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DETAILED EXPERIMENTAL PROCEDURES 

Mice and Surgeries 

All mice were housed in the American Association for the Accreditation of Laboratory Animal Care (AAALAC)-
accredited Animal Resources Center at Montana State University under specialized care conditions, including 
continuous-flow HEPA-filtered-air cages (Tecniplast); sterilized bedding and enrichment; unrestricted access to 
sterilized feed (Picolabs 5058 or 5053) and sterilized water; and on a 14:10 light:dark cycle. None of the 
experiments presented invovled fasting or other dietary modifications unless specifically indicated. Animal 
protocols were approved by the Montana State University Institutional Animal Care and Use Committee (MSU-
IACUC). Wild-type C57Bl/6J mice, B6.Cg-Tg(Alb-cre)21Mgn/J mice bearing the “AlbCre” transgene (Postic et al., 
1999), and Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mice (Muzumdar et al., 2007) bearing the Cre-responsive 
membrane-targeted, dual-fluorescent “ROSAmT-mG” marker allele were obtained from The Jackson Laboratory (Bar 
Harbor, ME; stocks JAX#000664, JAX#003574, and JAX#007576, respectively). Mice bearing the Gsr- allele were 
kindly provided by L. Rogers (Rogers et al., 2004). Mice bearing the Txnrd1cond (B6.129(Cg)-Txnrd1tm1Ees/J, 
JAX#028283) (Bondareva et al., 2007), Txnrd1null, and the Cre-responsive nucleus-targeted, dual-fluorescent 
“ROSAnT-nG” (B6;129S6-Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees/J, JAX#023035) (Prigge et al., 2013) alleles, as well 
as Txnrd1cond/cond;AlbCre+ (AlbCre-driven liver-specific “TrxR1-null”) (Suvorova et al., 2009) or Txnrd1cond/cond;Gsr-

/-;AlbCre+ (AlbCre-driven liver-specific “TrxR1/Gsr-null”) (Eriksson et al., 2015) genotypes were described 
previously. Mice were genotyped by PCR using genomic DNA extracted from tail-biopsies harvested between 
postnatal day-10 (P10) and P14. All analyses shown were done on mice of both genders between P60 and P90, 
except as specifically noted in figure legends or text. In particular, the age-dependent ploidy analyses (Figure 6D in 
main text) used younger and older animals, and the acetaminophen toxicity analyses (Figure 5B in main text) used 
only males due to on published gender-specific sensitivities in mice (Iverson et al., 2013).  

A conditional-null allele of the mouse Txn1 gene in which exons 2-3 are flanked by codirectional loxP sites 
(Txn1fl) was generated and targeted into embryonic stem (ES) cells. For targeting vector generation, PCR reactions 
used Phusion polymerase (New England Biolabs #M0531S) and were sequence-verified at all critical regions and 
junctions. The targeting vector used a region of the Txn1 gene from chromosome 4 (Chr4) positions 57,954,765 - 
57,948,263, which was amplified from Fosmid WI1-1371-M22 (BacPac Resource Center). Restriction endonuclease 
sites Not I and Xho I were engineered onto the amplified Txn1 fragment at the 5’ and 3’ ends, respectively.  loxP 
sites were inserted into introns 1 and 3 at Chr4 positions 57,952,026 and 57,950,650, respectively.  The loxP site in 
intron 1 was flanked on its 5’ end by an engineered Pac I site and replaced Chr4 endogenous sequences 57,952,027 - 
57,952,032.   The loxP site in intron 3 was flanked on its 5’ end with an engineered Asc I site, and replaced Chr4 
endogenous sequence 57,950,651 - 57,950,656. A self-excising frt-Prm1pFlpe-Pol2pNeo-frt cassette containing the 
region from Sal I to Bgl II (bases 1227 - 5969) of the FnF11 plasmid (Wu et al., 2008) was inserted into intron 2 at 
Chr4 position 57,951,056.  The completed Txn1 targeting sequence was inserted between Not I and Xho I sites in the 
TK1-TK2c plasmid (Thomas et al., 1986) and linearized with Not I prior to electroporation into male F1-C57Bl/6 x 
129SvEvTac hybrid ES cells. Targeted ES cell clones were identified by PCR analysis on genomic DNA using 
primer pair Txn1 intron 1-forward (5’-gctcagtgcttcacagaccacgt-3’) and Prm1p-reverse (5’-ggaagctgaaaggtggacag-
3’). One targeted ES cell clone was used to make chimeric mice in C57Bl/6J recipient blastocysts carrying the 
Txn1founder allele. Phenotypically male chimeras were bred to C57Bl/6J females and pups were screened for self-
excision of the Prm1pFlpe-Pol2pNeo cassette. Genotypes of mice carrying the unrecombined Txn1founder allele or the 
Flpe-recombined Txn1fl allele were determined using primer pairs Txn1 intron 2-forward (5’-
tatggatccagcacccaaatgggagagtca-3’) and Prm1p-reverse, or Txn1 intron 2-forward and Txn1 intron 2-reverse (5’-
tatgaattcaaaccaagaagcgttagaactgg-3’), respectively.  Genomic DNA from F1 Txn1found/+ or Txn1+/+ pups was 
amplified with primers flanking the D4mit193 polymorphism (D4mit193-forward, 5’-ctgcagcacttgatattgtcagt-3’ and 
D4mit193-reverse, 5’-agaaaagacatacaattgatccacagg-3’), which showed that the Txn1found allele was targeted to the 
C57Bl6/J chromosome in the hybrid F1-C57Bl/6 x 129SvEvTac hybrid ES cells. Txn1fl/+ mice were interbred and 
genotypes of pups were determined using primer pair Txn1 intron 2-forward and Txn1 intron 2-reverse (5’-
tatgaattcaaaccaagaagcgttagaactgg-3’).  Total RNA harvested from Txn1+/+, Txn1fl/+, or Txn1fl/fl livers was used to 
make oligo (dT)-primed cDNA and Trx1 mRNA expression was analyzed using primer pair Txn1 exon 1-forward 
(5’-tatgaattcatggtgaagctgatcgagagca-3’) and Txn1 exon 5-reverse (5’-tatgtcgactcagatggcagttgggtatagact-3’). Mice 
bearing the Txn1fl allele are publicly available from Jackson Labs (stock JAX#030221). Txn1fl and AlbCre were 
subsequently combined with Txnrd1cond (Bondareva et al., 2007) and Gsrnull (Rogers et al., 2004). Mice with TrxR1-, 
Gsr-, Trx1-, TrxR1/Gsr-, Trx1/TrxR1-, Trx1/Gsr-, and Trx1/TrxR1/Gsr-null livers are all overtly normal as adults 
and fertile in both genders. Mice with triple-null livers have lived over a year as breeders before being retired.  
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Hepatic ischemia/reperfusion (I/R) injury surgeries (Jaeschke, 2003) were performed by a modification of the 
2/3 hepatectomy procedure we have used previously (Eriksson et al., 2015; Mitchell and Willenbring, 2008; Rollins 
et al., 2010). Briefly, once the liver was exposed and the membrane was cut between the median and left lateral 
lobes of isofluorane/O2-anesthetized mice, a non-traumatic clamp was applied near the base of the left lateral lobe. 
This occluded circulation to ~1/3 of the liver, which was immediately evident as a change in coloration of the 
ischemic lobe. The open body cavity was then covered with a sterile saline-wetted gauze and maintained on a 
warmed table under isofluorane/O2 anesthesia with constant monitoring. After 30 min of ischemia, the clamp was 
removed and the body wall and skin were closed. Mice were monitored twice daily for development of any adverse 
signs and harvested 14 d after surgery. Samples from the left lateral (ischemic) and median (non-ischemic) lobes 
were separately harvested for histological analyses. 

Acetaminophen challenge was performed as described previously (Iverson et al., 2013). Briefly, acetaminophen 
in sterile saline was administered by I.P. injection to all animals at the indicated concentrations at 8:30-9:00 am and 
animals were harvested 24 h later.  

 

Tissue Harvests, Histology, and Sample Preparation 
 
Mice were sacrificed by isofluorane inhalation, weighed, and livers were perfused with sterile saline (cardiac-portal) 
prior to removal. For analysis of serum markers, blood (~0.7 - 1.4 ml) was collected from the inferior vena cava 
immediately upon harvest by syringe using a 23 ga. needle, and serum was prepared using Sarstedt Microvette 
tubes. Snap-frozen serum was sent on dry ice to Marshfield Laboratories (Marshfield, Wisconsin) for analysis on 
“Veterinary Hepatic Panel 2”.  

For electron microscopy, livers were perfused (cardiac-portal) immediately upon sacrifice with normal saline 
followed by 10% neutral-buffered formalin. Livers were then removed and ~ 1 mm3 cubes were cut with a sharp 
razor. Tissue cubes were fixed in Carnoy’s fixative, embedded in Spurr’s medium, thin-sectioned, and stained as 
described previously (Iverson et al., 2013). Images were digitally captured at 5000X magnification on a Zeiss LEO-
912 transmission electron microscope. For other analyses, harvested whole liver was weighed and ~ 250 mg samples 
were snap-frozen in liquid nitrogen for protein/enzyme analyses or were fixed in neutral-buffered formalin for 
histology. Histological samples were embedded in paraffin, sectioned (5 µm thickness), and stained with 
hematoxylin and eosin (H&E) by standard procedures (Iverson et al., 2013). Horseradish peroxidase (HRP)-based 
immunostaining for phosphohistone-H3 (PHH3) and proliferative cell nuclear antigen (PCNA), including antigen 
retrieval, was performed as described previously using paraffin-embedded sections (Prigge et al., 2012; Rollins et 
al., 2010).  Primary antibodies were mouse-anti-PCNA (AbCam #A1029) or rabbit-anti-PHH3 or rabbit-anti-Ki-67 
(Cell Signaling Technology #9701 or #D3B5, respectively). HRP conjugated secondary antibodies for 
immunostaining were goat-anti-mouse (Pierce #31430), goat-anti-rabbit (GIBCO #13859.012), or, for Ki-67 
staining, SignalStain Boost IHC Detection Reagent (Cell Singaling Technology #8114). Chromogen Tablets 
(Diagnostic Biosystems #K001) were used for color development. For immunohistochemical detection of protein-4-
HNE adducts using an antibody raised in-house (Shearn et al., 2015), protein acrolein adducts (Cell Sciences 
#PA2049) (Shearn et al., 2013), or protein-SSG (Virogen #101-A-100) (Shearn et al., 2016), the Vectastain ABC kit 
(Vector Labs) was used with citrate (pH 6.0) antigen retrieval. Histologic images were captured on an Olympus 
BX51 microscope equipped with a four-megapixel Macrofire digital camera (Optronics) using the PictureFrame 
Application 2.3 (Optronics). 

For enzymatic and immunblotting analyses, fragments (~100 mg) of frozen liver were pulverized under liquid 
nitrogen with a mortar and pestle. Powdered liver was transferred to Eppendorf tubes and thawed by the addition of 
~5 volumes of homogenization buffer (50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 2 mM EDTA; 1% Triton X-100; 
1X protease inhibitor cocktail [Roche #11697498001], at 4oC). Samples were further homogenized in a glass-glass 
Dounce homogenizer (A-pestle) on ice and were clarified by centrifugation at full-speed in a table-top 
microcentrifuge for 10 min at 4°C. Supernatant was collected and stored in aliquots at -80°C. Protein concentration 
was determined using a Bradford assay (Bio-Rad #5000001) with BSA to generate a standard curve.  
 

Immunoblotting 
 
Immunoblots used 20 µg of total protein of the clarified lysate from the indicated samples per lane, boiled in 1X 
loading dye (Bio-Rad #1610747) supplemented with final concentration of 7 mM DTT prior to running, except 
when analyzing Prx2, for which the DTT was omitted. For immunoblots, antibodies were as follows: anti-TrxR1 and 
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anti-Trx1, rabbit antisera raised against recombinant mouse proteins, kindly provided by G. Merrill, Oregon State 
University, and each used at 1:4000 dilutions; anti-human Gsr (conserved oligopeptide epitope), mouse monoclonal 
(Santa Cruz Biotechnology, #sc-133136) used at 1:1000; anti-human Trx2 (conserved oligopeptide epitope) rabbit 
polyclonal antiserum, (Santa Cruz Biotechnology, #sc-50336), used at 1:1000 dilution; rabbit-anti-mouse Glrx1 
antibody, affinity purified (IMCO, Inc.), used at 1:500 dilution; anti-TRP14 rabbit antiserum raised against full-
length recombinant mouse protein for this study, used at 1:2000 dilution; anti-mouse Prx2, rabbit polyclonal 
antiserum (AbFrontier # LF-PA0091) used at 1:1000 dilution; mouse anti-b-Actin (conserved oligopeptide epitope) 
monoclonal antibody (Sigma-Aldrich #A5441). Secondary antibodies for immunoblotting were goat-anti-mouse-
HRP or goat-anti-rabbit-HRP (Santa Cruz Biotechnology, #sc-2005 or #sc-2030, respectively), and were used at 
1:5000 dilutions. Proteins were visualized by chemiluminescence using the ECL system (GE Healthcare 
#RPN2016). 
 

Enzymatic Assays 

Total glutathione levels were determined using the GSH-recycling assay (Rahman et al., 2006) as described 
previously (Eriksson et al., 2015). Briefly, clarified protein lysates were acidified by adjusting to 1% sulfosalicylic 
acid and after 5 min of incubation at 4 °C, the samples were centrifuged 10 m, 10,000 x g, 4°C, and 10 µl of each 
sample, corresponding to 30 µg of protein lysate, was mixed with a solution of 5,5′-dithiobis(2-nitrobenzoic acid) 
(DTNB; 1.68 mM) and yeast Gsr (Sigma-Aldrich, #G9297; 2.4 U/ml) in 0.1 M potassium phosphate buffer, pH 7.4, 
5 mM EDTA. After 30 s, NADPH (0.8 mM final concentration; VWR #80053-342) was added and the rate of 
production of GSH was determined by the change in absorbance at 412 nm. Gsr activity was measured as described 
using 30 µg of protein lysate with the Gsr activity analysis kit (Cayman Chemical #703202; Figure 1I) or by 
measuring the production of free thiols via colorimetric conversion DTNB (Figure 1J). For the later, 225 µl reaction 
mixtures of 100 mM phosphate buffer (pH 7.5), 1 mM EDTA, containing 70 µg of liver lysate and 200 µM of either 
NADH or NADPH, and 1 mM GSSG, as indicated, were incubated at 37oC. Reactions were stopped immediately or 
after 1h by adding 500 µl of a solution of 6M guanidine-HCl and 1 mM DTNB, and absorbance was read at 415 nm. 
Values from zero-time controls were subtracted from the 1 h values. Grx activity was measured on 20 µg of protein 
lysates using and IMCO fluorescent assay kit (FkGRX-01)(Coppo et al., 2016). 

Measurements of mitochondrial enzymatic activities were performed on liver samples that had been saline-
perfused at harvest and snap-frozen in liquid nitrogen prior to shipment on dry ice to the University of Alabama at 
Birmingham Bio-Analytical Redox Biology Core facility.  Briefly, kinetic assays were measured on a DU800 
spectrophotometer using 15 µg of protein from each sample. Complex I activity was immediately measured at 600 
nm using 2,6-dichloroindophenol (DCIP) as the terminal electron acceptor and the oxidation of NADH reducing 
artificial substrate Coenzyme Q10 that then reduced DCIP (Janssen et al., 2007). Complex II activity was analyzed 
as the reduction of dichloroindophenol at 600 nm with succinate as the substrate, and complex II/III was measured 
as the reduction of cytochrome c at 550 nm, also using succinate as the substrate (Spinazzi et al., 2012). Complex III 
was measured by reduction of cytochrome c at 550 nm at 30ºC. The reaction was initiated by adding 75 µM reduced 
decylubiquinone (DUBQH2), and the increase in absorbance at 550nm was measured for 3 min. Rates were 
calculated from the linear portion of the trace and the specific complex III activity was calculated (Spinazzi et al., 
2012).  Complex IV activity was measured by the oxidation of cytochrome c at 550 nm and data are represented as 
the pseudo first order rate constant (k) divided by protein concentration (Brink et al., 1987). ATP synthase (Complex 
V) activity was measured by the continuous spectrophotometric monitoring of the oxidation of NADH (e340 = 6180 
M-1cm-1) in an enzyme-linked ATP regenerating assay using ATP, phosphoenolpyruvate, pyruvate kinase, and 
lactate dehydrogenase to determine the ATPase activity (NADH loss) in µmol/min/mg protein (Feniouk et al., 2007; 
Pullman et al., 1960). Citrate synthase was measured by the coupled reaction with oxaloacetate, acetyl-CoA, and 
5,5-dithiobis-(2,4-nitrobenzoic acid)(Hoppeler, 1986; Leek et al., 2001; Shepherd and Garland, 1969).  
 

Establishment of Primary Fibroblast Cultures, Ex Vivo Conversion of Floxed Alleles, and Analyses Using 
Fibroblast Cultures 
 
All cultured cells were grown on standard plastic tissue culture dishes or multi-well plates in a humidified water-
jacketed incubator at 37oC in ambient air using “standard” cell culture medium, consisting of DMEM (GIBCO 
#31885 or the equivalent, which includes 5.6 mM D-glucose, 4.0 mM L-glutamine, and 1.0 mM sodium pyruvate; 
all components diluted to ~88% concentration by serum and antibiotic additions in final medium); supplemented 
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with 10% FCS and 1X penicillin/streptomycin (Sigma 15140122); and further modified or supplemented as 
indicated in figures or legends. Procedures for establishing and Cre-converting mouse primary fibroblast cultures 
were as we have described previously (Suvorova et al., 2009). Briefly, biopsies were taken from adult mouse ears 
that had been surface-disinfected sequentially with 70% ethanol, betadine solution, and 70% ethanol. Biopsies in 
sterile saline were minced with a scissors or razor blade. Cells were dispersed with 2X trypsin/EDTA solution 
(diluted from 10X stock into sterile saline, ThermoFisher #15400) and seeded onto 10 cm tissue culture dishes 
containing 10 ml of standard medium. When cultures reached confluence, they were split onto 2 dishes. These were 
grown to confluence and frozen stocks were prepared.  

For ex vivo conversion, cultures re-established from frozen stocks were grown to ~90% confluence on 10 cm 
dishes. Cells were lifted with 1X trypsin/EDTA, washed 1X with standard medium, dispersed in 100 µl of standard 
medium, and then inoculated with 10 µl of a ~109 PFU/ml stock of AdCre (Suvorova et al., 2009). Cells were 
incubated at room temperature with intermittent gentle mixing for 10 m and then seeded either onto 10 cm dishes for 
immunoblotting or dispersed into the wells of a 6- or 12-well dish pre-incubated with standard medium (one AdCre-
treated 10 cM dish used to seed all wells of a single multi-well dish), which resulted in all wells being fully 
confluent at the 0 h time-point. For immunoblots, cells were rinsed 1X with PBS, harvested by scraping in ice-cold 
1X PBS, pelleted, and lysed by sonication followed by boiling in 1% SDS, 10 mM Tris, pH 7.5, 5 mM EDTA. 
Protein concentrations were determined by bicinchoninic acid analyses (Sigma BCA-1) and 20 µg of each was 
assayed per lane. As indicated, cultures were treated with 3 mM L-buthionine-(S,R)-sulfoximine (BSO, ACROS 
235520050), 3 mM D,L-propargylglycine (PPG, Sigma P7888), or with an additional 28 mM D-glucose 
(“hyperglycemic stress”; final concentration ~33 mM) at 4 d post AdCre inoculation. After 48 h of challenge, cells 
on dishes were gently rinsed 3X with 1X PBS to remove dead cells and were photographed under phase-contrast on 
an inverted microscope. For quantification, adherent live cells were counted on 10- to 20-fields of view under each 
condition. 

 

Morphometry 

For morphometric analyses of hepatocytes and hepatocyte nuclei, digital images of 5 µm-thick H&E-stained 
paraffin sections from adult livers were photographed under uniform conditions using a 20X objective. The area of 
whole individual hepatocytes and their respective nuclei were measured by pixel-counts using the Histogram 
function in Adobe Photoshop CS3 software. Only hepatocytes that had nuclei in the plane of section and had clearly 
defined membrane margins were analyzed, and the plane of section on all measured objects was assumed to be 
equatorial. Experimenter supervision was used to ensure that representative frequencies of hepatocytes of all sizes 
and morphologies were presented in data sets. Analyses were done on >25 hepatocytes from each of 3 different liver 
sections from each three to five animals per genotype. For visibly bi-nucleate hepatocytes, it was assumed that both 
nuclei were equal size and, if one was smaller in a given image, the larger one was assumed to be in the plane of 
section, and the measurement of this nucleus was used for both nuclei. All hepatocytes that had only one nucleus in 
the plane of section were assumed to be mono-nucleate. To convert the data into relative volumetric estimates, we 
assumed that each measured object was an ovoid of the maximal and minimal radial dimensions viewed in the plane 
of section, and thus the area (pixel-count) of each object was squared. Since this protocol was followed for all 
images, intrinsic error is uniform for each group and genotype-specific differences are representative. 

For measuring the sizes of mitochondria in transmission electron micrographs, images taken at 5000X 
magnification were analyzed for area using ImageJ 1.51h software (National Institutes of Health). Total cytoplasmic 
area in each frame was determined by subtracting nuclear and extracellular area from each image. For each 
genotype, 10 to 25 arbitrary fields of view were analyzed, containing a total of 140, 105, 345, 135, 210, 158, and 
387 individual mitochondria in WT, TrxR1-, Trx1-, TrxR1/Gsr-, Trx1/TrxR1-, Trx1/Gsr-, and Trx1/TrxR1/Gsr-null 
hepatocytes, respectively.  All morphometric data were tabulated, analyzed, and plotted using GraphPad Prism 7 
software. 
 

Statistical Analyses 

Statistical analyses were performed using Excel or GraphPad Prism 7 software.  Bar graphs show means and s.e.m. 
values and significance was determined by paired Student’s T-tests versus values for control (wild-type) samples. 
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Table S1. Mitochondrial Activity Assays, Related to Figure 4 
 

CX1 
µm/min/mg 

CX2 
nm/min/mg 

CX3 
nm/min/mg 

CX4 
k/sec/mg* 

CX5 
µm/min/mg 

Cs 
mU/mg 

WT 
n=3, (SEM) 

215.5 
(89.1) 

39.4 
(8.5) 

390.8 
(75.8) 

6.19 
(2.16) 

247.8 
(5.8) 

102.8 
(5.9) 

TrxR1/Gsr-null 
n=3, (SEM) 

[P] 

Trx1/TrxR1-null 
n=3, (SEM) 

[P] 

Trx1/Gsr-null 
n=3, (SEM) 

[P] 

Trx1/TrxR1/Gsr-null 
n=3, (SEM) 

[P] 

335.2 
(19.7) 
[0.261] 

281.1 
(30.0) 
[0.521] 

271.2 
(42.1) 
[0.603] 

300.9 
(46.0) 
[0.444] 

38.9 
(9.2) 

[0.968] 

52.9 
(9.3) 

[0.345] 

27.2 
(11.2) 
[0.437] 

24.0 
(4.4) 

[0.182] 

446.0 
(26.3) 
[0.529] 

469.2 
(102.6) 
[0.571] 

456.6 
(55.3) 
[0.522] 

336.0 
(38.5) 
[0.555] 

4.42 
(0.34) 
[0.465] 

3.15 
(0.95) 
[0.267] 

8.65 
(3.44) 
[0.577] 

2.95 
(0.93) 
[0.240] 

206.0 
(9.8) 

[0.021] 

206.8 
(14.2) 
[0.055] 

214.0 
(30.0) 
[0.330] 

187.5 
(17.5) 
[0.031] 

92.0 
(8.7) 

[0.294] 

131.0 
(11.2) 
[0.754] 

99.7 
(4.65) 
[0.142] 

87.3 
(6.3) 

[0.210] 

       

*Data for CX4 are presented as the pseudo first order rate constant per protein concentration, see Materials and Methods. Abbreviations: Cs, citrate synthase; CX1-5, 
electron transport chain complexes I - V; [P], Student’s T-test versus WT. n, number of animals. Each measurement was performed at least 3 times on each animal. 
Red bold font, P < 0.05. 

 



Prigge et al., 2017, Supplemental  Figure S1 
AdCre 

3-7days 

floxed alleles 
WT 

floxed alleles 
Null (90-95%) 

A 

B 

TrxR1 - 

Gsr - 

Trx1 - 

1 2 3 4 5 6 

Figure S1.  Primary fibroblast model for assessing combinatorial genetic disruptions of Trx1, TrxR1, and Gsr, Related to Figure 2 
A. Schematic.  
 B. Fibroblast gene conversion. Protocols followed those published previously (Suvorova et al., 2009). Primary fibroblast cultures were initiated from ear biopsies 
taken from mice harboring various combinations of Gsrnull , Txnrd1cond, and Txn1fl, in addition to being homozygous for the Cre-responsive dual-fluorescent ROSAmT-

mG allele (Muzumdar et al., 2007). Cells were grown on 10 cm tissue culture dishes in DMEM containing 1 mg/l glucose, 2 mM glutamine, 1 mM pyruvate, and 
supplemented with 10% fetal calf serum, and 1X penicillin + streptomycin, in a 5% CO2 37oC incubator. Near-confluence cells were lifted off dishes with trypsin, 
rinsed with complete medium, pelleted, and resuspended in 0.5 ml complete medium/106 cells. To this, 10 µl of ~109 plaque-forming units/ml adenoviral-Cre vector 
(AdCre)(Suvorova et al., 2009) was added (MOI ~ 101), cells were incubated at room temperature with gentle mixing for 10 m, and were seeded either onto fresh 10 
cm dishes for immunoblot analyses or onto fresh dishes or wells. By 72 h after AdCre exposure, most cells were visibly green under fluorescence microscopy and 
immunoblots (e.g., shown here) indicated that levels of TrxR1 and Trx1 protein had decayed to ~10% of initial levels. These levels did not change at 5-, or 7-day 
time points (not shown), suggesting they represented the frequency of cells or alleles on the dish that escaped Cre-mediated recombination. Genotypes of the mice 
from which the primary fibroblasts were initiated were: (lane 1) Txnrd1+/+;Gsr-/-;Txn1fl/fl;ROSAmT-mG/mT-mG;AlbCre1 [converted culture Trx1/Gsr-null]. (lane 2) 
Txnrd1+/+;Gsr+/+;Txn1fl/fl;ROSAmT-mG/mT-mG;AlbCre1 [converted culture Trx1-null]. (lane 3) Txnrd1cond/cond;Gsr-/+;Txn1fl/fl;ROSAmT-mG/mT-mG;AlbCre1 [converted culture 
TrxR1/Trx1-null; Gsr-heterozygous]. (lane 4) Txnrd1cond/cond;Gsr-/-;Txn1fl/fl;ROSAmT-mG/mT-mG;AlbCre1 [converted culture Txr1/TrxR1/Gsr-null]. (lane 5) Txnrd1cond/

+;Gsr-/-;Txn1fl/fl;ROSAmT-mG/mT-mG;AlbCre1 [converted culture TrxR1-heterozygous; Trx/Gsr-null]. (lane 6) Txnrd1cond/cond;Gsr+/+;Txn1+/+;ROSAmT-mG/mT-mG;AlbCre1 
[converted culture TrxR1-null]. Most cultures showed robust survival; however Trx1/TrxR1/Gsr-null cultures started exhibiting cells releasing from the dish after 
day-8 post-AdCre. Based on these observations, stress-challenges were initiated at 96 h post AdCre and were terminated 48 h later.  
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40 µm 

40 µm 

40 µm 

V = 4/3 π (20 µm)3 = 33,500 µm3 = 33.5 pl 

V = (40 µm)3 = 64,000 µm3 = 64 pl 

V (estimate) = 50,000 µm3 = 50 pl 

1)  5 mM GSH = 5 fmol/pl 

2)  5 fmol/pl x 50 pl/4N hepatocyte = 250 fmol/4N hepatocyte 
 
3)  250 fmol = 15 x 1010 molecules GSH 

4)  Synthesis of 1 DNA base requires 1 electron-pair = 2 GSH 
 
5)  1N = 2.72 x 109 base pairs = 5.44 x 109 DNA bases 

6)  4N = 2.18 x 1010 DNA bases; replication of 4N hepatocyte 
requires 4.4 x 1010 electrons 

7)  4.4 x 1010 electrons required/15 x 1010 GSH = 29% 

8)  Conclusion: Hepatocytes contain a steady state 
concentration of GSH with sufficient electrons to replicate 
their entire genome ~ 3 times 

a.  Estimated volume of 4N hepatocyte        b.  Hepatocyte GSH content versus DNA content  

c.  Kinetic requirement for GSH biosynthesis to support replication in a 4N hepatocyte 

1)  Based on a 2 h GSH half-life, at steady state GSH synthesis is 3.8 x 1010 molecules/h in 4N hepatocytes 

2)  S phase in a 4N hepatocyte is ~ 7 h and requires 4.4 x 1010 electrons (= 4.4 x 1010 molecules of GSH) 

3)  During S phase, hepatocytes need 0.63 x 1010 electrons/hour for DNA synthesis (= 0.63 x 1010 GSH/h) 

4)  Therefore, the rate of electron consumption for S phase in a hepatocyte is only ~6% of the rate of GSH turnover in 
resting hepatocytes. 

Figure S2. Estimation of Hepatocyte GSH Content and GSH Requirements, Related to Figure 6.   
A. Hepatocyte volume estimation. In adult mice, the average ploidy of a hepatocyte is ~4N (Bohm and Noltemeyer, 1981; 
Ohtsubo and Nomaguchi, 1986; Prigge et al., 2013; Severin et al., 1984), so measurements and calculations here are based on a 4N average 
genome content. Average hepatocyte shape was approximated by a “rounded cube”, with a long side of 30-40 µm, which was estimated to be 
intermediate between the volume of a cube with 40 µm sides and the volume of a sphere with a 20 µm radius, or ~50 pl.  
B. Hepatocyte GSH and DNA content. The concentration of GSH in liver cytosol is reported to be ~5 mM (Meister and Griffith, 1979; 
Meister et al., 1979) and the haploid mouse DNA content is 2.72 x 109 base pairs (Mouse Genome Initiative). Based on these values and a 50 
pl volume for a tetraploid hepatocyte (panel A), the hepatocyte contains ~3-fold more electrons in the steady state GSH pool than would be 
required by RNR to replicate the entire tetraploid genome. 
 C. Relative GSH requirements for DNA replication versus other processes. The half-life of GSH in liver have been reported to lie between 
~0.2 and 2 h (Griffith and Meister, 1985; Kombu et al., 2009; Meister, 1991; Meredith and Reed, 1982). Thus, the rate of GSH biosynthesis to 
maintain steady state is at least 10-fold greater than the rate of additional GSH production that would be needed to support S phase in cells 
that could only fuel RNR through de novo synthesis of GSH, such as within TrxR1/Gsr-null livers (Eriksson et al., 2015). 

A. B. 

C. 
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Figure S3. Early Pathology in Post-I/R-injury Livers, Related to Figure 5 
Representative histology is shown from livers of genotypes Trx1/TrxR1- and Trx1/Gsr-null livers following either mock-I/R 
injury or either 3 h or 48 h after I/R-injury. In all cases, the left lateral lobe (lateral) was subjected to I/R and the medial lobe 
was unmanipulated. Green arrows denote necrotic cells or acellular post-necrotic debris, with a large necrotic zone outlined 
in dashed lines in bottom-left panel. Blue and purple arrows denote representative inflammatory cells or ductular reactions, 
respectively. Abbreviations: c, central vein; SC, sinusoidal congestion; p, portal triad. Scale bars, 100 µm. 
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Figure S4. Ki-67 Staining on Post-I/R-injury Livers, Related to Figures 5 and 6 
Paraffin sections of mouse livers harvested 2 weeks after I/R-injury were stained for Ki-67 antigen and photographed at 200X magnification. 
For post-I/R animals, samples from the lateral (ischemic) and medial (non-ischemic) lobes were analyzed separately. At this time point there 
were no significant differences between these lobes and a separate data point for each is included in the graph. The frequency of stained 
(proliferative) cells was tabulated on 30 fields of view for each mock-I/R animal, and on 30 fields of view from each analyzed lobe for each 
I/R-injury animal. Data points show the mean value for each animal, and bars depict the mean and standard deviation for all animals of each 
condition. The number of animals (n) represented for mock-I/R surgery is 3, 5, 4, 5, and 4 for WT, Trx1-, TrxR1/Gsr-, Trx1/TrxR1-, and 
Trx1/TrxR1/Gsr-null genotypes, respectively. For I/R-surgery groups, n = 4, 5, 3, 5, 6 in the same order of genotypes. 




