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1. Derivation and assumptions of Equation [8] 

 In PTM, it is assumed that the input signal and external noise are processed through a 

perceptual template and a rectified nonlinear transducer function, the output of which is then 

added with various sources of internal noise to make perceptual decisions. A perceptual template 

is a linear spatio-temporal integrator. For a fixed signal 𝑆"(𝑥, 𝑦, 𝑡) and template 𝑇(𝑥, 𝑦, 𝑡) 

defined over space and time, the template-matched signal (𝑇*") yields  

𝑇*" = 𝑇 𝑥, 𝑦, 𝑡 𝑆" 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡 , 

where 𝑆"- 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡 = 1. Similarly, external noise, 𝐺(𝑥, 𝑦, 𝑡), where the value at each 

(𝑥, 𝑦, 𝑡)  point is drawn from a Gaussian distribution with a mean of 0 and standard deviation of 

𝜎123,  is also processed through the same template, yielding 

𝑇4 = 𝑇 𝑥, 𝑦, 𝑡 𝐺 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡 . 

Both the stimulus and external noise are modulated by contrast, such that a contrast-modulated 

stimulus (𝑆) and external noise (𝑁 𝑥, 𝑦, 𝑡 ) becomes 𝑆 = 𝑐𝑆"(𝑥, 𝑦, 𝑡) and 𝑁 𝑥, 𝑦, 𝑡 =

𝑁123𝐺(𝑥, 𝑦, 𝑡), where 𝑐 and 𝑁123 respectively indicate the contrast of stimulus and external noise. 

Thus, the template-matched signal (𝑇*) and external noise (𝑇7) yields  

𝑇* = 𝑐 𝑇 𝑥, 𝑦, 𝑡 𝑆" 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡 = 𝑐𝑇*8  

𝑇7 = 𝑁123 𝑇 𝑥, 𝑦, 𝑡 𝐺 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡 = 𝑁123𝑇4  . 

𝑇*8 is a constant, characterizing the intrinsic template-matched signal. 𝑇4  is a random variable 

drawn from a Gaussian distribution with a mean of 0 and a fixed standard deviation of 𝜎9: such 

that  

𝑇7 = 𝑁123𝜎9:𝐺(0, 1) , 

where 𝐺(0, 1) is a sample from a standard normal distribution. Mathematically, because 𝑇*8 and 

𝑇4  can be known only up to a constant, without losing generality, the PTM conventionally 

simplifies the model by assuming 𝜎9: = 1 for the baseline (i.e., intervention neutral) state. It is 

equivalent to assuming that the integral of the total gain for the perceptual template at baseline is 

normalized to 1 such that 𝑇* = 𝛽𝑐, and 𝑇7 = 𝑁123𝐺(0, 1), where 𝛽 = 	
  𝑇*8 𝜎9:. Such assumption 

eliminates the necessity of keeping 𝑁123𝜎9: throughout the equations1. This has been also useful 



in investigating, for example, the effects of attention and perceptual learning in typical 

populations2,3. In our conventional PTM analysis, we follow this assumption and characterize the 

group difference in external noise filtering between ASD and TD. To do this, the PTM 

introduces a coefficient (𝐴?)	
  as in Equation [3]. By setting 𝐴? 𝑇𝐷 = 	
  1, the estimated 𝐴?(𝐴𝑆𝐷) 

describes the relative difference in the influence of external noise in ASD compared to TD. This 

is analogous to characterizing the difference between attention (or post-learning) and no attention 

(or pre-learning).  

In the hierarchical Bayesian analysis, however, we relax the above assumption, as our 

primary purpose is to characterize the individual differences in external noise filtering in ASD. 

That is, we separately characterize the gains in signal and external noise such that 𝛽 = 	
  𝑇*8, and 

𝑤123 = 	
  𝜎9: (Equation [8] in the main text). This modification allows us to estimate the external 

noise filtering in each individual. The remaining derivation of the model (e.g., nonlinear 

transducer function ∙ C, characterization of internal additive 𝑁D and multiplicative noise 𝑁E, 

decision criteria, and threshold function) is identical to previous studies, and can be found 

elsewhere1,3,4. We further simplify the model by fixing 𝛽 and 𝛾, because of high positive 

correlations between 𝛽 and 𝑁D, and between 𝛽 and 𝑤123, as well as a negative correlation 

between 𝛾 and 𝑁D (see Supplementary Material 2 for more details). Setting 𝛽 to different values 

(e.g., 1.98; our estimate from conventional PTM) only scaled other model parameters and did not 

change the results. The same results were obtained even when 𝛽 = 1 (i.e., eliminating the 

parameter). Note that, while 𝛽 indicates signal gain, any differences in contrast gain in ASD 

should also affect their responses to external noise, and thus will be reflected in 𝑁EGH. Also, 

setting 𝛾 to different values (e.g., 4.01; estimate from conventional PTM) did not cause 

qualitative changes in the results. We note that the fixed values we used are within a reported 

range1–3,5,6.  

 

2. Correlation among parameters in the hierarchical Bayesian model    

 We simplified the hierarchical Bayesian model by setting signal gain (𝛽), and 

nonlinearity (𝛾) to a fixed value (see Supplementary Material 1). Such constraints were 

necessary because of strong correlations among the model parameters when the two parameters 

were free. Since the PTM is a complex model, it is important to check and ensure that the 



parameters are identifiable and sufficiently constrained based on the available data. Figure S1 

shows a bivariate correlation matrix plot for the internal additive noise (𝑁D), external noise 

filtering (𝑤123), 𝛽, and 𝛾 for a representative TD participant. Each data point is a sample from 

the posterior distribution obtained via the Monte Carlo Markov Chain (MCMC) sampling 

procedure. There are strong correlations particularly between 𝑤123 and 𝛽, 𝑁D and 𝛽 and 𝑁D and 

𝛾. These correlations across parameters can make it difficult to constrain model parameters, and 

indicate that the data can be explained with a fewer number of parameters. Figure S2 depicts a 

bivariate correlation matrix for 𝑁D, 𝑁E, 𝑤123, and slope of the psychometric function (𝜂) with a 

fixed 𝛽 and 𝛾 (as reported in the main text). Data points are from posterior samples obtained for 

a participant in each group (blue: ASD; red: TD). None of the parameters are highly correlated 

with each other, and the distribution of the samples show that the two participants differ in 𝑁D 

and 𝑤123 (best illustrated by the second panel in the top row). Note, when we estimated model 

parameters for individual participants (e.g., Figure 4 in main text), the mode of the distributions 

shown in Figure S3 is taken as the parameter estimate (similar data were obtained for mean 

estimates). 

 



 

Figure  S1.  A  bivariate  correlation  matrix  plot  for  the  model  parameters  with  strong  correlations  
in  the  hierarchical  Bayesian  PTM  when  all  parameters  are  free.  Data  points  represent  samples  

from  a  representative  participant  with  TD.    
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Figure  S2.  A  bivariate  correlation  matrix  plot  for  the  model  parameters  in  the  hierarchical  
Bayesian  PTM  with  fixed  signal  gain  and  nonlinearity.  Blue  data  points  represent  samples  from  

a  participant  with  ASD,  and  red  data  points  are  from  a  participant  with  TD.    
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3. Convergence and autocorrelation in posterior samples  

For the MCMC procedure, we ran 20 chains for each group, collecting every 200 samples 

after a burn-in of 15,000 samples, which resulted in 1,000 samples total in each chain. By 

running multiple chains, we were able to verify that the MCMC procedure converged to the 

regions with highest posterior probability. Figure S3 shows trace plots (first and third columns) 

and autocorrelation functions (second and fourth columns) for internal additive noise, internal 

multiplicative noise, external noise filtering, and slope of the psychometric function. Results 

from two chains are overlaid. The samples appear stationary (i.e., the mean does not seem to be 

changing across iterations), indicating that the MCMC procedure has converged. The results also 

show the absence of autocorrelations across samples.  

 To further confirm MCMC convergence, we calculated the potential scale reduction 

factor (PSRF7). This compares the variance within each chain and the variance between chains. 

In other words, PSRF should be close to 1. If the variance between chains is estimated to be 

substantially larger than the variance within a chain (> ~1.2), then this indicates lack of 

convergence. We used a multivariate version of PSRF8. The results confirmed convergence in 

MCMC samples for both groups (PSRF for ASD = 1.0042; for TD = 1.0045). Separate 

estimation of PSRF for each model parameter did not change the results. 

  



  

Figure  S3.  Trace  plots  (first  and  third  columns)  and  autocorrelation  functions  (second  and  fourth  
columns)  for  the  model  parameter  samples  in  the  hierarchical  Bayesian  PTM  obtained  via  the  

MCMC  procedure.  The  first  and  second  columns  represent  samples  from  a  participant  with  

ASD,  and  the  third  and  fourth  columns  are  from  a  participant  with  TD.    
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