## **SUPPLEMENTAL INFORMATION** **Table S1.** Related to Table 1. Affinity and selectivity of SR compounds from radioligand binding assays. To determine selectivity at the opioid receptors, specific competition binding was assessed with ~1 nM <sup>3</sup>H-DAMGO, <sup>3</sup>H-diprenorphine and <sup>3</sup>H-U69,593 in CHO-hMOR, -hDOR and -hKOR membranes, respectively. See also: Table 1 for structures, Figure S1 for synthesis of the compounds and Figure S2 for KOR and NOP activity counter-screens. | | Bindir | K <sub>i</sub> ratios | | | | |------------|---------------------|-----------------------|----------------|---------|-------| | Agonist | hMOR | hDOR | hKOR | hDOR/ | hKOR/ | | | HWOR HDOR | | IIKOK | hMOR | hMOR | | DAMGO | $2.1 \pm 0.34$ | >10,000 | $989 \pm 116$ | > 6421 | 475 | | Morphine | $6.4 \pm 0.72$ | $112\pm28$ | $52\pm1.0$ | 17 | 8 | | Fentanyl | $2.8 \pm 0.73$ | $2459 \pm 850$ | $260\!\pm\!55$ | 874 | 92 | | Sufentanil | $0.24 \!\pm\! 0.07$ | $283\pm76$ | $11 \pm 3.3$ | 1166 | 44 | | SR-11501 | $3.0\!\pm\!0.85$ | >10,000 | $13 \pm 1.1$ | >4794 | 4 | | SR-14968 | $0.29 \pm 0.11$ | >10,000 | $31\!\pm\!4.3$ | >55,999 | 108 | | SR-14969 | $0.86 \!\pm\! 0.33$ | >10,000 | $33\!\pm\!2.3$ | >48,993 | 38 | | SR-15098 | $14 \pm 3.8$ | >10,000 | $146\pm24$ | >3254 | 10 | | SR-15099 | $11 \pm 2.6$ | >10,000 | $110\!\pm\!45$ | >2395 | 10 | | SR-17018 | $11 \pm 2.4$ | >10,000 | $68\pm21$ | >3730 | 6 | Table S2. Related to Table 1 and Figures 1 and S3. MOR agonist potency and efficacy measures in cell-based assays and in brainstem from mice. Potencies (EC<sub>50</sub>) and efficacies (E $_{MAX}$ ) of the SR compounds and several clinically used opioids. Inhibition of forskolin-stimulated cAMP was determined in CHO-hMOR cells, $^{35}$ S-GTPγS binding was determined in membranes from CHO-mMOR cells or from mouse brainstems and βarrestin2 recruitment was assessed with the imaging based transfluor assay with U2OS-βarrestin2-GFP-mMOR cells. Data are presented as mean $\pm$ S.E.M. of 3 or more assays run in duplicate or triplicate. $E_{MAX}$ values were calculated relative to DAMGO. See also: Table 1 for potencies and efficacies in the GTPγS binding and βarrestin2-translocation assays at the human MOR and Figures 1B and S3 for the corresponding concentration response curves. | | Human MOR | | Mouse MOR | | | | | | |------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Agonist - | cAMP ( | CHO) | GTPγS ( | CHO) | GTPγS ( | brain) | βarr2 (im | aging) | | Agonist | EC <sub>50</sub> | E <sub>MAX</sub> | | | nM | % | nM | % | nM | % | nM | % | | DAMGO | $5.2\!\pm\!0.6$ | 100 | $34\pm2.1$ | 100 | $400\pm33$ | 100 | $170\pm13$ | 100 | | Sufentanil | $0.03 \pm 0.01$ | $100\pm 1$ | $2.7\!\pm\!0.3$ | $82\pm1$ | $4.8 \pm 1.7$ | $32\pm3$ | $1.0 \pm 0.2$ | $85\!\pm\!7$ | | Fentanyl | $0.54 \pm 0.11$ | $98\pm2$ | $87\pm11$ | $82\pm1$ | $170\pm64$ | $33\!\pm\!3$ | $31\!\pm\!4.8$ | $93\!\pm\!4$ | | SR-11501 | $7.9 \pm 0.81$ | $98\pm1$ | $133\pm12$ | $73\!\pm\!2$ | $396\pm68$ | $38\!\pm\!3$ | $140\pm23$ | $81\pm4$ | | Morphine | $26\!\pm\!3.9$ | $97\pm1$ | $81\pm7.4$ | $82\pm1$ | $159\pm19$ | $41\pm1$ | $425 \pm 51$ | $37\pm 4$ | | SR-14969 | $14 \pm 2.7$ | $98\pm2$ | $40\!\pm\!2.6$ | $94\pm1$ | $159\pm30$ | $93\pm10$ | $891\pm72$ | $89\!\pm\!5$ | | SR-14968 | $7.2 \pm 0.75$ | $100\pm2$ | $11 \pm 1.2$ | $96\pm1$ | $26\pm1.8$ | $91\pm3$ | $628 \pm 207$ | $91\pm3$ | | SR-15098 | $110\pm13$ | $103\pm1$ | $230\pm35$ | $70\pm 1$ | $219\pm24$ | $41\pm3$ | >10,000 | $17\pm5^a$ | | SR-15099 | $75\pm15$ | $101\!\pm\!2$ | $212\pm22$ | $70\pm 1$ | $180\pm27$ | $34\pm3$ | >10,000 | $12\pm6^a$ | | SR-17018 | $76\pm11$ | $105\!\pm\!3$ | $193\!\pm\!29$ | $72\pm 1$ | $288\!\pm\!60$ | $37\!\pm\!4$ | >10,000 | $11\pm6^a$ | <sup>&</sup>lt;sup>a</sup>percent of maximum stimulation at the 10 $\mu$ M concentration is presented rather than E<sub>MAX</sub>. Table S3. Related to Figure 2. Percent free compound concentrations in mouse plasma. Plasma protein binding was performed to determine the % free for each compound by equilibrium dialysis. C57BL/6J mice were treated with 6 mg/kg, i.p. as indicated (1 mg/kg for fentanyl) and the total plasma concentration was determined by LC/MS 1 hour after treatment (15 minutes for fentanyl, due to its shorter half-life). The estimated free concentration was then calculated. Mean $\pm$ S.E.M. (n = 3-9). See also: Figure 2 for the concentration of compounds in plasma over time. | - | | Plasma Conce | ntration (nM) | |--------------|--------|----------------|---------------| | Agonist | % Free | Total | Estimated | | | | TOTAL | Free | | Fentanyl (1) | 11 | $46\pm6.6$ | 5 | | SR-11501 (6) | 4.7 | $427\pm104$ | 20 | | Morphine (6) | 72 | $575 \pm 71$ | 414 | | SR-14969 (6) | 5.5 | $2206 \pm 499$ | 121 | | SR-14968 (6) | 3.2 | $2080 \pm 156$ | 67 | | SR-15098 (6) | 5.6 | $4191 \pm 87$ | 235 | | SR-15099 (6) | 8.9 | $2274 \pm 374$ | 202 | | SR-17018 (6) | 4.6 | $1704 \pm 558$ | 78 | Table S4. *Related to Table 3 and Figures 3 and S4*. Number of animals used. The number of C57BL/6J and MOR-KO animals used (*n*) for both the antinociception and respiration assays. Two animals were removed from the analysis of the respiratory assays for SR-11501 (48 mg/kg) due to mortality and are not counted here. *See also:* Table 3 for ED<sub>50</sub> values, Figures 3 and S4 for in vivo responses. | Agonist | Antinoc | iception | Respiration | | | |----------|----------|--------------------|-------------|--------|--| | Agonist | C57BL/6J | 6J MOR-KO C57BL/6J | | MOR-KO | | | Fentanyl | 6-7 | 4 | 6-8 | 7 | | | SR-11501 | 5-6 | 5 | 4-8 | 7 | | | Morphine | 7-14 | 5 | 6-15 | 9 | | | SR-14969 | 5 | 5 | 4-6 | 7 | | | SR-14968 | 5-7 | 5 | 4-6 | 7 | | | SR-15098 | 8-9 | 5 | 10-13 | | | | SR-15099 | 5-17 | 5 | 10-13 | | | | SR-17018 | 5-6 | 6 | 8 | | | | | | | | | | Table S5. Related to Figure 4 and Tables 2 and 3. Correlation of bias factors derived from different *in vitro* assays to therapeutic windows calculated from different combinations of *in vivo* responses. Bias factors representing G protein signaling over $\beta$ arrestin2 recruitment calculated from the indicated assays were plotted against therapeutic windows calculated for different animal tests (ED<sub>50</sub> respiration/ ED<sub>50</sub> antinociception). The R<sup>2</sup> values from the linear regression analysis are provided. Abbreviations: CHO cells (*CHO*), mouse brainstem (*brain*), human MOR (*hMOR*), mouse MOR (*mMOR*), hot plate (*HP*), tail flick (*TF*), % arterial oxygen saturation ( $O_2$ ), breath rate (*BR*). See also: Figure 4 for graphical bias correlation of first entry; Table 2 for bias factors and Table 3 for therapeutic windows. | Bias Factor from: | | | Therapeutic Window from: | | | | |-------------------|-----------------|---------------------|--------------------------|--------------------|--------|--------| | MOR<br>species | G protein assay | βarrestin2<br>assay | O <sub>2</sub> /HP | O <sub>2</sub> /TF | BR/HP | BR/TF | | hMOR | CHO-GTPγS | EFC | 0.9589 | 0.8639 | 0.8001 | 0.7969 | | hMOR | CHO-cAMP | EFC | 0.9525 | 0.9454 | 0.5209 | 0.6619 | | mMOR | CHO-GTPγS | Imaging | 0.8805 | 0.6802 | 0.7150 | 0.6800 | | mMOR | Brain-GTPγS | Imaging | 0.8277 | 0.6413 | 0.8537 | 0.8088 |