An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1

Appendix

Christina Gladkova^{\$}, Alexander F. Schubert^{\$}, Jane L. Wagstaff, Jonathan N. Pruneda, Stefan M.V. Freund and David Komander^{*}

Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

* Corresponding author: David Komander, <u>dk@mrc-lmb.cam.ac.uk</u>

\$ These authors contributed equally to this work

Running title: Ub-CR is a superior PINK1 substrate

TABLE OF CONTENTS:

- Appendix Fig. S1. CEST experiment full spectra
- Appendix Fig. S2. BEST TROSY spectrum of Ub L67S
- Appendix Fig. S3. BEST TROSY spectra of Ub TVLN and phosphoUb TVLN
- Appendix Fig. S4. BEST TROSY spectra of Ub L71Y and phosphoUb L71Y
- Appendix Fig. S5. BEST TROSY spectra of Ub F4A and phosphoUb F4A
- Appendix Fig. S6. ¹⁵N{¹H} hetNOE experiments on Ub variants
- Appendix Fig. S7. CLEANEX experiments on Ub variants
- Appendix Fig. S8. Representative CEST fits
- Appendix Fig. S9. PINK1 interaction analysis
- Appendix Fig. S10. PINK1 interaction analysis
- Appendix Fig. S11. PINK1 interaction analysis
- Appendix Fig. S12. PINK1 interaction analysis in the presence of MgAMP-PNP
- Appendix Fig. S13. PINK1 interaction analysis with phosphoUb

Appendix Figure S1. CEST experiment full spectra

Full CEST ¹⁵N profiles are shown alongside phosphoUb HSQC spectra. Residues targeted by the ¹⁵N frequency are indicated, and corresponding HSQC positions of the phosphoUb and phosphoUb-CR resonances are indicated.

Appendix Figure S2. BEST TROSY spectrum of Ub L67S

Complete and reassigned BEST TROSY spectrum of ¹³C, ¹⁵N-labelled Ub L67S.

Appendix Figure S3. BEST TROSY spectra of Ub TVLN and phosphoUb TVLN

Complete and reassigned BEST TROSY spectra of ¹³C, ¹⁵N-labelled Ub TVLN (A) and phosphoUb TVLN (B).

Appendix Figure S4. BEST TROSY spectra of Ub L71Y and phosphoUb L71Y

Complete and reassigned BEST TROSY spectra of 13 C, 15 N-labelled Ub L71Y (A) and phosphoUb L71Y (B).

Appendix Figure S5. BEST TROSY spectra of Ub F4A and phosphoUb F4A

Complete and reassigned BEST TROSY spectra of ¹³C, ¹⁵N-labelled Ub F4A (A) and phosphoUb F4A (B).

Appendix Figure S6. ¹⁵N{¹H} hetNOE experiments on Ub variants

Complete set of ¹⁵N{¹H} hetNOE measurements of Ub residues for indicated species. Data for pUb and pUb-CR WT are replotted from (Wauer *et al*, 2015a).

0.1

Appendix Figure S7. CLEANEX experiments on Ub variants

- A) Bar graph showing the fitted rate of solvent exchange for indicated Ub residues.
- B) Hydrogen bonding pattern of Ub L71Y (in common Ub conformation), Ub TVLN (in Ub-CR conformation) and Ub F4A (in common Ub conformation) colouring residues with increased or decreased rate of solvent exchange as compared to wt Ub.

Appendix Figure S8. Representative CEST fits

Representative peak fits for CEST experiments on wt Ub, Ub TVLN, and Ub F4A at different B_1 fields.

Appendix Figure S9. PINK1 interaction analysis

Complete BEST TROSY spectral overlay in the absence and presence of equimolar *Ph*PINK1 for wt Ub (A) and Ub L71Y (B).

Appendix Figure S10. PINK1 interaction analysis

Complete BEST TROSY spectral overlay in the absence and presence of equimolar *Ph*PINK1 for Ub TVLN (A) and Ub F4A (B).

Appendix Figure S11. PINK1 interaction analysis

Complete BEST TROSY spectral overlay in the absence and presence of equimolar *Ph*PINK1 for Parkin Ubl.

Appendix Figure S12. PINK1 interaction analysis in the presence of MgAMP-PNP

Line broadening and chemical shift perturbation analyses of the Ub TVLN interaction with *Ph*PINK1 in the presence (A) and absence (B) of MgAMP-PNP.

Appendix Figure S13. PINK1 interaction analysis with phosphoUb

Line broadening and chemical shift perturbation analyses of the Ub TVLN (A) and phosphoUb TVLN (B) interaction with *Ph*PINK1.