Regulation of hyperoxia-induced social behaviour in *Pristionchus pacificus* nematodes requires a novel cilia-mediated environmental input

Eduardo Moreno^{a1}, Bogdan Sieriebriennikov^a, Hanh Witte^a, Christian Rödelsperger^a, James W. Lightfoot^a & Ralf J. Sommer ^{a1}.

^a Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.

a Guid	te ENA 1 RT + Guide RN	AZ		
npr-1 5				
b				
RS2333 tu639	ACGATGATATTAGACTATGATGGACCGACAATTCTCATCGATC ACGATGATATTAGACTATGAGATGATGACCGACAATTCTCATCGATC	AACCTGTT (+5	pb)	
С	< #			
ACAGTTO	CGTGCTTCCATTCATCGTAATGGCCTTCTGCTATG CCA CGATCGTTAGT	CGACTAAGGAAC	AGGGCTAAGGTGAGGACCAACAC	TCTCATTCTT
d				
802222				
R02333	COCCEPTERCORE CONTENTIACIONE CONTENTACIÓN DE CONTENTE CO			
+0650	CCCCTTCTCCTATCCCACCATCCTTACTCCACCTAACCAACCACC			
tu660	GGCCTTCTGCTATGCCACGATCGTTAGTCGACTAAGGAACAGGG			
е				
	<	-		
RS2333	GGCCTTCTGCTATGCCACGA	T	CTTTAGTCGACTAAGGAACAGGG	
tu632	GGCCTTCTGCTATGCCACG-CTTTATGCTATGCTATGC	<u>T</u>	CTTTAGTCGACTAAGGAACAGGG	(+17 bp net)
tu633	GGCCTTCTGCTATGCCACTAACTAGGAACATTACGATGAATGGAAG		TAGTCGACTAAGGAACAGGG	(+22 bp net)
tu635	GGCCTTCTGCTATGCCAC	-TTCTGCTATG-	CTTTAGTCGACTAAGGAACAGGG	(+7 bp net)
tu636	GGCCTTCTGCTATGCCACGA	TTAGCCCTGTTC	CTTTAGTCGACTAAGGAACAGGG	(+11 bp)
tu649	GGCCTTCTGCTATGCCACGA	TCTCTGCT	CTTTAGTCGACTAAGGAACAGGG	(+7 bp)
tu650	GGCCTTCTGCTATGCCACG-TCGA	*********	CTTTAGTCGACTAAGGAACAGGG	(+2 bp net)
tu658	GGCCTTCTGCTATGCCAC		GACTAAGGAACAGGG	(-11 bp)

Supplementary Figure S1. *Ppa-npr-1* mutant alleles produced using CRISPR/Cas9 system. (a) Gene structure of the *npr-1* ortholog in *P. pacificus*. Grey boxes indicate exons and solid lines indicate introns. The positions of the sgRNA sequences and the repairtemplate oligonucleotide (RT) are indicated. (b) Genetic lesions in the *Ppa-npr-1* mutant allele *tu639*, generated in exon 1. (c) Repair template oligonucleotide containing a single nucleotide substitution (T->G), which induces the corresponding amino-acid substitution F->V. (d) *npr-1* gain-of-function mutant alleles. (e) Genetic lesions in *Ppa-npr-1* mutant alleles generated in exon 6. In all figures arrows indicate sgRNA sequences, the PAM domain is shown in bold and the induced genetic lesions are highlighted in grey colour.

ifta-1

R	\$2333	GATTCTCGACGATGACAGCAACA CACTGGCCTGCT
t	u1044	GATTCTCGACGATGACAGCAACATCGTACACTGGCCTGCT (+5 bp)
ŧ	u1045	GATTCTCGACGATGACAGCTGGCCTGCT (-7 bp)
R	\$2333	CCGCTTCCCCAACGTCACCCTCACGTCGGCCCAGTGG
ŧ	u1123	CCGCTT <u>CCCCAACGTGGACCAA</u> CCAGTGG (+8 bp net)
dyf-1		
R	S2333	GACGGAGAGTACAAGTACAATCTA TGG ATTGGTGAGATTCTTTTAACCATATTTT
t	u1072	GACGGAGAGTACAAAGTACATGGATTGGTGAGATTCTTTTAACCATATTTT (-5 bp)
t	u1074	GACGGAGAGTACACAAGTACAACCACCATATTTT (+23 bp net)
che-11		
R	S2333	GAAGCAACAGATAACAGTGCCTGAGA TGG AAGGAG
t	u1085	GAAGCAACAGATATATAACAGATAAGATGGAAGGAG (+1 bp net)
t	u1086	GAAGCAACAGATAGAAGATGGAAGGAG (-8 bp net)
t	u1087	GAAGCAACAGATAACAGTGCCTGATGGAAGATGGAAGGAG (+5 bp)
xbx-1		
R	\$2333	TTCAGACTAAGCAACTGTGTCACGTG TGG GAGTTG
t	u1085	TTCAGACTAAGCAACTGTGTCGAGGGGAGTTG (+3 bp net)

Supplementary Figure S2. Mutant alleles of *Ppa-ifta-1*, *Ppa-dyf-1*, *Ppa-che-11* and *Ppa-xbx-1* produced using CRISPR/Cas9 system. Arrows indicate sgRNA sequences, the PAM domain is shown in bold and the induced genetic lesions are highlighted in grey colour.

che-3

	RS2333	TCATCGATATGGAGTCACACTCAAACAGGTTCGAA
	tu1096	TCATCGATATGGAGTCAACAGGTTCGAA (-7 bp)
	tu1097	TCATCGATATGGAGTCACACTTTTTTCTTCAGGTT-CAGGTTCGAA (+10 bp net)
	tu1100	TCATCGATATGGAGTCACATGGAGTCAA (-7 bp net)
dyf-2		
	RS2333	GGCCGTCTGATAGTCGGTTTCCGCTCCGGACAGTG
	tu1098	GGCCGTCTGATAGTCGGTTTCCTCCGGACAGTG (-2 bp)
	tu1102	GGCCGTCTGATAGT-TGTTGTCGTACCTGGAATCCTCCCGGACAGTG (+10 bp ne
osm-12		
	RS2333	TGGCACAAAGACAGGCAGACTGGGAC TGG TCGATCGCCTCA
	tu1099	TGGCACAAAGACAGGCAGACTGGTCGATCCTGGTCGATCTGCCTCA (+5 bp net)
osm-1		
	RS2333	GACAACGTCGTGTTCGTGTACAAAATCGGCGCCGA
	tu1129	GACAACGTCGTGTTCGTTTTTAATCGGCGCCGA (-2 bp net)
osm-3		
	RS2333	ATCGCATTCAATATTCACTGTGTACG TGG AAGCAA
	tu1090	ATCGCATTCAATATTCACTGTGTGGAAGCAA (-4 bp)
	tu1091	ATCGCATTCAATATTCACTGTGTATTCACGTGGAAGCAA (+4 bp)
	tu1092	ATCGCATTCAATATTCAC ACGTGGAAGCAA (-5 bp)
klp-20		
	RS2333	TCTGGAGATCAAAGAACGTCCCGATG TGG GAGTAT
	tu1131	TCTGGAGATCAAAGAATGTGGGAGTAT (-8 bp)

Supplementary Figure S3. Mutant alleles of *Ppa-che-3*, *Ppa-dyf-2*, *Ppa-osm-1*, *Ppa-osm-3*, *Ppa-osm-12* and *Ppa-klp-20* produced using CRISPR/Cas9 system. Arrows indicate sgRNA sequences, the PAM domain is shown in bold and the induced genetic lesions are highlighted in grey colour.

Allele	Mutation	Type of mutation	Strain
tu634	SNP:F->V	gain-of-function	PS312
tu632	1 bp deletion + 18 bp insertion	nonsense	PS312
tu633	6 bp deletion + 28 bp insertion	nonsense	PS312
tu635	3 bp deletion + 10 bp insertion	nonsense	PS312
tu636	11 bp insertion	nonsense	PS312
tu639	5 bp insertion	nonsense	PS312
tu659	SNP:F->V	gain-of-function	RSB001
tu660	SNP:F->V	gain-of-function	RSB001
tu649	7 bp insertion	nonsense	RSB001
tu650	2 bp deletion + 4 bp insertion	nonsense	RSB001
tu658	11 bp deletion	nonsense	RSB001

Supplementary Table S1. Mutant alleles of the *npr-1* ortholog in *P. pacificus* produced using CRISPR/Cas9 system. For each allele, the length of the genetic lesion, the type of mutation and the background strain from which the mutant was produced are indicated.

x	У	mean x	mean y	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	tu634	34.83	23.83	11	1.61	18	0.124	ns
RS2333	tu632	34.83	49.16	14.32	-2.30	18	0.033	ns
RS2333	tu633	34.83	53.00	18.17	-2.73	18	0.014	ns
RS2333	tu635	34.83	59.67	24.84	-4.13	18	< 0.001	**
RS2333	tu636	34.83	49.66	14.18	-2.39	18	0.028	ns
RS2333	tu639	34.83	54.5	19.67	-3.21	18	0.005	ns
RSB001	tu659	86.83	83.00	3.83	1.50	18	0.150	ns
RSB001	tu660	86.83	85.17	1.66	0.67	18	0.513	ns
RSB001	tu649	86.83	97.5	10.67	-4.64	18	< 0.001	**
RSB001	tu650	86.83	97.16	10.33	-4.35	18	< 0.001	**
RSB001	tu658	86.83	95.67	8.84	-3.60	18	0.002	*

Supplementary Table S2. Statistical values from pairwise comparisons for mean bordering behaviour between wild-type strains and *Ppa-npr-1* CRISPR mutants. Each strain/mutant was measured 10 times. The percentage means of bordering behaviour were compared using Student's t-test.

¹The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/11 = 0.004.

Strain	mean 20% [O2]	mean 21% [O2]	mean difference	t	df	<i>P</i> -value ¹	significance
RS5412	0.003	0.014	0.011	-5.02	10	< 0.001	**
RS5399	0.008	0.019	0.011	-5.73	10	< 0.001	***
RSA047	0.007	0.019	0.012	-5.17	10	< 0.001	**

Supplementary Table S3. Ω -turn rates in response to oxygen concentration ([O₂]) shifts from 20% to 21% on food in selected *P. pacificus* solitary strains. The statistical values from pairwise comparisons between mean Ω -turns before and after oxygen shifts were calculated with the Student's t-test.

¹ The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/3 = 0.0167

x	У	mean x	mean y	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	tu662	34.83	87.50	52.67	-9.03	18	< 0.001	***
RS2333	tu663	34.83	83.17	48.34	-7.49	18	< 0.001	***
RS2333	tu664	34.83	96.67	61.84	-10.78	18	< 0.001	***
RS2333	tu665	34.83	91.67	56.84	-9.51	18	< 0.001	***
RS2333	tu666	34.83	94.16	59.33	-10.10	18	< 0.001	***
RS2333	tu667	34.83	96.83	62.00	-10.82	18	< 0.001	***
RS2333	tu668	34.83	94.66	59.83	-10.24	18	< 0.001	***
RS2333	tu670	34.83	96.83	62.00	-10.75	18	< 0.001	***
RS2333	tu671	34.83	95.00	60.17	-10.15	18	< 0.001	***
RS2333	tu672	34.83	92.67	57.84	-9.73	18	< 0.001	***
RS2333	tu674	34.83	79.67	44.84	-6.50	18	< 0.001	***
RS2333	tu675	34.83	90.33	55.50	-9.51	18	< 0.001	***
RS2333	tu676	34.83	82.33	47.50	-7.24	18	< 0.001	***
RS2333	tu678	34.83	90.83	56.00	-9.47	18	< 0.001	***
RS2333	tu669	34.83	93.83	59.00	-10.10	18	< 0.001	***

Supplementary Table S4. Statistical values from pairwise comparisons for mean bordering between RS2333 and the 15 social mutants isolated in chemical mutagenesis screens. Each strain/mutant was measured 10 times. The percentage means of bordering behaviour were compared using Student's t-test.

¹The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/15 = 0.003.

Arrow in Fig.3B	Allele	Position Hybrid1 Assembly	Reference	Variant	Hybrid1 Gene ID	C. elegans 1:2:1 ortholog	Mutation Type	nt substitution
1	tu667	Contig6:2446422	A	Т	Contig6-snap.265	ifta-1	nonsynonym [H>L]	CAT>CTT
2	tu667	Contig6:2446427	A	Т	Contig6-snap.265	ifta-1	nonsynonym [N>Y]	AAC>TAC
3	tu666	Contig6:2448984	G	Α	Contig6-snap.265	ifta-1	intronic_near_splice_site	-
4	tu670	Contig6:2449519	G	Α	Contig6-snap.265	ifta-1	nonsense	TGG>TGA
5	tu669	Contig6:2454188	G	Α	Contig6-snap.265	ifta-1	nonsense	TGG>TGA
6	tu664	Contig6:2460202	G	Α	Contig6-snap.265	ifta-1	intronic_near_splice_site	-
7	tu665	Contig31:108694	C	Т	Contig31-snap.23	che-11	nonsense	TGG>TGA
8	tu675	Contig31:107907	C	Т	Contig31-snap.23	che-11	intronic_near_splice_site	-
9	tu668	Contig31:107639	G	Α	Contig31-snap.23	che-11	nonsense	CAA>TAA
10	tu663	Contig10:2284105	Т	Α	Contig10-snap.384	dyf-1	nonsense	TAT>TAA
11	tu678	Contig56:591220	C	Т	Contig56-snap.118	xbx-1	intronic_near_splice_site	-
12	tu676	Contig56:591849	C	Т	Contig56-snap.118	xbx-1	nonsense	TGG>TAG

Supplementary Table S5. RS2333 social mutants isolated in forward genetics screens by means of EMS mutagenesis. Numbers in the first column correspond to the position of the mutation in the genes (see Fig. 2b).

Allele	Gene	Mutation	Type of mutation	Strain
tu1045	ifta-1	7 bp deletion	nonsense	RS2333
tu1044	ifta-1	5 bp insertion	nonsense	RS2333
tu1123	ifta-1	15 bp deletion + 7 bp insertion	nonsense	RS2333
tu1085	che-11	10 bp deletion + 11 bp insertion	nonsense	RS2333
tu1086	che-11	10 bp deletion $+ 2$ bp insertion	nonsense	RS2333
tu1087	che-11	5 bp insertion	nonsense	RS2333
tu1081	xbx-1	6 bp deletion + 3 bp insertion	in frame	RS2333
tu1072	dyf-1	5 bp deletion	nonsense	RS2333
tu1074	dyf-1	25 bp deletion $+$ 2 bp insertion	nonsense	RS2333

Supplementary Table S6. Mutant alleles of *ifta-1*, *che-11*, *dyf-1* and *xbx-1* orthologs in *P. pacificus* produced using CRISPR/Cas9 system. For each allele, the length of the genetic lesion, the type of mutation and the background strain from which the mutant was produced are indicated.

x	У	mean x	mean y	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	tu1045	34.83	96.11	61.28	-5.68	11	< 0.001	**
RS2333	tu1044	34.83	91.67	56.84	-5.25	11	< 0.001	**
RS2333	tu1123	34.83	96.67	61.84	-5.27	11	< 0.001	**
RS2333	tu1085	34.83	96.11	61.28	-5.67	11	< 0.001	**
RS2333	tu1086	34.83	96.11	61.28	-5.69	11	< 0.001	**
RS2333	tu1087	34.83	93.33	58.50	-5.41	11	< 0.001	**
RS2333	tu1081	34.83	96.11	61.28	-5.67	11	< 0.001	**
RS2333	tu1072	34.83	96.11	61.28	-5.68	11	< 0.001	**
RS2333	tu1074	34.83	93.33	58.50	-4.41	11	< 0.001	**

Supplementary Table S7. Statistical values from pairwise comparisons for mean bordering between wild-type strains and the mutant alleles of *ifta-1*, *che-11*, *dyf-1* and *xbx-1* homologues in *P. pacificus* generated by CRISPR/Cas9 system. Each strain/mutant was measured 10 times. The percentage means of bordering behaviour were compared using Student's t-test.

¹The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/9 = 0.0055.

Allele	Gene	Mutation	Type of mutation	Strain
tu1097	che-3	4 Deletions + 14 Insertions	nonsense	RS2333
tu1096	che-3	7 Deletions	nonsense	RS2333
tu1100	che-3	15 Deletions + 8 Insertions	nonsense	RS2333
tu1098	dyf-2	2 Deletions	nonsense	RS2333
tu1102	dyf-2	9 Deletions + 19 Insertions	nonsense	RS2333
tu1099	osm-12	6 Deletions + 11 Insertions	nonsense	RS2333
tu1129	osm-1	6 Deletions + 4 Insertions	nonsense	RS2333
tu1090	osm-3	4 Deletions	nonsense	RS2333
tu1091	osm-3	4 Insertions	nonsense	RS2333
tu1092	osm-3	5 Deletions	nonsense	RS2333
tu1131	klp-20	8 Deletions	nonsense	RS2333

Supplementary Table S8. Mutant alleles of *che-3*, *dyf-2*, *osm-1*, *osm-3*, *osm-12* and *klp-20* orthologs in *P. pacificus* produced using CRISPR/Cas9 system. For each allele, the length of the genetic lesion, the type of mutation and the background strain from which the mutant was produced are indicated.

x	У	mean x	mean y	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	tu1097	34.83	95.56	60.73	-5.63	11	< 0.001	**
RS2333	tu1096	34.83	96.67	61.84	-5.75	11	< 0.001	**
RS2333	tu1100	34.83	95.56	60.73	-5.62	11	< 0.001	**
RS2333	tu1098	34.83	93.33	58.50	-5.40	11	< 0.001	**
RS2333	tu1102	34.83	95.56	60.73	-5.62	11	< 0.001	**
RS2333	tu1099	34.83	90.56	5573	-5.14	11	< 0.001	**
RS2333	tu1129	34.83	93.33	58.50	-5.42	11	< 0.001	**
RS2333	tu1090	34.83	34.44	0.39	0.03	11	0.975	ns
RS2333	tu1091	34.83	25.56	9.27	0.83	11	0.424	ns
RS2333	tu1092	34.83	28.89	5.94	0.52	11	0.612	ns
RS2333	tu1131	34.83	33.33	1.50	0.14	11	0.895	ns
RS2333	tu1190;tu1131	34.83	98.33	63.5	-5.90	11	< 0.001	**

Supplementary Table S9. Statistical values from pairwise comparisons for mean bordering between wild-type strains and the mutant alleles of the *che-3*, *dyf-2*, *osm-1*, *osm-3*, *osm-12*, *klp-20* homologues in *P. pacificus* generated by CRISPR/Cas9 system plus the *osm-3;klp-20* double mutant. Each strain/mutant was measured 10 times. The percentage means of bordering behaviour were compared using Student's t-test.

¹The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/12 = 0.002.

x	У	mean x	mean y	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	tu1100	-0.984	-0.217	0.767	-8.339	4	0.0011	*
RS2333	tu1085	-0.984	-0.033	0.951	-128.14	4	< 0.001	***
RS2333	tu1072	-0.984	0.062	1.046	-15.231	4	< 0.001	**
RS2333	tu1098	-0.984	-0.254	0.730	-23.82	4	< 0.001	***
RS2333	tu1045	-0.984	-0.097	0.887	-13.036	4	< 0.001	**
RS2333	tu1131	-0.984	-0.970	0.014	-0.624	4	0.5662	ns
RS2333	tu1129	-0.984	-0.512	0.472	-4.140	4	0.0144	ns
RS2333	tu1090	-0.984	-0.080	0.904	-6.923	4	0.0023	*
RS2333	tu1099	-0.984	-0.261	0.723	-11.143	4	< 0.001	**
RS2333	tu1081	-0.984	-0.644	0.340	-6.196	4	0.0035	*
RS2333	tu1190;tu1131	-0.984	-0.036	0.948	-21.988	4	< 0.001	***

Supplementary Table S10. Student's t-test results from pairwise comparisons for 1-Octanol avoidance of RS2333 and the IFT-related mutants alleles generated in this study calculated from chemotaxis indexes (see methods).

¹ The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/11 = 0.0045

a									
strain/mutant	mean 21% [O ₂]	mean 10% [O ₂]	mean difference	t	df	<i>P</i> -value ¹	significance		
RS2333	31.11	11.67	19.44	2.74	4	0.052	ns		
<i>ifta-1(tu1045)</i>	97.22	38.33	58.89	9.52	4	< 0.001	**		
<i>che-11(tu1085)</i>	94.36	36.67	57.69	13.32	4	< 0.001	**		
<i>xbx-1(tu1081)</i>	94.44	37.78	56.66	27.26	4	< 0.001	***		
<i>dyf-1(tu1072)</i>	96.11	34.44	61.67	15.25	4	< 0.001	**		
osm-3;klp-20	85.00	48.89	36.11	11.67	4	< 0.001	**		
RSB001	87.78	17.22	70.56	7-10	4	0.002	*		
b									
strain/mutant	mean 10% [O ₂]	mean 21% [O ₂]	mean difference	t	df	<i>P</i> -value ¹	significance		
RS2333	11.67	22.22	10.55	-1.14	4	0.317	ns		
<i>ifta-1(tu1045)</i>	38.33	91.11	52.78	-7.66	4	0.002	*		
<i>che-11(tu1085)</i>	36.67	96.11	59.44	-14.84	4	< 0.001	**		
<i>xbx-1(tu1081)</i>	37.78	97.22	59.44	-37.83	4	< 0.001	***		
<i>dyf-1(tu1072)</i>	34.44	93.33	58.89	-14.29	4	< 0.001	**		
osm-3;klp-20	48.89	95.56	46.67	-16.47	4	< 0.001	***		
RSB001	17.22	91.11	73.89	-7.44	4	0.002	*		

Supplementary Table S11. Statistical values from pairwise comparisons for mean bordering at different oxygen concentrations ($[O_2]$) for RS2333, RSB001 and the mutant alleles of *ifta-1*, *che-11*, *dyf-1* and *xbx-1* homologues in *P. pacificus* produced using CRISPR/Cas9 system. (**a**) Oxygen shift from 21% to 10%. (**b**) Oxygen shift from 10% to 21%. The percentage means of bordering at each oxygen concentration were compared using Student's t-test.

¹The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/14 = 0.0036.

Strain/Mutant	mean 20% [O ₂]	mean 21% [O ₂]	mean difference	t	df	<i>P</i> -value ¹	significance
RS2333	0.007	0.014	0.007	-3.273	10	0.008	*
che-3(tu1100)	0.008	0.018	0.010	-6.248	10	< 0.001	**
che-11(tu1085)	0.010	0.016	0.006	-3.288	10	0.008	*
dyf-1(tu1072)	0.006	0.012	0.006	-9.495	10	< 0.001	***
dyf-2(tu1098)	0.010	0.018	0.008	-3.561	10	0.005	ns
ifta-1(tu1045)	0.007	0.017	0.010	-6.269	10	< 0.001	**
klp-20(tu1131)	0.006	0.009	0.003	-3.427	10	0.006	ns
osm-1(tu1129)	0.008	0.019	0.011	-8.564	10	< 0.001	***
osm-3(tu1090)	0.008	0.016	0.008	-4.772	10	< 0.001	**
osm-12(tu1099)	0.005	0.019	0.014	-6.116	10	< 0.001	**
xbx-1(tu1081)	0.008	0.018	0.010	-5.290	10	< 0.001	**
osm-3(tu1190);klp-20(tu1131)	0.006	0.010	0.004	-3.574	10	0.005	ns

Supplementary Table S12. Ω -turn rates in response to oxygen concentration ([O₂]) shifts from 20% to 21% on food of RS2333 and the IFT-related mutants alleles generated in this study. The statistical values from pairwise comparisons between mean Ω -turns before and after oxygen shifts were calculated with the Student's t-test.

¹ The alpha value, corrected for multiple comparisons via the Bonferroni method, corresponds to 0.05/12 = 0.0042.

Designation	Gene	Strand	Sequence (5' to 3')
15456	che-11	sense	GAG AAC ACT TCA GGT GAG AGA C
15457	che-11	antisense	AAA ATA TTA ATG AGT ACC TCT TGC TG
15539	che-3	sense	AGT TTA TCA GAT GCC ATC TTT AGC
15540	che-3	antisense	GCC GCT GAG TAG ATC TGA TTG
15446	dyf-1	sense	CAA GTT TCC TTA GCA ACG G
15447	dyf-1	antisense	ACC GAT GGA GCT TTC TGT A
15528	dyf-2	sense	CAG GTG TAT CAG TTC CAA TGC
15529	dyf-2	antisense	CCA GCA GGT TTT TGT GAC A
Jim265.1F3	ifta-1 exon 2	sense	GTT GGC AAT GCA AAC AAT TGC
Jim265.1R5	ifta-1 exon 2	antisense	CTA GTG ATC TAG CTA TGC ATA TG
Jim265.2F3	ifta-1 exon 15	sense	CCG GTT CCG GCT TCC GGA CTT G
Jim265.2R5	<i>ifta-1</i> exon 15	antisense	GCC AAA CGC CGT CCC AAT CAC
15559	klp-20	sense	GAA GTG AGG GAT CTA TTG GC
15560	klp-20	antisense	TCA GAT TTT ATG ATT GTG AAT ACT CA
sier0189	npr-1 exon 1	sense	TCC GTA TGC AGT CTA TAT GTA CGT GG
sier0190	npr-1 exon 1	antisense	CAC TCT CCA GTG CAT GGG AAC
sier0239	npr-1 exon 6	sense	ACT AGA AGT CAT ACA TCC TTC C
sier0238	npr-1 exon 6	antisense	TGT GCT TCA AAG TCA CGT
15549	osm-1	sense	GTG TAA TAA CTG AGT TGA TGT CAT TG
15552	osm-1	antisense	CAA TGC CTA GCC CAA ATA G
15533	osm-12	sense	GAG GCA TCG ACT GTT ACA CAT
15536	osm-12	antisense	CCT TCC CGA GAA TTA CAT CC
15520	osm-3	sense	TGC ACG TGT GTC ATA ATG TTA
15519	osm-3	antisense	AGT TTT CGA TTG CCG TTC
15458	xbx-1	sense	TGG AAT ATC TCT ATG CGA GG
15459	xbx-1	antisense	TAT TGA CTG CCA CTC ACC T

Supplementary Table S13. Primers for detecting gene lesions, produced by CRISPR/Cas9 system, in this study.