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Supplementary Figure 1. Band structure of a MoS2 monolayer. (a) LDA and GdW band structure

comparison. For the LDA+GdW band structure a k-mesh of 30×30×1 is employed. The interlayer

distance is fixed at L = 40 Å (measured from one Mo to the next Mo in the neighboring supercell).

To account for interlayer interaction, a scissors shift correcting the gap to the value for L→∞ is

applied. An auxiliary basis of 2.5 Ry ≈ 34 eV is used. (b) Convergence of the quasiparticle gap at

three different points of the Brillouin zone. The dashed line indicates the used cutoff for (a). (c)

Gap at the K point as a function of interlayer distance L for four different k-meshs.
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Supplementary Figure 2. Detailed exciton spectrum. (a) Exciton spectrum at four different dis-

tances to the neighboring layer, showing the A, B, and C excitons. Four valence and six conduction

bands are included in the BSE-Hamilton operator and a k-mesh of 15 × 15 × 1 is employed. An

artificial broadening of 0.035 eV is used. (b) Band gap Eg, exciton binding energy E
(A)
b (orange),

and excitation energies of the A and B excitons (black) as a function of interlayer distance L. (c)

Left side: Isolated MoS2 monolayer with an excited electron (red) -hole (blue) pair. Also given

is a sketch of the energy positions involved (not to scale). Right side: When the supercell size is

reduced, the CBM is shifted to lower energies, but the binding energy is also reduced, leaving the

excitation energy (A) unchanged.
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Supplementary Figure 3. Details of the A exciton. The figure shows the excitation energies of the

A exciton as a function of the k-mesh for different substrates. The dashed line is a fit including all

data point with N ≥ 21 and shows the extrapolation to N → ∞. Since these values are directly

compared with trion calculations, two valence and four conduction bands are included and the

interlayer distance is fixed to 45 Å.
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Supplementary Figure 4. Details of the A, B, and excited A2s exciton. The figure shows the

excitation energies of the A, B, and excited A2s exciton in vacuum as a function of the k-mesh.

The dashed line is a fit including all data point with N ≥ 21 and shows the extrapolation to

N →∞. The same parameters as for Supplementary Fig. 3 were used.

4



2 2.2 2.4 2.6

Aex Bex

A
b
so
rp
ti
o
n
(a
.u
.)

Energy (eV)

N=15
N=18

N=21
N=24

N=27

2 2.2 2.4 2.6
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split by 15 meV, two possible positions of the additional electron are accounted for: the lowest CB

and the CB+1 at K. The shown spectra already include both possibilities. An artificial broadening

of 0.01 eV and two valence and four conduction bands are used. The spectrum is obtained by the

Haydock recursion method. The dashed lines represent the excitation energies of the A and B
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Supplementary Figure 6. Excitation energies of the A exciton and A−(1) trion. The figure shows

the excitation energies of the A exciton and A−(1) trion (energetically lowest optically active trion)

in vacuum for different k-meshs. The dotted line is a fit including all data point with N ≥ 21 and

shows the extrapolation to N →∞.
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Supplementary Figure 7. Exciton wave function on different substrates. (a) Modulus squared of

the exciton wave function of the A exciton in real space on the plane spanned by the Mo atoms

(light blue points). For this, the position of the hole is fixed close to a Mo atom (at the maximum

of the charge density of the valence band maximum at the K point). The corresponding root-mean-

square radii are
√
〈r2〉 = 8.8/9.5/11.2 Å for vacuum/SiO2/Au(111), respectively. (b) Schematic of

the exciton in vacuum, on SiO2 and on Au(111): the stronger the screening, the larger the average

distance between electron and hole. (c) Modulus of the contribution to the exciton in k-space

Φ(k). For all substrate plots, the change in the distribution with respect to the vacuum situation

is drawn, e.g., in k-space ∆Φ(k) = Φ(k)sub − Φ(k)vac.
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Supplementary Note 1: The LDA+GdW approximation

All results presented in the main text are obtained within the framework of many-body

perturbation theory (MBPT), which allows a reliable, ab initio description of excited elec-

tronic states [1, 2]. We calculate the quasiparticle band structure starting from a density

functional theory (DFT) calculation within the local density approximation (LDA) followed

by the GW approach within the LDA+GdW approximation. The latter is numerically effi-

cient and allows the inclusion of substrates. To handle trions, we use an extension of MBPT

for excitons which includes a third excited particle. Both approaches are elaborated further

followed by a careful analysis of the numerical stability of our results.

The LDA+GdW method is a first principles theoretical approach to the many-body

physics of a given system. It states a further approximation in calculating theGW self-energy

operator. Ref. [3] introduces it in detail showing its biggest advantage: numerical efficiency.

Furthermore, it allows the straightforward inclusion of screening effects of substrates.

Starting point for most GW calculations are density functional theory energies and wave

functions. They are used as input to calculate the self-energy Σ = iGW , which replaces the

DFT-exchange correlation potential Vxc in the quasiparticle Hamiltonian

ĤQP
GW = ĤDFT + iGW − Vxc. (1)

The observation that motivates the LDA+GdW approach is that the usage of a hypothetical

metallic screening approximately reproduces the DFT-LDA exchange correlation energy,

i.e., iGWmetal ≈ Vxc (provided that iGW is a good approximation to Σ). This way, the

construction of

ĤQP
LDA+GdW = ĤDFT + iG(W −Wmetal) = ĤDFT + iGdW (2)

yields a good approximation for the quasiparticle Hamiltonian. Using Supplementary Eq. (2)

to calculate the quasiparticle corrections states a huge advantage in efficiency, since now

∆Σ := iGdW (of the order of 1 eV) has to be calculated and converged instead of calculating

Vxc and iGW separately (both often of the order of 10 eV) and then subtracting them. Within

LDA+GdW we employ a second approximation: the usage of a model dielectric function (ε)

for W and Wmetal, which replaces the numerically demanding calculation of ε within, e.g.,

random-phase approximation. Due to the comparably small size of iGdW (compared to

iGW ) the resulting error is tolerable, while such approximation would be more troublesome

in full GW .
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In the employed model, the dielectric function of the system is constructed by the contri-

butions of the individual atoms. To simulate the screening of a substrate we only need to add

the contributions of the substrate atoms to ε. Treated this way, the substrate only enters

the calculation through the dielectric function, making it possible to get a clear picture of

the changes induced by its screening only. We note that covalent bonding between the sub-

strate and the monolayer is neglected. In principle, quantum-mechanical interaction of the

electronic orbitals across the interface could add exciplex (or charge-transfer) contributions

to the MoS2 excitons, leading to red or blue shifts depending on orbital overlap (see Ref.

[4] for similar effects in interacting carbon nanotubes). In practice, however, such effects

would require perfect matching of the complex phase of the electronic states on both sides

of the interface [4], which is already destroyed by the lattice mismatch between substrate

and monolayer and can thus be considered as irrelevant.

To conduct a calculation, the unit cell of the substrate is stretched accordingly to fit the

unit cell of the monolayer. The atomic polarizabilities were modified such that the substrate

still has its natural dielectric constant. It was carefully checked that this distortion has a

neglectable impact on the induced shifts due to screening. As explained by Rohlfing et al.

[4], the shifts due to additional screening are not expected to depend strongly on details

of the lattice structure. As mentioned in the main text, we use values for the dielectric

constant ε∞ of 3.9 (SiO2 [5]), 4.95 / 4.10 (ε
‖
∞/ε⊥∞ h-BN [6]), and ∞ (Au).

We also note in passing that our current LDA+GdW approach, although being an addi-

tional approximation to the GW approach on an absolute energy scale, is ideally suited to

address the red-shifts (i.e., differences) with sufficient accuracy [4].

Supplementary Note 2: Electron-hole excitations

Excitons are bound states of an excited electron and a hole. A well established framework

for their theoretical description is given by the GW/BSE approach [7, 8]. Here, excitations

are described through the Hamilton-matrix elements

〈vc|Ĥ(eh)|v′c′〉 =(εc − εv)δcc′δvv′ (ĤBS)

− (Wv′c,vc′ − Vv′c,c′v) . (Ĥeh)

(3)

Where |vc〉 := â†câv|0〉 denotes electron-hole pair excitations from the ground state of an
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N -electron system |0〉. The index v (c) refers to occupied valence (empty conduction)

states. For a periodic system v = (v,kv) and c = (c,kc) combine the band index (v, c)

with a wave number (kv, kc) for holes and electrons. The short-hand notation v (c) is

chosen for brevity. The Hamilton matrix has two contributions: the first is the bandstruc-

ture term ĤBS containing the quasiparticle energies εc, εv. The second is the electron-hole

interaction Ĥeh which mixes the excitations and includes the bare Coulomb interaction

Vij,mn =
∫
φ∗i (x)φ∗j (y)V (x, y)φm(x)φn(y)dxdy with V (x, x′) = e2/|r − r′| in the exchange

term and the screened Coulomb interaction W (r, r′) =
∫
ε−1(r, r′′)V (r′′, r′)d3r′′ in the direct

term. Here, the coordinate x = (r, σ) in the single particle states φn(x) combines position

and spin; correspondingly, the integration includes spin summation, i.e.,
∫
dx =

∑
σ=±

∫
d3r.

The diagonalization of Supplementary Eq. (3) yields the coupled electron-hole excitations

of the system

|S,Q〉 =
∑
vc

B(S,Q)
vc |vc〉 (4)

with the coefficients B
(S,Q)
vc and corresponding eigenvalues Ω(S,Q) for an exciton with total

momentum Q. For the absorption of a photon with vanishing momentum Q = 0 the sum-

mation in Supplementary Eq. (4) over kv and kc is reduced to one sum with kv = kc = k.

Note that the discussion is restricted to the Tamm-Dancoff approximation.

Supplementary Note 3: Trion states

Trion states (also known as charged excitons) consist of three excited particles. Negatively

charged states are formed from two electrons and one hole, while positively charged states

are formed from one electron and two holes. In this section we focus on negatively charged

states; the corresponding expressions for positive trions are analogous. A negative trion can

be constructed as

|vc1c2〉 := â†c2 â
†
c1
âv|0〉. (5)

To avoid double counting, we require that c1 < c2, which assumes that the empty states

are ordered. The definition of the order is arbitrary but has to be kept. Setting up similar
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matrix elements as in Supplementary Eq. (3) yields

〈vc1c2|Ĥ(eeh)|v′c′1c′2〉 = (6)

(εc1 + εc2 − εv)δc1,c′1δc2,c′2δv,v′ (ĤBS)

+(Wc1c2,c′1c
′
2
−Wc1c2,c′2c

′
1
)δv,v′ (Ĥee)

−(Wv′c1,vc′1
− Vv′c1,c′1v

)δc2,c′2 (Ĥeh,1)

−(Wv′c2,vc′2
− Vv′c2,c′2v

)δc1,c′1 . (Ĥeh,2)

A detailed derivation of Supplementary Eq. (6) can be found in Ref. [9] and its Supplemen-

tary Material. The terms can be interpreted as follows: The first line of Supplementary

Eq. (6) (ĤBS) describes independent motion of each particle in the system’s band struc-

ture, while the other terms describe the interaction (direct and exchange) between the two

electrons (Ĥee), and between the hole and each of the electrons (Ĥeh,1/2).

Diagonalization of the Hamiltonian set up by Supplementary Eq. (6) results in correlated

trion states

|T,K〉 =
∑
vc1c2

A(T,K)
vc1c2
|vc1c2〉 , (7)

where the summation is restricted to c1 < c2. The total momentum of the trion is given by

K, which is constructed by the momenta of the electrons and the hole as K = k1 +k2−kv,

which states a restriction to the sum in Supplementary Eq. (7). Note that the corresponding

eigenvalues of Supplementary Eq. (7) denoted as E(T,K) are the energies of the trions. Optical

transition energies found in an experimental spectrum would correspond to transitions from

the trion state |T,K〉 to a single excited electron state having the same momentum as the

trion |cK〉. Transition energies are thus given by

Ω(|T,K〉 ↔ |cK〉) = E(T,K) − εcK . (8)

Supplementary Note 4: Numerical results - band-structure calculations

Starting point for our many-body calculations is a DFT calculation carried out in the local

density approximation (LDA), in the parametrization of Perdew and Zunger [10]. Norm-

conserving pseudopotentials [11] in Kleinman-Bylander form [12] are used that also include

spin-orbit interaction. We employ a basis of three shells of Gaussian orbitals with s, p, d
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and s∗ symmetry and decay constants of [0.18, 0.49, 1.39] for Mo and [0.16, 0.56, 2.5] for S,

all in units of a−2B . We find a theoretical lattice constant of 3.16 Å that coincides with the

experimental value of bulk MoS2 3.16 Å [13]. The position of the S atoms are structurally

relaxed until forces are smaller than 10−4 Ry
aB

. In reciprocal space a k-mesh of 10× 10× 1 is

employed.

All calculations are carried out using a code written by ourselves [14]. The resulting

bandstructure is depicted in dashed red in Supplementary Fig. 1 (a) showing a direct band

gap at K of 1.82 eV. The DFT calculation provides the single particle wave functions and

energies that are used as input for the subsequent quasiparticle calculations.

As mentioned above, our MBPT calculations are carried out within the LDA+GdW

approximation. The resulting band structure in direct comparison with the DFT bands

is shown in Supplementary Fig. 1 (a). In MBPT the appearance of two-point functions

requires a second, auxiliary basis. We use plane waves with a cutoff of 2.5 Ry ≈ 205 plane

waves, which shows a convergence of the bands better than 0.05 eV as can be seen in Supple-

mentary Fig. 1 (b). To account for interlayer interaction between different super cells, that

lead to a closing of the electronic band gap, we calculate the electronic structure for multiple

interlayer distances L (up to 80 Å), and extrapolate as L → ∞ (see Supplementary Fig. 1

(c)). We note that this extrapolation scheme is only needed for the electronic properties, i.e.,

the gap and band structure, the absorption spectra are almost independent on the interlayer

distance (see below). Supplementary Fig. 1 (c) also shows the k-mesh convergence of the

quasiparticle gap, which is converged better than 0.05 eV for meshs greater than 14×14×1.

Supplementary Note 5: Numerical results - BSE calculations

The excitonic properties are derived by solving Supplementary Eq. (7). Linearly polarized

light (within the plane spanned by the monolayer) is used for all spectra. Supplementary

Fig. 2 (a) shows the calculated BSE spectrum for different supercell sizes and thus different

interlayer distances L. The spectrum shows the prominent A, B, and C excitons. Note

that a k-mesh of 15 × 15 × 1 is used to analyze the dependence on L. Most strikingly,

the spectrum seems not to depend much on the interlayer distance (if L is large enough,

i.e., & 27 Å). Supplementary Fig. 2 (c) schematically compares two situations: an isolated

MoS2 monolayer and a layer interacting with another one, i.e., for moderate L values. The

excitation energy (A) is not shifted, while the band gap closes. This situation is similar
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to the monolayer with and without a substrate. Two larger effects cancel each other: the

band gap closes (Supplementary Fig. 2 (b), Eg green dots) and at the same time the binding

energy is reduced (E
(A)
b orange dots), leaving the excitation energies almost constant (black

dots, labeled A and B). We note that the same holds for the trion states as well.

For a comparison with trion spectra two valence and four conduction bands are used.

Thereby the lower energy part of the spectrum, i.e., up to 2.6 eV is converged. Supplementary

Fig. 3 shows the A exciton energy for different k-grids on different substrates. Note that the

A excitons are already converged better than 0.05 eV at meshs as small as 15×15×1, which

we find equivalently for the B exciton. The excited A2s state converges a bit slower, due

to its more complicated spatial structure. The convergence of all three states is shown in

Supplementary Fig. 4. This extremely fast convergence results from a combination of several

aspects to our approach: In conventional GW calculations for d-electron systems, the s and p

semicore electrons of the same shell (here: Mo 4s+p) have to be included as valence electrons

to incorporate their bare exchange interaction. Within LDA+GdW , on the other hand, the

bare exchange interaction is not considered explicitly, and the semicore states can be treated

as core states. This reduces the number of valence electrons (per Mo atom) from 14 to only

6. Moreover, we use identical k-meshs for the quasiparticle corrections and the electron-

hole interaction, omitting the need for an interpolation scheme. The k-meshs for internal

summation in the self-energy operator are also chosen exactly equivalent to the grids for

the quasiparticle corrections. With such exactly matching meshs, the GW quasiparticle gap

and the electron-hole interaction show the same asymptotic behavior with increasing mesh

density, and the exciton energy (i.e., the combination of both) converges rapidly with the

number of k-points. Additionally, the Coulomb interaction between adjacent supercells is

not truncated, but exrapolated for an infinite interlayer distance for the electronic properties,

which also reduces the convergence requirements [15].

Enhanced screening due to the substrate also affects the wave functions of the excited

states. Due to stronger screening, the excitonic binding is weakened and the real space

wave function gets further extended. This is illustrated in Supplementary Fig. 7 for the A

exciton. The distribution of the electron in the plane spanned by the Mo atoms is shown

in Supplementary Fig. 7 (a), assuming the hole is fixed close to the Mo atom in the center.

The corresponding plots which include a substrate show how amplitude is shifted from the

middle to the outer part of the electron distribution, thus extending the wave function in
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real space. The Coulomb interaction binds the electron to the hole. Weakening this binding

force via increased screening results in a larger electron distribution. The corresponding

root-mean-square radii are
√
〈r2〉 = 8.8/9.5/11.2 Å for vacuum/SiO2/Au(111), respectively,

where
√
〈r2〉 =

( 〈S,Q|(rh−re)2|S,Q〉
〈S,Q|S,Q〉

) 1
2 contains the distance between the hole and the electron

rh − re and the A exciton wave function |S,Q〉 evaluated in real space.

In reciprocal space this trend is inverted. Supplementary Fig. 7 (b) show how the con-

tribution in k-space of the A exciton gets more concentrated around K. The full width at

half maximum for the vacuum situation (0.116 2π
a

) is reduced by 4.1% or 8.7% for the SiO2

or Au(111) substrate, respectively.

Supplementary Note 6: Numerical results - Trion calculations

In the last step, one additional electron is included and bound negative trion states are

calculated (the treatment of positive trions is fully analogous). This requires a diagonaliza-

tion of the trion Hamilton-operator described by Supplementary Eq. (6). For our presented

trion spectra the dimension is ∼ N2
kNvN

2
c ∼ 107, using a grid of Nk = 27× 27× 1 k-points

and two valence and four conduction bands (Nv, Nc), while the corresponding dimension

of the BSE-Hamilton matrix would be merely NkNvNc ≈ 6000. The size of the Hamilton

operator puts a direct diagonalization out of reach. Fortunately, about 99.8 % of the matrix

elements are zero, enabling an efficient route through recursive schemes like the Haydock

recursion [16] when focusing on spectra, or the Lanczos algorithm or similar [17] to access

eigenstates. It was carefully checked that both approaches results in almost identical spec-

tra (not distinguishable by eye on the presented energy scales). Sufficient processors and

memory were supplied by the HPC system PALMA of the University of Münster and the

super-computer JURECA at Jülich Supercomputing Centre (JSC).

Independently from the BSE, the convergence of the trion spectrum with respect to the

used k-grid has to be carefully evaluated. The (Haydock-)spectra are shown in Supple-

mentary Fig. 5. Not all trions converge at a similar rate, especially the first resonance

shows a fast convergence, which becomes especially evident in Supplementary Fig. 6, which

shows the energetic position of the A exciton and A−(1) trion in comparison, both extrapolated

to N →∞, which yields a trion energy of 2.07 eV and thus a trion binding energy of 58 meV.
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