's correlation coefficient. Determination of 



differential gene expression between tumors and normal pre-B and pro-B-cells was carried out using the 

8962 probe sets that satisfied filtering criteria for these arrays (i.e. excluding mature and immature B-cells 

as well as premalignant and Cre-only samples). In the latter case, we used an adjusted P value of <0.05 

and fold-change of >2 as our combined cut-off. Genes satisfying these criteria were used as novel gene 

signatures. Signature gene symbols were mapped from mouse to human via HomoloGene (April 2012 

download) for use with human ALL gene expression profiles and were included with the "Hallmark" gene 

sets (v.5.1) downloaded from the Broad Institute's MSigDB website 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp). These combined gene sets were used 

for gene set enrichment analysis (GSEA)9. Affymetrix Human Genome U133A arrays for series GSE1299510 

were downloaded from the Gene Expression Omnibus (GEO) and processed as above. We used 10 samples 

from each of the 5 following ALL subtypes: TCF3-PBX1, hyperdiploid, MLL, BCR-ABL, and TEL-AML1. Data 

series GSE1187711,12 was downloaded from GEO as a MAS5-summarized scaled-expression matrix and 

further log2-transformed and quantile normalized before use.  GSEA for human arrays was carried out 

using Signal-to-Noise as the metric with base 10 values (not log2 transformed). GSEA for murine 

premalignant and tumor samples were run on values pre-ranked by log2 fold-change. GSEA signature heat 

maps showed log10(FDR) x sign(NES) values such that correlation with phenotype A in an A vs B 

comparison was positive (NES >0) and correlation with phenotype B is negative (NES <0). Heat maps were 

generated using the R package pheatmap13. 

Analysis of whole-exome sequencing data 

Lane-specific sequence files in fastQ format were aligned with BWA-mem14 to the Ensembl GRCm38.75 

reference genome and further processed using the Genome Analysis Toolkit (GATK)15 best practices for 

targeted exome sequencing. This included duplicate-read marking, base-quality score recalibration, and 

local de novo indel realignment. Read groups were assigned and lane-specific files were merged according 

to GATK best-practice recommendations. 



BAM-format files were loaded into the GATK's Mutect216 tool for variant-calling analysis. Control samples 

were processed using Mutect2's recommendations for creating a panel of normals (PON); variant calling 

was performed individually for each sample and the resulting VCF files were combined using GATK's 

CombineVariants tool for each phenotype (LG = low-grade B-cell lymphoproliferative disorder and B-ALL 

= precursor B-cell acute lymphoblastic leukemia). The variants found in the PON were used when 

analyzing variants in the tumor-derived samples (i.e., normal_panel argument). All calls to Mutect2 

methods were made with default arguments. 

Resultant sample-specific VCF files were merged and annotated using Ensembl Variant Effect Predictor 

(VEP)17 and stored in a Gemini18 database. Prior to annotation, variants were limited to those that passed 

Mutect2's standard quality filters (PASS status). Further, we examined potentially high-impact variants 

annotated as stop-gain, frameshift, splice-acceptor, splice-donor, stop-lost, start-lost, and missense. 

Remaining variants were subsequently analyzed to determine recurrent, well-covered sites featuring a 

high percentage of reads supporting the alternate allele. Analysis was limited variant loci found in a 

majority of samples (>5 for ALL, >3 for LG), having a minimum read depth of 40 reads, and with alternate 

allele percentage of >75%. These high-quality sites were cross-referenced to those determined in the PON 

analysis to remove false-positive somatic variants. Indeed, many such variants were also found in the PON 

(often in a single sample), apparently not removed by Mutect2 in the initial enumeration of somatic 

variants. Following this filtration, 36 (B-ALL) and 35 (LG) sites remained with seemingly high-quality 

recurrent somatic variants. Visual inspection (via IGV) was performed on these sites, revealing that the 

"normal" samples harbored similar mutations; such sites were not included in the PON set due to lower 

sequencing coverage.  

  



Supplemental Figure Legends 

Supplemental Figure 1. Conditional loss of Ink4a/Arf and activation of KrasG12D expression in CD19+ B-

cells. 

(A) Southern blot of PstI-digested genomic DNA from the indicated tissues and mice at 8 weeks of age. 

The wild-type (WT) or lox-Ink4a/Arf (Cdkn2a) allele migrates at 9.0 kb, and the recombined Ink4a/Arf null 

allele (KO) corresponds to the shorter 4.6 kb band. Note that excision of the locus only occurs in the 

presence of Cre recombinase.  

(B) Immunoblots of p16Ink4a expression in CD19+ splenocytes from mice at 8 weeks of age. Actin was used 

as loading control.  

(C) RT-PCR/RFLP analysis of Lox-STOP-Lox KrasG12D allele recombination in testicles or CD19+ splenocytes 

from mice at 8 weeks of age. PCR-amplified cDNA was untreated (-) or digested with HindIII (+). 

Recombination of the Lox-STOP-Lox KrasG12D allele introduces a HindIII site into the KrasG12D transcript that 

results in a released fragment (TG) upon digestion with restriction enzyme. 

Supplemental Figure 2. Histologic and immunohistochemical evaluation of premalignant mice.  

(A) and (B) Histological and immunohistochemical analyses of CD3, B220, and TdT expression in lymph 

nodes (A) and bone marrows (B) from one additional mouse of each genotype. Positive control (insert): 

TdT staining of thymus from the same mouse. Scale bars: A = 1 mm, B = 50 µm.  

Supplemental Figure 3. Gene set enrichment analysis of CD19+ B-cells from premalignant mice.  

(A), (B), and (C) Mountain plots documenting pathways upregulated in CD19+ B-cells from mice of 

specified genotypes compared to CD19Cre/+ controls. Top three hallmark signatures from each genotype 

(A). Selected ‘curated’ (MSigDB C2) signatures (B) and (C). 



Supplemental Figure 4. Histologic and immunohistochemical evaluation of low-grade B-cell 

lymphoproliferative disorder from CD19Cre/+;KrasG12D/+ mice.  

Representative histological and immunohistochemical analyses of B220, BCL6, TdT, CD3, CD5, and CD138 

expression in a nodular lymphoid infiltrate in lungs from additional CD19Cre/+ and CD19Cre/+;KrasG12D/+ mice. 

Positive control: TdT staining of thymus from the same animal. Scale bars: 50 µm. 

Supplemental Figure 5. Histologic and immunohistochemical evaluation of precursor B-ALL in 

CD19Cre/+;Ink4a/ArfL/+ and CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ mice.  

Representative histologic and immunohistochemical analyses of TdT expression (in-frame) in lymph 

nodes, BMs, and livers of additional CD19Cre/+, CD19Cre/+;Ink4a/ArfL/+, and CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ 

mice. Scale bars: black – 1 mm, white - 10 µm. 

Supplemental Figure 6. Analysis of mutations and copy number variations in mouse tumors.  

(A) Summary of genomic profiles of ten B-ALLs from CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ mice. Integer-value 

recurrence of CNAs across the samples in segmented data (y axis) is plotted for each probe evenly aligned 

along the x axis in chromosomal order. Because, Ink4a/Arf deletion was relatively small and focal, it was 

omitted by the algorithm used for data segmentation.  

(B) Analysis of the probe specific for the Ink4a/Arf confirms the deletion.  

(C) Representative immunohistochemical analyses of Myc expression in lymph nodes of mice with pre-B-

ALL with (n=3) and without (n=3) chromosome 15 amplification from CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ mice. 

Scale bars: 20 µm. 

(D) Mean coverages of WES for low-grade B-cell lymphomas (n=6; LG) from CD19Cre/+;KrasG12D/+ mice and 

B-ALLs (n=10; ALL) from CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ mice as well as two controls per group (c1 and 



c2). Dotted lines represent mean for tumor group. Percentiles for the coverage depth are shown below 

the graph.   

Supplemental Figure 7. Gene expression analysis of murine B-ALL.  

Mountain plots documenting nine pathways most highly upregulated in CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ 

B-ALL cells compared to CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ premalignant CD19+ B-cells.  

Supplemental Figure 8. Gene expression analysis of human B-ALL.  

Heatmap of leading edge genes from GSEA comparing the relative enrichment of genes up-regulated in 

CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ tumors relative to normal pre-B-cells (“Tumor vs Pre-B up” signature) in 

human BCR-ABL B-ALL samples versus all other B-ALLs. 

Supplemental Table 1. Differential gene expression analysis of CD19+ B-cells from 8-week-old 

engineered mice and of B-ALL tumors from CD19Cre/+;KrasG12D/+;Ink4a/ArfL/+ mice. 
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