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Supplementary Figures 
 

 

Figure S1. Flow cytometry analysis of Pcf T. brucei isolated by centrifugal elutriation. Cells 

were eluted from the centrifuge with increasing flow rates, stained with PI and analysed by flow 

cytometry (n = 50,000). 

 

Figure S2. Analysis of Pcf T. brucei isolated by centrifugal elutriation. a. Cells were eluted 

from the centrifuge with increasing flow rates, stained with PI and analysed by flow cytometry (n = 

50,000).  b. Cells were stained with DAPI and the number of nuclei and kinetoplast per cell analysed 

by microscopy (n > 200).  
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Figure S3. Flow cytometry time-course of early-G1 synchronised Pcf T. brucei. Early-G1 cells 

(97% G1) eluted at 18 ml/min were placed into culture and sample withdrawn hourly, PI stained, and 

analysed by flow cytometry (n = 100,000).  

 

 

Figure S4. Flow cytometry time-course of distinct G1 synchronised Pcf T. brucei cells. Flow 

cytometry of PI stained cells at hourly intervals post elutriation, details as Fig S1. a. Early-G1 cells 

(97% G1) eluted at 18 ml/min, b. Mid-G1 cells (92% G1) eluted at 20 ml/min, c. Late-G1 cells (82% 

G1) eluted at 22 ml/min. Red boxes highlight a similar highly enriched G2/M state that is reached at 

different time post-elutriation for each sample.  
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Figure S5. Flow cytometry analysis of Bsf T. brucei isolated by centrifugal elutriation.  a. 

Cells were eluted from the centrifuge with increases in the flow rates, stained with PI and analysed 

by flow cytometry (n = 50,000). b. Bar chart of flow cytometry data. c. Cells were stained with DAPI 

and the number of nuclei and kinetoplast per cell analysed by microscopy (n > 200). 
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Figure S6. Flow cytometry time-course of G1 synchronised Bsf T. brucei. a. Early-G1 cells 

(97% G1) eluted at 13 ml/min, b. Early-G1 cells (96% G1) eluted at 15 ml/min, c. Late-G1 cells (97% 

G1) eluted at 17 ml/min. Flow cytometry of PI stained cells at hourly intervals post elutriation. Red 

box highlights a similar profile that is reached at different time post-elutriation for the early- and 

late-G1 cells.  

 

 

Figure S7. Observation of Nuclear and Kinetoplast DNA by DAPI staining. Examples of the 

different classifications of cells based on their Nuclear (N) and Kinetoplast (K) count. 
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Cell cycle modelling 

  We model the distribution of the starting population of cells in each fraction at the start of the 

experiment over the unit cell cycle with a latent beta distribution with shape and scale parameters 𝛼𝛼 

and 𝛽𝛽. We assume that the cells all move through the stages of the cell cycle at the same constant 

rate, and so the position of the distribution will shift. Hence, we define 𝜇𝜇 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡, where 𝑡𝑡 

denotes the time of measurement. The beta distribution can be reparameterised in terms of 𝛼𝛼 and 

𝑎𝑎0, with 𝛽𝛽 = 𝛼𝛼
𝑎𝑎0−𝛼𝛼

.1 

  Conceptually, we are interested in inferring the boundaries of major cell cycle stages from the data. 

Let 𝛩𝛩 be the vector encoding the 𝐾𝐾 + 1 boundaries of the 𝐾𝐾 observed cell cycle stages (whether 

overall cell cycle, kinetoplast, or basal body state). For example, 𝛩𝛩𝑐𝑐𝑐𝑐 = {0,𝜃𝜃𝐺𝐺1,𝜃𝜃𝑆𝑆,𝜃𝜃𝐺𝐺2 𝑀𝑀⁄ , 1} for the 

overall cell cycle. Let 𝑌𝑌 be the vector of observed proportions of cells in each stage. 

  First, let us assume that we are only looking at a single cell cycle. We can model the data using the 

cumulative distribution function 𝐹𝐹(𝑢𝑢 ∥ 𝛼𝛼,𝛽𝛽) of the beta distribution. Let 𝐹𝐹(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) denote the 

probability mass between points 𝑢𝑢 and 𝑣𝑣 under the shift at time 𝑡𝑡, i.e. 𝐹𝐹(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹(𝑣𝑣 − 𝑎𝑎1𝑡𝑡) −

𝐹𝐹(𝑢𝑢 − 𝑎𝑎1𝑡𝑡), where we have omitted 𝛼𝛼 and 𝛽𝛽 for simplicity. Note that we assume the probability 

mass to be zero outside the unit interval, so 𝐹𝐹(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) = 𝐹𝐹(𝑣𝑣 − 𝑎𝑎1𝑡𝑡) − 𝐹𝐹(0) if 𝑢𝑢 − 𝑎𝑎1𝑡𝑡 < 0 and 

𝐹𝐹(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹(1) − 𝐹𝐹(𝑢𝑢 − 𝑎𝑎1𝑡𝑡) if 𝑣𝑣 − 𝑎𝑎1𝑡𝑡 > 1. Then allowing for a small amount of Gaussian 

observational noise with variance 𝜎𝜎2, our model for cell cycle stage 𝑘𝑘 is: 

𝑌𝑌𝑘𝑘(𝑡𝑡) ∼ 𝑁𝑁(𝐹𝐹(𝛩𝛩𝑘𝑘,𝛩𝛩𝑘𝑘+1, 𝑡𝑡),𝜎𝜎2). 

  In order to model the doubling of cells at the end of each cell cycle, we must introduce a 

discontinuity into the model. As the duration of the experiment only allows for two cell cycles, we 

can determine the proportion of cells in each cycle under our model: 𝑝𝑝1(𝑡𝑡) = 𝐹𝐹(0,1, 𝑡𝑡) and 

𝑝𝑝2(𝑡𝑡) = 𝐹𝐹(1,2, 𝑡𝑡), where we have doubled the unit cell cycle in the obvious way. Then we can define 

a normalized version of 𝐹𝐹(𝑢𝑢, 𝑣𝑣, 𝑡𝑡): 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) =
𝐹𝐹(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) + 2𝐹𝐹(𝑢𝑢 + 1,𝑣𝑣 + 1, 𝑡𝑡)

𝑝𝑝1(𝑡𝑡) + 2 ∗ 𝑝𝑝2(𝑡𝑡)
 

and the model becomes: 

                                                           
1  Note that the beta distribution is only defined on the unit interval, but we need cells to be 
able to proceed to the next cell cycle as time progresses. We solve this by shifting the reference 
frame. 
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𝑌𝑌𝑘𝑘(𝑡𝑡) ∼ 𝑁𝑁(𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛩𝛩𝑘𝑘,𝛩𝛩𝑘𝑘+1, 𝑡𝑡),𝜎𝜎2). 

  If we define 𝐹𝐹(𝛩𝛩, 𝑡𝑡 ∥ 𝛼𝛼,𝑎𝑎0,𝑎𝑎1) = {𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛩𝛩1,𝛩𝛩2, 𝑡𝑡), … ,𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛩𝛩𝐾𝐾 ,𝛩𝛩𝐾𝐾+1, 𝑡𝑡), then we can redefine 

the equation above as 𝑌𝑌(𝑡𝑡) ∼ 𝑁𝑁(𝐹𝐹(𝛩𝛩, 𝑡𝑡 ∥ 𝛼𝛼,𝑎𝑎0,𝑎𝑎1),𝜎𝜎2). We define priors on the inferred 

parameters 𝛼𝛼, 𝑎𝑎0, 𝑎𝑎1 and 𝛩𝛩, leading to a Bayesian hierarchical model: 

𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) ∼ 𝑁𝑁�𝐹𝐹(𝛩𝛩𝑛𝑛𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡 ∥ 𝛼𝛼,𝑎𝑎0,𝑎𝑎1),𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 �
𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡) ∼ 𝑁𝑁�𝐹𝐹�𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 , 𝑡𝑡 ∥ 𝛼𝛼,𝑎𝑎0,𝑎𝑎1�,𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 �

𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) ∼ 𝑁𝑁�𝐹𝐹(𝛩𝛩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑡𝑡 ∥ 𝛼𝛼,𝑎𝑎0,𝑎𝑎1),𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 �
𝛩𝛩𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∼ 𝑁𝑁�𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 �

𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁�𝐵𝐵𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 �
𝛩𝛩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∼ 𝑁𝑁�𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 �

𝛼𝛼 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1,1)
𝑎𝑎0 ∼ 𝑁𝑁(0.3,0.05)
𝑎𝑎1 ∼ 𝑁𝑁(0.02,0.01)

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(10)

 

where 𝐵𝐵 encodes our prior beliefs about the location of the boundaries, with 𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = {0.6,0.75}, 

𝐵𝐵𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = {0.1,0.3,0.6} and 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = {0.5}. Note that the start and end of the cycle are fixed, so 

do not require priors. We set 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.1, though in practice the posterior estimates of the bounds 

will be tightly constrained by the data. 

  We infer the parameters using Hamiltonian Monte Carlo via the STAN software package1. The 

model converges after 5000 iterations, and produces the estimates of the posterior boundaries 

shown in Figure S8. The fit of the data for each of the three fractions to the inferred model is shown 

for the flow cytometry data (Fig. S9), the DAPI stained microscopy data (Fig S10) and the basal body 

count (Fig. S11). 

 

References: 

1.  Carpenter, B. et al. (2017) Stan : A Probabilistic Programming Language. J. Stat. Softw. 76, 1–

32 
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Figure S8. Estimates of the posterior boundaries for the Pcf T. brucei cell cycle.  
 

 

Figure S9. Comparison of the inferred model and Pcf flow cytometry data. F18 – 18 ml/min 

fraction, F20 – 20 ml/min fraction, F22 22 – ml/min fraction. Two data sets used. 
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Figure S10. Comparison of the inferred model and DAPI microscopy data. F18 – 18 ml/min 

fraction, F20 – 20 ml/min fraction, F22 22 – ml/min fraction. Three data sets used. 

 

 

Figure S11. Comparison of the inferred model and basal body data. F18 – 18 ml/min fraction, 

F20 – 20 ml/min fraction, F22 22 – ml/min fraction. Single data set used. 
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