Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Quantitative analysis of northern blot for biotin labeled mature and pre-microRNA let-7g in monocyte or macrophage treated with oxLDL or LPS. The amount of RNA loaded in each well was normalized to the amount of U6. Data are presented as mean \pm SEM. *< 0.05; **< 0.01.

Supplementary Figure 2: Quantitative analysis of fluorescently labeled MAC3 and α -SMA of let-7g's effect in apoE KO mice under a HF diet for 12 weeks. Data are presented as mean ± SEM from three independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 3: Quantitative analysis of fluorescence labeled MAC3 and α -SMA of let-7g's knock-out effect in apoE KO mice under a HF diet for 6 or 9 weeks. Data are presented as mean \pm SEM from three independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 4: Quantitative analysis of TUNEL-positive macrophages of let-7g's effect. Data are presented as mean \pm SEM from three independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 5: Quantitative analysis of TUNEL-positive cells in apoE KO mice aortic sections of let-7g's effect. Data are presented as mean \pm SEM from three independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 6: Quantitative analysis of TUNEL-positive cells in apoE KO mice aortic sections of let-7g's knock-out effect. Data are presented as mean \pm SEM from three independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 7: Semi-quantitative western blot data of let-7g's effect on the p53-signaling in oxLDL-treated macrophages.

Supplementary Figure 8: Potential let-7g target genes involved in the NF- κ B signaling pathway by ingenuity pathway analysis (IPA).

Supplementary Figure 9: Semi-quantitative western blot data of let-7g's effect on IKK α relative proteins expression in **macrophages.** Data are presented as mean \pm SE from 3 independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 10: Quantitative analysis of fluorescence labeled plaques of let-7g's effect on IKK α expression in apoE KO mice under a HF diet for 12 weeks. Data are presented as mean ± SEM from three independent experiments. *< 0.05; **< 0.01.

Supplementary Figure 11: Quantitative analysis of fluorescence labeled plaques of let-7g's knock-out effect on IKKα expression in apoE KO mice under a HF diet for 6 weeks. Data are presented as mean ± SEM from three independent experiments. *< 0.05

Supplementary Figure 12: Semi-quantitative western blot data of let-7g's effect on phosphorylated-IKK α , IKK β and IKK γ relative proteins expression in macrophages. Data are presented as mean ± SE from 3 independent experiments. *<0.05; **< 0.01; ***< 0.001.

Supplementary Figure 13: Semi-quantitative western blot data of let-7g's effect on IKK β , IKK γ , I κ B α , I κ B β , phosphorylated-I κ B α (p-I κ B α) and p-I κ B β relative proteins expression in macrophages. Data are presented as mean \pm SEM from 3 independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 14: Semi-quantitative western blot data of let-7g's effect on p105, p50 and RelA relative proteins expression in macrophages. Data are presented as mean ± SEM from 3 independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 15: Semi-quantitative analysis of RelA or p50 fluorescence in the oxLDL treated-macrophages treated with control vector or Let-7g exp vector. Data are presented as mean ± SEM from 3 independent experiments. *< 0.05; **< 0.01

Supplementary Figure 16: Semi-quantitative western blot data of let-7g's effect on p100, p52 and RelB relative proteins expression in macrophages. Data are presented as mean ± SEM from 3 independent experiments. *< 0.05; **< 0.01; ***< 0.001.

Supplementary Figure 17: Semi-quantitative analysis of RelB or p52 fluorescence in the oxLDL tracted-macrophages treated with control vector or Let-7g exp vector. Data are presented as mean \pm SEM from 3 independent experiments. *< 0.05; **< 0.01.

Supplementary Figure 18: Venn diagram for Chip-seq and RNA-seq experiments. Venn diagram shows p52 binding sites identified by p52 ChIP-seq and RNA-seq experiments in macrophages co-transfected with RelA-siRNA and p105-siRNA during foam cell formation. Twelve p52-affected and differentially expressed transcripts in the non-canonical pathway are indicated by the combination of results from ChiP-seq and RNA-seq experiments.

Method	Gene	Primer Sequence	Reference
QRT-PCR	ΙΚΚα	F: 5'-CAGCCATTTACCTGGCATGAG-3'	[1]
		R: 5'-GAGGGTCCCAATTCAACATCAA-3'	
	p53	F: 5'-CCCAAGCAATGGATGATTTGA-3'	[2]
		R: 5'-GGCATTCTGGGAGCTTCATCT-3'	
	GAPDH	F: 5'-ACCCACTCCTCCACCTTTGA-3'	[3]
		R: 5'-CTGTTGCTGTAGCCAAATTCGT-3'	
	SREBF2	F: 5'-CGAATTGAAAGACCTGGTCATG-3'	[4]
		R: 5'-TCCTCAGAACGCCAGACTTGT-3'	
ChIP Assay	SREBF2		
	(-1615 bp region)	F: 5'-CAACTCCTGACCTCAAATGATCTG-3'	
		R: 5'-GCTCTCGGCATAAGCTTTGG-3'	
	(-15 bp region)	F: 5'-CCCATTGACAACAACAG-3'	
		R: 5'-CCGCCATGTTTGCGTTGC-3'	
Genotyping	Cre		[5]
	NLSCre	5'-CCCAAGAAGAAGAGGAAGGTGTCC-3'	
	Cre8	5'-CCCAGAAATGCCAGATTACG-3'	
	apoE		[6]
	Primer 1	5'-GCCTAGCCGAGGGAGAGCCG-3'	
	Primer 2	5'-TGTGACTTGGGAGCTCTGCAGC-3'	
	Primer 3	5'-GCCGCCCCGACTGCATCT-3'	

Supplementary Table 1: Primer sets

let7g and NFkB	DIANAmT	miRanda	miRDB	miRWalk	RNAhybrid	PICTAR5	PITA	RNA22	Targetscan	SUM
AZI2	0	1	0	1	0	0	0	0	0	2
BCL10	0	1	0	1	0	0	0	0	0	2
BTRC	0	1	0	1	0	0	0	0	0	2
CASP8	0	0	0	0	0	1	0	0	0	1
CD40LG	0	0	0	0	0	1	0	0	0	1
ΙΚΚα	1	1	1	1	0	1	0	0	1	6
EIF2AK2	1	0	0	0	0	1	1	0	0	3
GSK3B	0	1	0	1	0	0	0	0	0	2
LCK	0	1	0	0	0	0	0	0	0	1
MALT1	0	0	0	0	0	1	1	0	0	2
MEKK1	1	1	0	1	0	1	0	0	1	5
MAP3K8	0	1	0	1	0	0	0	0	0	2
MAPK8	1	0	0	0	0	0	0	0	0	1
MYD88	0	1	0	1	0	0	0	0	0	2
NFKB2	0	1	0	1	0	0	0	0	0	2
NGF	1	1	1	1	0	1	0	1	1	7
RELB	0	1	0	0	0	0	0	0	0	1
RIPK1	0	0	0	0	0	1	0	0	0	1
TANK	0	1	0	0	0	0	0	0	0	1
TBK1	0	1	0	0	0	0	0	0	0	1
TIRAP	0	0	0	0	0	1	0	0	0	1
A20	1	1	0	1	0	1	0	0	1	5
TNFSF11	0	1	0	1	0	0	0	0	0	2
TNFSF13B	0	1	0	0	0	1	0	0	0	2
TNIP1	0	1	0	0	0	0	0	0	0	1
TRADD	0	0	0	0	0	1	0	0	0	1
TRAF2	0	1	0	1	0	0	0	0	0	2
TRAF6	0	0	0	0	0	1	0	0	0	1
UBE2N	0	1	0	1	0	0	0	0	0	2

Supplementary Table 2: 29 NF-кВ related genes

	Fold Change	Molecule Function	Biological Process	Cellular Component	
Foam Cell Formation					
ATGL	2.21	Protein binding	Lipid catabolic process	Cytosol	
MARCO	0.33	Scavenger receptor activity	Receptor-mediated endocytosis	Membrane	
Macrophage Movement					
NPAS3	35.83	Signal transducer activity	Locomotory behavior	Cytoplasm	
TNC	5.65	Fibronectin binding	Extracellular matrix organization	Extracellular matrix	
DNAH11		Microtubule motor activity	Microtubule-based movement	Axonemal dynein complex	
Response to Oxidative Stress RRM2B	2 33	Oxidoreductase activity	Response to oxidative stress	Mitochondrion	
Cell Apontosis	2.00				
DAB2IP	18.81	Protein binding Induction of apoptosis v domain receptors		Cytoplasm	
OBSCN	0.19	Protein binding Positive regulation of apop process		Cytosol	
Others					
THAP8	3.06	DNA binding	NA	NA	
ZNF625	2.26	DNA binding	Regulation of transcription	Nucleus	
ATAD3A	0.35	ATP binding	Cell growth	Mitochondrion	
NUBPL	0.32	ATP binding	Mitochondrial respiratory chain complex I assembly	Mitochondrion	

Supplementary Table 3: Gene ontology annotation of 12 genes which were directly affected by p52 in the non-canonical pathway

Supplementary Table 4: List of siRNAs used in this study

siRNA	Accession No.	Sequence
p105 siRNA-1	NM_003998	GGGUAUAGCUUCCCACACU
p105 siRNA-2		AGUGUGGGAAGCUAUACCC
Rel A siRNA-1	NM_021975	GGAAUCCAGUGUGUGAAGA
Rel A siRNA-2		UCUUCACACACUGGAUUCC
p100 siRNA-1	NM_001077493	CUGUCAAGAUCUGUAACUA
p100 siRNA-2		UAGUUACAGAUCUUGACAG
Rel B siRNA-1	NM_006509	GAGAUUGUCGAGCCCGUGA
Rel B siRNA-2		UCACGGGCUCGACAAUCUC
Control siRNA-1		GAUCAUACGUGCGAUCAGA
Control siRNA-2		UCUGAUCGCACGUAUGAUC

REFERENCES

- Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, Wang X, Sun B. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int J Cancer. 2010; 126:1263–74.
- Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA. 2010; 107:18511–16.
- Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, Muchardt C, Urlaub H, Brik A, Oren M, Fischle W. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals

recruitment of SWI/SNF to regulate transcription. Cell Reports. 2013; 4:601–08.

- Rice SJ, Lai SC, Wood LW, Helsley KR, Runkle EA, Winslow MM, Mu D. MicroRNA-33a mediates the regulation of high mobility group AT-hook 2 gene (HMGA2) by thyroid transcription factor 1 (TTF-1/NKX2-1). J Biol Chem. 2013; 288:16348–60.
- Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999; 8:265–77.
- Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med. 2006; 12:1075–80.