
Supplementary Information Table of Contents 
 

SUPPLEMENTARY FIGURES ........................................................................................................... 2 

SUPPLEMENTARY TABLES ........................................................................................................... 44 

SUPPLEMENTARY NOTE 1: REACTION-DIFFUSION MODEL ........................................ 48 

     1.1 Derivation of analytical and computational framework .......................................................... 48 

     1.2 Graphical solutions and biophysical interpretations ................................................................ 49 

SUPPLEMENTARY NOTE 2: CELLULAR ACTIVATION MODEL ................................... 53 

     2.1 Derivation of analytical framework ........................................................................................... 53 

     2.2 Shape-driven model ..................................................................................................................... 54 

          2.2.1 Surface-to-volume effect .................................................................................................... 54 

          2.2.2 Analytical definition of shape-dependent rate constant ................................................. 56 

     2.3 Tension-driven model .................................................................................................................. 58 

          2.3.1 Introduction and definitions ............................................................................................... 58 

          2.3.2 Biophysical concept ............................................................................................................ 59 

          2.3.3 Cellular measures ................................................................................................................ 60 

          2.3.4 Analytical and computational methodology .................................................................... 61 

     2.4 Catch-bond model ........................................................................................................................ 64 

SUPPLEMENTARY NOTE 3: CONTROL THEORY MODEL ............................................... 67 

     3.1 Derivation of analytical framework ........................................................................................... 67 

     3.2 Estimation of control parameters: nonlinear least squares fit................................................. 71 

     3.3 Levenberg-Marquardt Algorithm ............................................................................................... 72 

SUPPLEMENTARY NOTE 4: SIGNALING MODEL ................................................................ 76 

SUPPLEMENTARY REFERENCES ............................................................................................... 79 

 
 

 
 
 
 

 
 
 

1 
 



Supplementary Figures 
 

 

 

 

 

 

 
Supplementary Figure 1: Architecture of fabricated biochip used for podocyte culturing. (Left) 
The 3 x 3 heterogeneous culture surface where unpatterned, box micropatterned, and channel 
micropatterned cells can be co-cultured. (Right) Geometrical characteristics of a single channel 
micropattern. 
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Supplementary Figure 2: Quantitative analysis of specialization of processes in podocytes 
cultured on channel micropatterns independently using nephrin, podocin, and neph1. We defined 
a “specialized process” as any peripheral branch that has increased localization levels of slit 
diaphragm proteins. The total number of processes and the percentage of processes with 
increased amount of slit diaphragm proteins were similar for all the markers. Values given as 
mean ± SEM; n = 80, chosen randomly from eight different slides cultured independently at 
different times.  
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Supplementary Figure 3: Selective and cell type specific localization of nephrin and F-actin in 
podocyte processes. Representative immunofluorescence images of human podocytes, human 
dermal fibroblasts, and neonatal rat cardiac fibroblasts cultured on channel micropatterns and 
stained for nephrin (green), F-actin (red) and nuclei (blue). Nephrin and F-actin enrichment in 
processes can be observed in podocytes but not in cardiac or dermal fibroblasts.  
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Supplementary Figure 4: Quantitative analysis of nephrin and F-actin in podocytes, cardiac 
fibroblasts and dermal fibroblasts cultured on unpatterned glass, box, and channel micropatterns. 
Fibroblasts express lower levels of nephrin and F-actin when plated on channels and do not 
exhibit localization in peripheral processes (n = 80 cells each, chosen randomly from eight 
different slides cultured independently; *p < 0.01; one-way ANOVA with post-hoc Tukey).  
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Supplementary Figure 5: 3-D micropatterned cells showing different localization patterns of proteins 
in fibroblasts, podocytes and COS-7 cells, driven by contractile tension, shape, and chemical signals, 
respectively. Fibroblasts on rhombic patterns stained for vimentin (green) and F-actin (red) show 
increased vimentin localization in cell tips as the cell aspect ratio increased. Podocytes on square, circle, 
or channel micropatterns stained for nephrin (green) and F-actin (red) show nephrin localization within 
the channels; in square/circle-shaped podocytes, the localization was mainly on the cell periphery. Upon 
stimulation with isoproterenol (ISO), COS-7 cells on square, triangle, or star shapes showed the presence 
of cAMP microdomains in sharp edges. Reaction-diffusion simulations (3-D slab models on middle row) 
show close agreement with the experimental observations.  Quantification of protein localization in 
different patterns (histograms on the bottom row) show that vimentin localization increases with aspect 
ratio, which is abolished upon treatment with 10 µM blebbistatin.  Nephrin shows high localization within 
channels which is not affected by blebbistatin treatment. cAMP localization in COS-7 cells shows shape-
dependent changes only when stimulated with isoproterenol. All values given as mean ± SEM; n = 40, 
chosen randomly from 4 different slides, cultured independently (* p < 0.01 vs. untreated cells; one-way 
ANOVA with post-hoc Tukey). 
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Supplementary Figure 6: Spreading area of unpatterned and micropatterned podocytes with 
and without blocking of integrin β3 or β1 prior to plating. Values given as mean ± SEM; n = 80, 
chosen randomly from eight different slides cultured independently (*p < 0.01 vs. untreated; 
one-way ANOVA with post-hoc Tukey). 
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Supplementary Figure 7: Quantitative analysis of nephrin and podocin localization in processes 
in podocytes plated on channel micropatterns and treated with either integrin β1 or β3 blocking 
antibodies. For untreated cells and for cells treated with a low dose of integrin β1 antibody that 
prevents signaling but not spreading, both markers show high localization ratio. Cells treated 
with high dose of integrin β1 antibody show little localization due to limited spreading and loss 
of processes. Cells treated with the integrin β3 antibody show little or no localization. Values 
given as mean ± SEM; n = 80, chosen randomly from 8 different slides cultured independently 
(*p < 0.01 vs. previous concentration; one-way ANOVA with post-hoc Tukey). 
 
 
 
 
 
 
 
 
 

8 
 



 
Supplementary Figure 8: Validation of integrin β1 antibodies. Representative images of 
integrin β1 (green) and F-actin (red) staining in podocytes plated on unpatterned (left) and 
micropatterned surfaces (right). Staining of integrin β1 was performed using three different 
clones, 12G10, 4B7R, and P5D2. For unpatterned cells, integrin β1 was distributed throughout 
the cell with localized clusters along the membrane edges. On patterned cells, integrin β1 was 
expressed throughout the cell and along the cell edges. The staining patterns were found to be 
similar for all tested clones. 
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Supplementary Figure 9: Validation of integrin β3 antibodies. Representative images of 
integrin β3 (green) and F-actin (red) in podocytes plated on unpatterned (left) and micropatterned 
surfaces (right). Staining of integrin β3 was performed using three different clones, CRC54, SAP, 
and BV4. For unpatterned cells, integrin β3 showed strong clustering along actin bundles. On 
patterned cells, β3 showed strong colocalization with actin and was mainly expressed along the 
cell edges. The staining patterns were found to be similar for all tested clones. 
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Supplementary Figure 10: Staining of activated FAK in micropatterned podocytes. 
Representative images of p-FAK (cyan), integrin β3 (green), and F-actin (red) staining in 
podocytes plated on micropatterned surfaces. Integrin β3 was expressed along actin stress fibers 
and showed clear colocalization with focal adhesions. 
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Supplementary Figure 11: Integrin staining in unpatterned podocytes. Representative images of 
integrin β1, α5, β3, αv (cyan), F-actin (red), and fibronectin (green) staining in podocytes plated on 
unpatterned surfaces with and without prior fibronectin coating. Cells plated on surfaces coated 
with fibronectin exhibit significantly higher spreading area compared to those plated on uncoated 
surfaces. Fibronectin promoted clustering of integrin αvβ3 along F-actin fibers.  
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Supplementary Figure 12: Spatial analysis of FAK activation in unpatterned and 
micropatterned podocytes. (a) Podocytes were plated on unpatterned, box, or channel surfaces in 
the presence and absence of integrin blocking antibodies, and subsequently stained for phospho-
FAK (green) and F-actin (red). For untreated cells, focal adhesions formed within the channels 
were larger than those in cells plated on box or unpatterned surfaces. Podocytes treated with β3 
blocking antibody show no morphological aberrations; however, the focal adhesions were much 
smaller than control cells. In contrast, podocytes treated with β1 blocking antibody show smaller 
spreading areas with no effect on the size and location of focal adhesions. (b) Quantitative 
analysis of focal adhesion area and aspect ratio in podocytes plated on unpatterned, box, and 
channel surfaces and treated with either β1 or β3 blocking antibodies. Values given as mean ± 
SEM; n > 500, chosen randomly from 20 different cells taken from four different slides cultured 
independently (^p < 0.05, *p < 0.01 vs. UNP). 
 
 

(a) 

(b) 
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Supplementary Figure 13: Effect of blebbistatin on unpatterned podocytes. Unpatterned podocytes were treated with varying 
concentrations of blebbistatin from 0.1 to 100 μM for 12 hours prior to fixation and stained for F-actin (red), p-FAK (cyan), and p-
myosin (green). Phospho-myosin intensities decreased gradually with increasing blebbistatin concentration, whereas cell shape and 
recruitment of p-FAK to focal adhesions were unaffected by concentrations lower than 10 μM.  
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Supplementary Figure 14: Quantification of p-myosin levels in unpatterned podocytes treated 
with blebbistatin. As the concentration of blebbistatin increased, p-myosin intensity decreased 
gradually. Using exponential fit, calculated IC50 value was 4.16 µM, which agrees with prior 
measurements. At 10 μM, changes to the cell shape were minimal whereas changes to the focal 
adhesions were significant as early as 1 μM.  Values given as mean ± SEM; n=20, chosen 
randomly from five different slides cultured independently (^p < 0.05, *p < 0.01 vs. previous 
concentration; one-way ANOVA with post-hoc Tukey). 
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Supplementary Figure 15: Dose-dependent force response of podocytes to blebbistatin as 
measured by FRET vinculin tension sensor (VinTS). Human podocytes expressing VinTS 
fluorescent biosensor were treated with blebbistatin at varying concentrations (0, 1 µM, 3 µM, 
10 µM and 30 µM) for two hours. (Top panel) Representative cells treated with the indicated 
blebbistatin concentration, showing normalized FRET (FRETnorm) indices of individual FAs.  
(Bottom panel) Dose response curve of mean FRETnorm values from individual focal adhesions, 
signifying loss of traction forces with increasing blebbistatin concentrations. Sigmoidal fit shows 
half-maximal force disruption (IC50) at 2.85 μM. (Mean ± SEM shown, n = 13-30 cells, >30 FAs 
per group).  
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Supplementary Figure 16: Quantification of blebbistatin effects on patterned podocytes. As the 
concentration of blebbistatin increased, p-myosin intensity decreased gradually. This minimally 
affected recruitment of p-FAK to focal adhesion sites up to 10 μM. Nephrin localization showed 
a moderate decrease. At high concentration (100 μM), cell spreading and focal adhesion 
morphology showed a dramatic decrease leads to severe reduction in nephrin localization (<1). 
Values given as mean ± SEM; n=20, chosen randomly from five different slides cultured 
independently (^p < 0.05, *p < 0.01 vs. previous concentration; one-way ANOVA with post-hoc 
Tukey). 
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Supplementary Figure 17: Effect of fibronectin on micropatterned podocytes. Representative 
images of podocytes plated on channel micropatterns coated with fibronectin and treated with 
100 μM of blebbistatin for 12 hours prior to fixation. Cells were stained either for nephrin 
(green) and F-actin (red) (Top), p-FAK (cyan) and F-actin (red) (Middle), or p-myosin (green) 
and F-actin (red) (Bottom). Compliance with the micropatterns, recruitment of p-FAK to focal 
adhesions, and nephrin localization increased with fibronectin concentration, independent of 
myosin inhibition. 
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Supplementary Figure 18: Quantification of the effect of blebbistatin on podocytes plated on 
fibronectin-coated channel micropatterns. As the concentration of fibronectin increased, 
compliance of the cells with the patterns got higher, which in turn increased focal adhesion 
maturation. Nephrin localization within the processes was almost intact while cells plated on 
uncoated patterns showed insignificant localization. Values given as mean ± SEM; n=20, chosen 
randomly from 5 different slides cultured independently (^p < 0.05, *p < 0.01 vs. previous 
concentration; one-way ANOVA with post-hoc Tukey). 
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Supplementary Figure 19: Effect of blebbistatin concentration and incubation time on (left) 
cell spreading and (right) nephrin localization in peripheral processes. All measurements were 
performed on podocytes cultured on channel micropatterns for five days prior to the inhibition 
treatment. Values given as mean ± SEM; n=20, chosen randomly from five different slides 
cultured independently (^p < 0.05, *p < 0.01 vs. untreated, one-way ANOVA comparisons 
independent per time with post-hoc Tukey). 
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Supplementary Figure 20: Correlation between p-FAK (active FAK) and F-actin intensities 
within the focal adhesions in micropatterned podocytes. Strong correlation suggests that in 
micropatterned podocytes, focal adhesion maturation and morphology were mainly regulated by 
stress fiber architecture and less by contractile tension. 
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Supplementary Figure 21: Effect of Y-27632 on unpatterned podocytes. Unpatterned podocytes were treated with varying 
concentrations of the ROCK inhibitor Y-27632 from 0.1 to 100 μM for 12 hours prior to fixation and stained for F-actin (red), p-FAK 
(cyan), and p-myosin (green). Phospho-myosin intensity decreased gradually with increasing blebbistatin concentration, whereas cell 
shape and recruitment of p-FAK to focal adhesions were unaffected by blebbistatin up to 1 μM.  
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Supplementary Figure 22: Quantification of the effects of the ROCK inhibitor Y-27632 on 
unpatterned podocytes. IC50 value was 0.7 μM similar to previously reported values. Changes to 
cell shape were insignificant up to 5 μM whereas focal adhesions were affected at lower 
concentrations. Values given as mean ± SEM; n=20, chosen randomly from five different slides 
cultured independently (^p < 0.05, *p < 0.01 vs. previous concentration; one-way ANOVA with 
post-hoc Tukey). 
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Supplementary Figure 23: Effect of Y-27632 on micropatterned podocytes. Micropatterned podocytes were treated with varying 
concentrations of the ROCK inhibitor Y-27632 from 0.1 to 100 μM for 12 hours prior to fixation and stained either for nephrin (green) 
and F-actin (red) (Top), p-FAK (cyan) and F-actin (red) (Middle), or p-myosin (green) and F-actin (red) (Bottom). 
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Supplementary Figure 24: Quantification of the ROCK inhibitor Y-27632 effects on 
micropatterned podocytes. As the concentration of blebbistatin increased, p-myosin intensity 
decreased gradually. This minimally affected recruitment of p-FAK to focal adhesion sites up to 
5 μM. Nephrin localization showed a moderate decrease. At higher concentrations (>5 μM), cell 
spreading and focal adhesion morphology and nephrin localization were all affected 
significantly. Values given as mean ± SEM; n=20, chosen randomly from five different slides 
cultured independently (^p < 0.05, *p < 0.01 vs. previous concentration; one-way ANOVA with 
post-hoc Tukey). 
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Supplementary Figure 25: Effect of Y-27632 concentration and incubation time on: (Left) cell 
spreading, and (Right) nephrin localization in peripheral processes. All measurements were 
performed on podocytes cultured on 3-D biochips for five days prior to treatment. Values given 
as mean ± SEM; n=20, chosen randomly from five different slides cultured independently (^p < 
0.05, *p < 0.01 vs. untreated; one-way ANOVA for independent time points with post-hoc 
Tukey). 
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Supplementary Figure 26: Analysis of vimentin localization in micropatterned podocytes. (a) 
Representative immunofluorescence images showing podocytes plated on channel or rhombus 
micropatterns, treated either with integrin β3 blocking antibodies or 10 µM blebbistatin, fixed 
after five days in culture, and stained for vimentin (green) and F-actin (red). (b) Quantitative 
analysis of vimentin localization in micropatterned podocytes treated with either integrin β3 
blocking antibodies (channels) or 10 µM blebbistatin (rhombus). Values given as mean ± SEM; 
n = 30 chosen randomly from three different slides cultured independently. 
  

(a) (b) 
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Supplementary Figure 27: (Left) Architecture of the ellipsoid micropatterns, and (Right) the 
geometrical characteristics of a single ellipsoid array. 
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Supplementary Figure 28: Micropatterning of vascular smooth muscle cells (SMC). A typical 
SMC in culture showing hypertrophic morphology. Microfabrication was used to construct an 
array of ellipsoid shapes with constant spreading area and varying aspect ratios. SMCs plated on 
elongated ellipsoid shapes present morphologies closer to their in vivo state as characterized by 
the spindle shape. Cells were stained for F-actin (red) and nuclei (blue). 
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Supplementary Figure 29: Correlation between α-SMA (left) and calponin (right) with F-actin 
intensities in micropatterned SMCs. Negative correlation suggests that expression of α-SMA and 
calponin are independent of stress fiber formation as a function of the cell aspect ratio. 
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Supplementary Figure 30: Quantitative analyses of spreading area and α-SMA expression in 
SMCs plated on ellipsoid micropatterns and treated either with siRNA for integrin β3 (ITGB3) or 
with scrambled siRNA (control). (a) Representative images showing F-actin (red) and α-SMA 
(green) in ITGB3 and control SMCs plated on ellipsoid micropatterns. In control SMCs, α-SMA 
expression increased with increasing aspect ratio. Under ITGB3 knockdown, α-SMA expression 
was roughly constant with increasing aspect ratio. (b) Spreading area of ITGB3 and scrambled 
control SMCs. No differences were observed between transfected and control cells. Values given 
as mean ± SEM; n = 80, chosen randomly from eight different slides cultured independently. (c) 
Quantitative analysis of α-SMA in ITGB3 and scrambled control SMCs plated on ellipsoid 
patterns. α-SMA expression increased with increasing aspect ratio while for ITGB3 cells the 
intensity levels less dependent on shape. Values given as mean ± SEM; n = 80, chosen randomly 
from four different slides cultured independently (*p < 0.01 vs. ITGB3 cells). 
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Supplementary Figure 31: Integrin staining in micropatterned SMCs. Representative images of 
SMCs plated on ellipsoid micropatterns and independently stained for either integrin β3 or β1 
(green) and F-actin (red). Integrin β3 showed expression along actin stress fibers for all tested 
shapes, while integrin β1 was localized on the tips and cell periphery. 
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Supplementary Figure 32: p-FAK staining in micropatterned SMCs. Representative images of 
SMCs plated on the ellipsoid micropatterns, and stained for p-FAK (green) and F-actin (red). 
Untreated cells exhibited large focal adhesions along the cell periphery that aligned with actin 
bundles. Cells treated with β1 blocking antibodies did not spread well; however, mature and large 
focal adhesions were detected with increasing aspect ratio. Those treated with integrin β3 
blocking antibodies showed compliance to the micropatterns; however, focal adhesions were 
smaller and less pronounced. 
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Supplementary Figure 33: Quantitative analysis of focal adhesion area and aspect ratio in 
SMCs plated on ellipsoid micropatterns and treated with either integrin β1 or β3 blocking 
antibodies. For the untreated cells, both area and aspect ratio increased with increasing aspect 
ratio of the cell. The same trend in focal adhesion area was observed for cells treated with 
integrin β1 blocking antibody although focal adhesions area and aspect ratio were smaller. SMCs 
treated with integrin β3 blocking antibody showed smaller focal adhesions. Values given as mean 
± SEM; n > 500 focal adhesion sites, chosen from 20 random cells taken from four different 
slides, cultured independently (*p <0.01 vs. previous ratio).  
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Supplementary Figure 34: Spreading areas of unpatterned and micropatterned SMCs with and 
w/o blocking of integrin β3 or β1, plated in micropatterns with varying aspect ratios (AR). Values 
given as mean ± SEM; n = 80, chosen randomly from eight different slides cultured 
independently (*p < 0.01 vs. untreated; one-way ANOVA with post-hoc Tukey per each group). 
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Supplementary Figure 35: Effect of blebbistatin on micropatterned SMCs. SMCs were treated 
with varying concentrations of blebbistatin from 0.1 to 100 μM for 12 hours prior to fixation and 
stained for F-actin (red), p-myosin (cyan) and α-SMA (green). Both p-myosin intensity and the 
compliance of the cells with the patterns decreased gradually with increasing blebbistatin 
concentration. α-SMA expression intensities were higher in patterned SMCs with increased 
aspect ratio and showed little change upon treatment with increasing blebbistatin concentration. 
 
Note: This is an extended version of Figure 5 from the main text. 
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Supplementary Figure 36: Quantification of blebbistatin effects on micropatterned SMCs. 
Expression of α-SMA expressions correlated well with changes in cell shape. A clear trend 
between α-SMA intensity and the cell aspect ratio was observed, independent of blebbistatin 
concentration, suggesting that patterned SMCs regulated the expression of α-SMA, even when 
contractile tension was greatly lowered. Values given as mean ± SEM; n=20, chosen randomly 
from four different slides cultured independently (^p < 0.05, *p < 0.01 vs. previous 
concentration). 
 
 
 

37 
 



 
Supplementary Figure 37: Immunostaining p-ERM in micropatterned podocytes. 
Representative images of podocytes on channel micropatterns stained for F-actin (red), p-ERM 
(green), and integrin β3 (cyan). p-ERM colocalized extensively with F-actin and integrin β3 
within the peripheral processes in untreated cells. Colocalization was observed in podocytes 
treated with β1 blocking antibody; however, when podocytes were treated with β3 blocking 
antibodies, colocalization was abolished, and p-ERM localized only within the cell body. 
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Supplementary Figure 38: Immunostaining for p-ERM in micropatterned SMCs. 
Representative images of SMCs on ellipsoid micropatterns with F-actin (red) and p-ERM (green) 
staining. For untreated cells, p-ERM colocalized with actin stress fibers. Cells treated with 
integrin β3 blocking antibodies showed a significant change in the spatial distribution of p-ERM 
with little or no colocalization with actin fibers, whereas integrin β1 blocking had no effect on p-
ERM distribution despite its dramatic effect on cell spreading. 
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Supplementary Figure 39: Proposed minimal signaling network showing the interconnected 
pathways for tension and shape information processed by integrin β1 and β3. 
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Supplementary Figure 40: Mobility of integrins in unpatterned podocytes. (Left) 
Representative images of podocytes transfected with either mEmerald-integrin β1 or mEmerald- 
integrin β3 and cultured on uncoated (bottom) or fibronectin-coated (top) substrates. (Right) 
Corresponding mean diffusion coefficients of integrin β1 and β3 inside (iFAs) and outside (oFAs) 
focal adhesions obtained from fluorescence correlation spectroscopy (FCS). Values given as 
mean ± SEM; for uncoated, n = 100 FA sites for integrin β1 and n=127 for β3. For fibronectin, n 
= 110 FA sites for integrin β1 and n=145 for β3. (*p < 0.01 vs. iFAs; one-way ANOVA with 
post-hoc Tukey). 
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Supplementary Figure 41: Mobility of integrins in unpatterned SMCs. (Left) Representative 
images of SMCs transfected either with mEmerald-integrin β1 or mEmerald-integrin β3 and 
cultured on uncoated (bottom) or fibronectin-coated (top) substrates. (Right) Corresponding 
mean diffusion coefficients of integrin β1 and β3 inside (iFAs) and outside (oFAs) FAs obtained 
from FCS. Values given as mean ± SEM; for uncoated, n = 202 FA sites for integrin β1 and 
n=263 for β3. For fibronectin, n = 129 FA sites for integrin β1 and n=143 for β3. (*p < 0.01 vs. 
iFAs; one-way ANOVA with post-hoc Tukey). 
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Supplementary Figure 42: Numerical simulations of micropatterned podocytes. (Right) 
Simulations using a partial differential equations-based model recapitulate the importance of 3-D 
shape whereby in silico cells that are in shallow micropatterns fail to generate spatial gradients in 
focal adhesion formation even though they are spread into channels in their basal surface. In 
contrast, in silico cells that are in deep micropatterns generate robust spatial gradients. (Left) 
Focal adhesion density at the membrane within cell body and the peripheral processes of 
simulated podocytes in deep or shallow micropatterns as a function of time. 
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Supplementary Tables 
 

 

Uncoated Mean diffusion coefficient (µm2/s)  
 Integrin β1 

outside FAs 
Integrin β1  
inside FAs 

Integrin β3 
outside FAs 

Integrin β3  
inside FAs 

Podocytes 0.59±0.08 ___ 0.32±0.04 0.14±0.01 
SMCs 1.43±0.11 0.6±0.12 0.45±0.03 0.44±0.03 
MEFs1 ___ ___ ___ ___ 
 

Supplementary Table 1: Summary of diffusion coefficients of integrin β3 and β1 inside and 
outside FAs as measured for podocytes and SMCs plated on substrates without ECM coating 
(uncoated). 
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+Fibronectin Mean diffusion coefficient (µm2/s)  
 Integrin β1 

outside FAs 
Integrin β1 

 inside FAs 
Integrin β3 

outside FAs 
Integrin β3 

 inside FAs 
Podocytes 0.23±0.03 ___ 0.17±0.01 0.15±0.03 
SMCs 0.8±0.09 0.63±0.08 0.43±0.03 0.28±0.04 
MEFs1 0.3±0.005 0.09±0.005 0.29±0.004 0.08±0.002 
 

Supplementary Table 2: Summary of diffusion coefficients of integrin β3 and β1 inside and 
outside FAs as measured for podocytes, SMCs, and MEFs plated on fibronectin coated 
substrates.   
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Cell Type Figure Source 
Podocytes Human, kidney epithelial 1, 3, 4, 6, 7 2 
HITB5 (SMC) Human, internal thoracic artery 5, 6 Cellution Biosystems 
A10 (SMC) Rat, embryonic thoracic aorta 7 ATCC 
Dermal fibroblasts Human, foreskin 1 3 

COS-7 Monkey, kidney fibroblasts 2 ATCC 
Cardiac fibroblasts Neonatal rat, heart  1 4 

Foreskin fibroblasts   Human, foreskin 4 3 
 

Supplementary Table 3: Summary of all cell types used in this study and their sources. 
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Antibody Function Source 
Alpha actinin 4 (Rabbit)  IF 1:100 Abcam, cat # ab108198 
Alpha smooth muscle actin (1A4, Mouse)  IF 1:100 Abcam, cat # ab7817 
Calponin (EP798Y, Rabbit) IF 1:100 Abcam, cat # ab46794 
CD2AP (A599, Rabbit) IF 1:50 Cell Signaling, Cat # 5478S 
CD49e (NKI-SAM-1, Mouse) IF 1:200 EMD Millipore, cat # CBL497 
Collagen I  IF 1:200 Abcam, cat # ab34710 
Fat1 (Rabbit) IF 1:50 Sigma, cat # HPA023882 
Fibronectin (Rabbit) IF 1:200 Sigma, cat # F3648 
Fyn (2A10, Rabbit) IF 1:200 Abcam, cat # ab119855 
Integrin beta 1 (P5D2, Mouse) IF 1:200 Abcam, cat # ab24693 
Integrin beta 3 (BV4, Mouse) IF 1:100 Abcam, cat # ab7167 
Integrin alpha V (LM142, Mouse) IF 1:100 EMD Millipore, cat # MAB1978 
Integrin beta 3 (B3A, Mouse) Blocking 1:100 EMD Millipore, cat # MAB2023Z 
Integrin beta 1 (6S6, Mouse) Blocking 1:100 EMD Millipore, cat # MAB2253 
Laminin (Rabbit) IF 1:20 Sigma, cat # L9393 
Nephrin (Ig-like domain 5, Rabbit) IF 1:100 Enzo, cat # 810-016-R100 
KIRREL (Rabbit) IF 1:50 Sigma, cat # HPA030458 
Phospho-FAK (pTyr397, Rabbit) IF 1:50 Cell Signaling, cat # 3284S 
Phospho-myosin (Ser19, Mouse)  IF 1:100 Cell Signaling, cat #3675L 
Phospholipase C-epsilon-1 (Rabbit) IF 1:50 Sigma, cat # HPA015598 
Podocin (Rabbit) IF 1:100 Sigma, cat # P0372 
Synaptopodin (Mouse) IF 1:50 Progen Biotechnik, cat # 65294 
Vimentin (R28, Rabbit) IF 1:50 Cell Signaling, cat # 3932S 
ZO-1 (Rabbit) IF 1:100 Invitrogen, cat # 40-2200 
 
Supplementary Table 4: List of primary antibodies and dilutions used for immunofluorescence 
staining and functional blocking. 
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Supplementary Note 1: Reaction-Diffusion model 
 

1.1 Derivation of analytical and computational framework  
 
To address the question whether cell shape can modulate cellular phenotypes, we used partial 
differential equations to derive a reaction-diffusion model that quantified the effect of changing 
the cellular morphology on the spatial activation of membrane components in response to 
extracellular signaling. 
 
The following biochemical reaction scheme is adopted: extracellular component A that is 
allowed to freely diffuse, interacts with a membrane component X to form an activated 
membrane component 𝐵𝐵 at time 𝑡𝑡 = 0, where: 
 
𝐴𝐴 + 𝑋𝑋 ⇄ 𝐵𝐵                                                                                                                                                  (1.1) 
 
The initial distribution of the component 𝑋𝑋 along the membrane is assumed to be uniform and its 
concentration 𝑁𝑁𝑋𝑋[molecules/µm2] is fixed with respect to time. 𝐵𝐵 is a membrane component 
that is free to diffuse along the plane of the membrane with a diffusion coefficient 𝐷𝐷𝐵𝐵[µm2/s]. 
Initially, the density of B is zero, and it is subject to degradation throughout the diffusion field 
with a degradation rate 𝑘𝑘𝑑𝑑[1/s]. The dynamics of A in the extracellular space is given by: 
 
𝜕𝜕𝐶𝐶𝐴𝐴
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝐴𝐴∇2𝐶𝐶𝐴𝐴                                                                                                                                          (1.2) 
 
Where 𝐶𝐶𝐴𝐴[molecules/µm3] is the concentration of 𝐴𝐴 in the extracellular space and 𝐷𝐷𝐴𝐴[µm2/s] is 
the diffusion coefficient of 𝐴𝐴. Similarly, the dynamics of B in the membrane is governed by: 
 
𝜕𝜕𝑁𝑁𝐵𝐵
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝐵𝐵∇2𝑁𝑁𝐵𝐵 + 𝑘𝑘𝑜𝑜𝑜𝑜𝐶𝐶𝐴𝐴𝑁𝑁𝑋𝑋 − �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑘𝑘𝑑𝑑� ∙ 𝑁𝑁𝐵𝐵                                                                             (1.3) 
 
where 𝑁𝑁𝐵𝐵[molecules/µm2] stands for the concentration of B for any 𝑡𝑡 ≥ 0, 𝑘𝑘𝑜𝑜𝑜𝑜[µm3/
molecules ∙ s] and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜[1/s] are the forward and backward reaction rate constants respectively. 
The boundary condition accounts for the balance between diffusive flux and reaction rate along 
the membrane is given by: 
 
𝐷𝐷𝐴𝐴(n ∙ ∇𝐶𝐶𝐴𝐴) = −𝑘𝑘𝑜𝑜𝑜𝑜𝐶𝐶𝐴𝐴|𝜕𝜕Ω𝑁𝑁𝑋𝑋 + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑘𝑘𝑑𝑑� ∙ 𝑁𝑁𝐵𝐵                                                                           (1.4) 
 
where 𝑛𝑛 is the unit vector normal at any point along the boundary, and 𝐶𝐶𝐴𝐴|𝜕𝜕Ω is the concentration 
of 𝐴𝐴 at the membrane boundary. Additionally, 𝑁𝑁𝐵𝐵 and 𝑁𝑁𝑋𝑋 must satisfy periodic boundary 
conditions because the domain is closed.  
 
The above equations were solved numerically in both 3-D and 2-D coordinate systems for all 
considered shapes (Supplementary Figures 5 and 43) using Matlab. For the model, a parabolic 
PDE of the below form has been adopted: 
  
𝑑𝑑𝑢𝑢𝑡𝑡 − ∇ ∙ (𝑐𝑐∇𝑢𝑢) + 𝑎𝑎𝑎𝑎 = 𝑓𝑓                                                                                                                     (1.5) 
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with Neumann boundary conditions in the form: 
 
𝑛𝑛�⃗ ∙ (𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧)∇𝑢𝑢) + 𝑞𝑞(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑢𝑢 = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)                                                                                     (1.6) 
 
where 𝑛𝑛�⃗  is a unit vector normal to the domain (directly outward, perpendicular to the tangent 
vector) and has a unit length. The volumetric domain was discretized into ~104 triangle elements 
and solved with a finite element solver with maximum allowable time-steps of 10 sec (tolerance 
of 0.01%). When a 2-D solution was adopted, equations 1.2-1.6 were reduced to their 2-D form 
(xy-plane) where (𝑥𝑥,𝑦𝑦) ∈ 𝜕𝜕Ω. The cytoplasmic volume concentration 𝐶𝐶𝐴𝐴 is reduced to a surface 
concentration 𝐶𝐶𝐴𝐴[molecules/µm2], the membrane surface densities 𝑁𝑁𝑋𝑋 and 𝑁𝑁𝐵𝐵 to line densities 
𝑁𝑁𝑋𝑋[molecules/µm] and 𝑁𝑁𝐵𝐵[molecules/µm], and the forward reaction rate constant 𝑘𝑘𝑜𝑜𝑜𝑜 is given 
by 𝑘𝑘𝑜𝑜𝑜𝑜[µm2/molecules ∙ s].  

 
Supplementary Figure 43: Series of 2-D and 3-D geometries used to represent the distribution of shapes with a 
wide range surface area to volume ratios. For the 2-D plane geometries, a constant surface area of 2500 µm2 is kept. 
For the 3-D slab geometries and 3-D shapes, a constant volume of 1.25 ∙ 105 µm3 is kept for all shapes. Keeping the 
surface area and the volume constant allow us to generate a series of shapes with a linear surface-to-volume ratio. 
 
1.2 Graphical solutions and biophysical interpretations  
 
The 2-D geometries allow studying the effect of curvature variation along the membrane rather 
than the effect of volumetric reactions as taken into account in a 3-D system 5, 6. The 3-D slab 
geometries stand mainly for the case of patterned cells, when a uniform height is kept. The full 
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3-D shapes demonstrate a more realistic case of in vivo cells that allow simulating the native 
volumetric balance between diffusive flux and reaction along the cellular membrane. 
 

 
Supplementary Figure 44: 2-D plane models demonstrate the effect of membrane curvature on the distribution and 
of the membrane component 𝐵𝐵. The initial concentration of 𝐴𝐴 in the extracellular space is 1 µM, and the initial 
density of 𝐵𝐵 on the membrane is 0 molecules/µm. 
 

 
Supplementary Figure 45: 3-D slab models demonstrate the effect of membrane surface curvature on the 
distribution of the membrane component 𝐵𝐵. The initial concentration of 𝐴𝐴 in the extracellular space is 1 µM, and the 
initial density of 𝐵𝐵 on the membrane is 0 molecules/µm2. 

50 
 



 
Supplementary Figure 46: 3-D shape models demonstrate the volumetric effect of membrane curvature on the 
distribution of the membrane component 𝐵𝐵. The initial concentration of 𝐴𝐴 in the extracellular space is 1 µM, and the 
initial density of 𝐵𝐵 on the membrane is 0 molecules/µm2. 
 
The 2-D and 3-D simulations presented in Supplementary Figures 44-46 are computed based on 
the solution of the reaction-diffusion equation 1.2. For all simulations, the volume component 𝐴𝐴 
is presented in the extracellular space and is free to interact with the cell membrane component 𝑋𝑋 
to activate the membrane component. The interaction depends on the global shape of the cell and 
on the local curvature of the membrane. The global diffusion and concentration values used to 
initiate the calculations are summarized in Supplementary Table 5. 
 
For the circular 2-D geometry, there is no spatial variation of membrane component 𝐵𝐵 along the 
membrane. However, as the geometry evolves, and the curvature of the membrane increases, the 
distribution of 𝐵𝐵 becomes curvature dependent. Here, the concentration of 𝐵𝐵 is higher at the tips 
than along the flat edges when a strong line gradient is observed. For the 3-D slabs, as the 
membrane curvature evolves, a strong gradient of 𝐵𝐵 toward the center of the cell is observed 
where the highest distribution of 𝐵𝐵 is found along the membrane sharp edges. Similarly, for the 
3-D shapes, distinct membrane-domains of 𝐵𝐵 built up on the volumetric tips as the morphology 
became more serrated. The density of 𝐵𝐵 in the tips is 3-4 times higher compared to the density of 
B along the membrane in spherical geometry.  
 
Generally, for serrated shapes with high membrane curvature (e.g. star polygon), the underlying 
mechanism for spatial specification is based on the dominancy of reaction over diffusion in 
membrane microdomains. In those areas, the relatively small contribution of diffusion is due to 
the limited volume of the domains5. As the membrane surface becomes sharper, the local volume 
decreases and the role of diffusion becomes less dominant, leading to a strong gradient buildup. 
Based on this, we can conclude that for more complex shapes, reaction has a stronger effect on 
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microdomain dynamics than diffusion regardless of the type of the cellular signaling. If the 
signal arises from interactions (i.e. reaction) between membrane bound components in the 
absence of a ligand, the high membrane curvature enhances reaction kinetics due to the decrease 
in the effect of diffusion. This finding suggests a mechanism for efflux of information from cell 
shape and indicates that cell shape can play an important role in shaping cellular phenotypes 
 
 

Parameter Value Units Compartment 
𝑘𝑘𝑜𝑜𝑜𝑜 1 µM−1 ∙ s−1 Membrane 
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜  5·10-3 s−1 Membrane 
𝑘𝑘𝑑𝑑 10-3 s−1 Membrane 

𝐶𝐶𝐴𝐴,𝑡𝑡=0 1 µM Extracellular space 
𝑁𝑁𝑋𝑋,𝑡𝑡=0 103 molecules/µm2 Membrane 
𝑁𝑁𝐵𝐵,𝑡𝑡=0 0 molecules/µm2 Membrane 
𝐷𝐷𝐴𝐴 1 µm2/sec Extracellular space 
𝐷𝐷𝐵𝐵 0.1 µm2/sec Membrane 

 

Supplementary Table 5: Summary of global parameters used for reaction-diffusion simulations. Although all 
parameters are given in 3-D notations, same values were also used for the 2-D simulations with their matched units 
as defined in section 2.1. For simplicity, for all volumetric terms, we use molar representation instead of the number 
of molecules per cubic micrometer. The transformation between the two terms is given by, for 3-D: 1 μM = 6.02 ∙
1026 molecules/μm3, and for 2-D: 1 μM = 6.02 ∙ 1022 molecules/μm2. 
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Supplementary Note 2: Cellular activation model 
 
2.1 Derivation of analytical framework  
 
Here, we derive the model for the cellular activation based on shape and tension signals, given in 
first section of our paper, in order to understand how they affect the maturation of phenotype as 
illustrated in Supplementary Figure 47. We assume two independent types of membrane 
receptors that can be activated by either force or shape signal, and theoretically calculate the 
activation rate of the receptors for varying 3-D shapes as shown in Supplementary Figure 43. 
 

 
Supplementary Figure 47: Illustration of activation model. Both shape and force signals are assumed to contribute 
to the overall cellular phenotype by inducing specific cellular alterations. The model aims to clarify how the 
contributions of these two signals change with respect to cell shape. We use activation rates of the receptors as a 
measure to demonstrate the relative contribution of each.  
 
Assuming the following reaction occurs on the cell membrane: 
 
𝐴𝐴 + 𝑋𝑋 ⇄ 𝑋𝑋∗                                                                                                                                               (2.1) 
 
where A, 𝑋𝑋, 𝑋𝑋∗ stand for the concentrations of the extracellular ligand, inactive, and active 
membrane receptors respectively. The dynamic of 𝑋𝑋∗ in the membrane is given by its 
corresponding rate equation: 
 
𝑑𝑑𝑁𝑁𝑋𝑋∗
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑜𝑜𝑜𝑜𝐶𝐶𝐴𝐴𝑁𝑁𝑋𝑋 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑋𝑋∗                                                                                                                  (2.2) 
 
where 𝐶𝐶𝐴𝐴[molecules/µm3] is the concentration of A in the extracellular space, 𝑁𝑁𝑋𝑋[molecules/
µm2] and 𝑁𝑁𝑋𝑋∗[molecules/µm2] are the membrane concentrations of X and 𝑋𝑋∗, and 𝑘𝑘𝑜𝑜𝑜𝑜[µm3/
molecules ∙ s], and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜[1/s] are the forward and backward reaction rate constants respectively.  
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For long-term cell culture (days), such as those in this study, it is reasonable to assume that the 
biochemical ligand-receptor reaction has reached equilibrium, meaning that the number of 
activated receptors is fixed with respect to time; hence, the reaction rate 𝑟𝑟 = 𝑑𝑑𝑋𝑋∗ 𝑑𝑑𝑑𝑑⁄   equals 
zero. Using steady-state, the ratio of activated receptors 𝑋𝑋∗ to the total receptors 𝑋𝑋𝑇𝑇 = (𝑋𝑋 + 𝑋𝑋∗), 
is given by:  
 
𝑋𝑋∗

𝑋𝑋𝑇𝑇
=

𝐶𝐶𝐴𝐴
1/𝐾𝐾𝑎𝑎 + 𝐶𝐶𝐴𝐴

                                                                                                                                      (2.3) 

 
where 𝐾𝐾𝑎𝑎[M−1] is the association rate constant defined as: 
 

𝐾𝐾𝑎𝑎 =
𝑘𝑘𝑜𝑜𝑜𝑜
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

                                                                                                                                                  (2.4) 

 
Next, we drive the expressions for the association rate 𝐾𝐾𝑎𝑎 as a function of the adopted shape 
morphologies presented in the Supplementary Figure 43. We considered shape and tension-
driven mechanisms, which represent the response of the membrane receptors to geometrical and 
physical cues.  
 
2.2 Shape-driven model 
 
2.2.1 Surface-to-volume effect 
 
Shape effect mainly operates by modulating the effective membrane area versus the cytoplasmic 
volume, also known as the surface-area-to-volume ratio (SA/V). The reaction rate of many 
biochemical processes are affected by the SA/V ratio and cells with high SA/V ratio will react 
faster because more membrane surface is available to react6. High SA/V ratio provides a strong 
driving mechanism to accelerate biochemical processes by minimizing the free energy. From a 
biological point of view, increased cellular surface area leads to increased rate of reaction. A 
larger surface area per volume ratio increases the areas of contact between ligand-receptor pairs, 
meaning that the larger the membrane surface compared with the cytoplasmic volume, the faster 
the rate of reaction and hence the probability of ligand-receptor binding. 
 

                          2-D Plane                             3-D Slab                               3-D Shape 
Shape          Circum.      Area         CS/A           Area       Volume      SA/V           Area     Volume    SA/V 
                       [µm]         [µm2]       [µm-1]         [µm2]        [µm3]       [µm-1]         [µm2]      [µm3]     [µm-1] 
 

sphere 176 2500 0.070 5408 7500 0.721 12090 1.25·105 0.096 
pentagon 190 2500 0.076 5564 7500 0.742 13279 1.25·105 0.106 
square 200 2500 0.080 5600 7500 0.746 15000 1.25·105 0.120 
triangle 228 2500 0.091 5681 7500 0.757 18014 1.25·105 0.144 
6p star 336 2500 0.134 6122 7500 0.816 25134 1.25·105 0.201 
12p star 697 2500 0.278 7099 7500 0.946 52279 1.25·105 0.418 
24p star 1332 2500 0.533 9040 7500 1.205 99330 1.25·105 0.794 

 
Supplementary Table 6: C/SA and SA/V ratios for all considered geometries 
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The C/SA (circumference-to-surface area) and SA/V ratios for the geometries presented in 
Supplementary Figure 43 are given in Supplementary Table 6 and summarized graphically in 
Supplementary Figure 48. For the 2-D plane geometries, a constant surface area of 2500 μm2 is 
kept. For the 3-D slab geometries, and the 3-D shapes, a volume of 1.25 ∙ 105 μm3 is kept 
constant. Keeping surface area or volume constant allows generation of a series of shapes with a 
linear circumference-to-surface or surface-to-volume ratio as shown in Supplementary Figure 49. 
 

 
 

Supplementary Figure 48: Evolution of C/SA and SA/V ratios as function of 2-D and 3-D geometries respectively. 
 

 
 

Supplementary Figure 49: C/SA and SA/V ratios as functions of surface area and volume. All parameters are 
listed in Supplementary Table 6 and are based on the geometries shown in Supplementary Figure 43.  
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2.2.2 Analytical definition of shape-dependent rate constant 
 
For bounded chemical system, as in the case of shelled cells, the SA/V ratio affects the chemical 
reaction rate when employing a geometric model with isotropic properties. Here we consider the 
case of a second order biochemical reaction (Eq. 2.1) occurring on the membrane (surface of the 
considered shape) of 3-D volumetric shapes as shown in Supplementary Figure 43 (right 
column). The given 3-D shapes allow simulating a realistic volumetric space to study how the 
kinetics of a biochemical reaction is affected by cell shape. For a heterogeneous reaction, 
uninfluenced by mass transfer effects, the reaction is characterized by the specific forward rate 
constant 𝑘𝑘𝑜𝑜𝑜𝑜(𝑆𝑆𝑉𝑉)5 which takes into account the morphological variations of the edges and is 
given by: 
 
𝑘𝑘𝑜𝑜𝑜𝑜(𝑆𝑆𝑉𝑉) = 𝑘𝑘𝑜𝑜𝑜𝑜𝜂𝜂                                                                                                                                        (2.5) 
 
where 𝑆𝑆𝑉𝑉 stands for a given SA/V ratio, 𝑘𝑘𝑜𝑜𝑜𝑜 is the native forward rate constant of the reaction 
and 𝜂𝜂 is the effectiveness factor which is a dimensionless quantity defined as the ratio of the rate 
of reaction onto the shaped membrane to the rate at which reaction occurs in a continues 
unbounded space. The effectiveness factor accounts for the effect which the membrane curvature 
and cell morphology have on the chemical reaction rate and is given by:  
 

𝜂𝜂 =
tanh𝜙𝜙
𝜙𝜙

                                                                                                                                                (2.6) 

 
where 𝜙𝜙  is a dimensionless quantity known as the Thiele modulus which describes the ratio 
between the diffusion and reaction components within a reaction-diffusion system. Generally, 
when 𝜙𝜙 ≪ 1, diffusion presents a negligible resistance while reaction is dominant. In contrast, 
when 𝜙𝜙 ≫ 1, the diffusion effect is dominant over reaction.  
 
For a given closed boundary, the Thiele modulus is given by: 
 

𝜙𝜙 =
1
𝑆𝑆𝑉𝑉

  �
𝑘𝑘
𝐷𝐷𝑒𝑒

                                                                                                                                            (2.7) 

 
where 𝑆𝑆𝑉𝑉 is the SA/V ratio, 𝑘𝑘 [1/s] is the specific rate constant, and 𝐷𝐷𝑒𝑒 [μm2/s] is the effective 
diffusion constant. Respectively, the modified shape dependent association rate constant 𝐾𝐾𝑎𝑎(𝑆𝑆𝑣𝑣) 
for any given SA/V ratio is given by: 
 

𝐾𝐾𝑎𝑎(𝑆𝑆𝑉𝑉) =
𝑘𝑘𝑜𝑜𝑜𝑜(𝑆𝑆𝑉𝑉)
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑆𝑆𝑉𝑉 ∙  
𝑘𝑘𝑜𝑜𝑜𝑜
𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

∙  
tanh� 1

𝑆𝑆𝑉𝑉
� 𝑘𝑘
𝐷𝐷𝑒𝑒
� 

� 𝑘𝑘
𝐷𝐷𝑒𝑒

                                                                          (2.8) 
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The integration of the Thiele modulus into the 𝐾𝐾𝑎𝑎(𝑆𝑆𝑉𝑉) term represents the change in the forward 
reaction rate in response to the geometrical constrains that shaped the cell boundary (the plasma 
membrane).  
 
The physical basis for the differential distribution along the cell boundary is governed, 
respectively, by the biochemical and biophysical processes that are represented by the reaction-
diffusion components. The process of free diffusion works toward homogenizing concentration 
gradients; i.e., Fickian diffusion eliminates concentration gradients over a length scale. On the 
other hand, chemical reactions are occurring everywhere along the cell membrane, and the local 
surface-to-volume ratio establishes concentration differences along the membrane. The balance 
between these two processes is represented by the Thiele modulus as shown graphically in 
Supplementary Figure 50. The Thiele modulus decreases exponentially with the increased SA/V 
ratio, which means that the reaction rate shows dominancy over diffusion. The distribution of the 
activated receptor fraction (represented by localization ratio) along the membrane is shown to 
follow precisely after the Thiele modulus. The localization rate sharply increases as the Thiele 
modulus gets smaller (reaction rate increases). At high SA/V, the reaction to diffusion ratio is 
nearly constant; hence, the localization phenotype reaches a plateau.  
 
In addition to the Thiele modulus, the effectiveness factor 𝜂𝜂  is used to describe how well the 
biochemical system responds to the shape constrains. As shown in Supplementary Figure 51, the 
local reaction rate along the boundary depends strongly on the local curvature (given by SA/V 
ratio) and found to growth sharply with the increased SA/V. However, as the SA/V becomes 
very high, the reaction rate becomes nearly constant meaning that further increase in the 
membrane curvature can not affect the reaction rate, hence, the biochemical response is fixed in 
respect to the morphological constraints. 

 
Supplementary Figure 50: Thiele modulus and localization ratio as function of SA/V ratio. The Thiele modulus 
values were calculated analytically and are based on the 3-D shapes presented in Supplementary Figure 43 
(𝐷𝐷𝑒𝑒 = 0.08 µm2/s , 𝑘𝑘 = 5 ∙ 10−3 1/s) . The localization ratio was computed based on the surface distribution of the 
activated receptors on the membrane and represents the ratio of densities between the edges and the center. 
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Supplementary Figure 51: Thiele modulus and effectiveness factor as function of SA/V ratio. The values were 
calculated analytically and are based on the 3-D shapes presented in Supplementary Figure 43 (𝐷𝐷𝑒𝑒 = 0.08 µm2/
s , 𝑘𝑘 = 5 ∙ 10−3 1/s).  
 
2.3 Tension-driven model 
 
2.3.1 Introduction and definitions 
 
Here, we model the effect of cellular forces on the activation of tension-activated 
mechanoreceptors. The main goal of the model is to show how endogenous (internal) forces 
activate membrane mechanoreceptors in response to the evolving cellular shape. The activation 
of the receptors is then translated to changes in the force dependent association rate constant 
𝐾𝐾𝑎𝑎(𝑓𝑓) as described in details at the next section under the title “catch-bond model”. In our 
model, we assume that a constant contractile force 𝐹𝐹𝑐𝑐[pN/µm2] is present along the actin 
cytoskeleton in response to a mechanical load 𝑄𝑄[pN/µm2]. The load 𝑄𝑄 represents the net 
mechanical resistance due to applied forces (ECM, musculoskeletal, blood flow, blood pressure, 
etc.) against which the cell needs to react. Mechanical loads in cells are built particularly along 
the focal adhesions 7. The cytoskeleton adheres to the focal adhesions from the inner side of the 
membrane and acts as a load-bearing network to allow transduction of mechanical signals 
throughout the cell 8. Hence, the cytoskeleton bridges the extracellular space and the cytoplasm, 
allowing the transduction of mechanical signals in a fast and efficient manner. In response to the 
applied mechanical signals, cytoskeleton generates internal (endogenous) mechanical force, 𝐹𝐹𝑐𝑐, 
mostly through myosin ratcheting on actin filaments that allows the cell to mechanically balance 
the applied forces and to maintain its structural integrity. Endogenous forces are mainly 
contractile such that the cell homogeneously pulls its exterior towards its centroid. In contrast, 
applied forces are mainly directed outward from the cell 7, 9. Hence, we can assume that the 
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directionality of the endogenous force, which is built in response to the resistance load 𝑄𝑄, is in 
agreement with this biomechanical framework. 
 
Tension, generated by the cytoskeleton in response to applied mechanical loads from the 
extracellular space, has been shown to be sufficient for mechanical activation of integrin 
mechanoreceptors 10. Hence, endogenous forces, such as contractile tension generated by myosin 
motors, are primary used as an activation source 7. It was shown by many studies that when 
myosin based contractility is inhibited (e.g., using blebbistatin), the activation of integrin 
mechanoreceptors is reduced dramatically, and that mechanotransduction due to applied forces is 
mostly lost 11, 12. This suggests that the cell response to applied forces depends on the intact 
contractile activity of the actin cytoskeleton in order for the mechanoreceptors to generate a 
response. 
 

 
 
Supplementary Figure 52: Equilibrium of forces in a cell. (Right) Cells are exposed to multiple types of loads Q, 
such as shear and tensile forces acting through the extracellular space. The force generated by the contractile 
cytoskeleton 𝐹𝐹𝑐𝑐 works to mechanically balance the applied forces and to maintain cellular integrity. (Left) Zoomed 
view of a single membrane bound focal adhesion where external and endogenous forces (𝐹𝐹𝑐𝑐 and 𝑄𝑄) drive stress at 
the mechanoreceptor leading to increased activity and the initiation of signaling along the actin cytoskeleton. 
 
2.3.2 Biophysical concept 
 
For the modeling framework, we assumed that there is non-zero tension along the cytoskeleton 
in response to extracellular load acting on the cell membrane. This architecture acts as a network 
throughout the cell of cables under tension interconnected by the soft cellular membrane. The 
cables are under a constant force 𝐹𝐹𝑐𝑐 to mechanically balance the applied load 𝑄𝑄 to maintain 
structural integrity. Here, we assume that the cytoskeletal force 𝐹𝐹𝑐𝑐 is in equilibrium with the 
applied load. Generally, in cells, there are very few states of force disequilibrium that lead to 
acceleration (a 1 pN disequilibrium, less than the magnitude required to break most receptor-
ligand bonds, would accelerate a cell at ~1 m ∙ s−2). In focal adhesions, the vector 𝐹𝐹𝑐𝑐 is dissected 
to the tangent (𝐹𝐹𝑐𝑐𝑐𝑐) and normal (𝐹𝐹𝑐𝑐𝑐𝑐) vectorial components with respect to the cell membrane 
(Supplementary Figure 52). Due to the balance of applied and endogenous forces, the component 
𝐹𝐹𝑐𝑐𝑐𝑐, which lays in plane with the membrane, induces tensional stress in the focal adhesions (as 
also shown experimentally, see Refs.7, 10, 13, 14) leading to conformational changes that result in 
stress signaling response. Focal adhesions are highly dynamic structures that grow or shrink due 
to the turnover of their components in response to forces exerted by or through the surrounding 
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matrix15. This tension is known to induce specific mechanical response of tension-dependent 
receptors that are able to increase the affinity to their ligand when force is applied to the 
receptor-ligand bond10 (also see Supplementary Figure 53). Thus, applied forces must be sensed 
by increased stress and must result in generation of internal forces at a similar magnitude. Under 
zero net force, the cell experiences stress and responds mechanically by deforming the 
membrane that in turn increases mechanotransduction by enhancing the receptor-ligand binding. 
Next, we used the 3-D shape geometries presented in Supplementary Figure 43 in order to 
calculate the fraction of force that acts on the plane of the membrane. The shear membrane force 
is then assumed to be directly related to the enhance activation of the mechanoreceptors. 

 
 

 
 

Supplementary Figure 53: Mechanism of force sensing and of tension-dependent receptors. (Left) External load is 
sensed by focal adhesions (FAs) that in response generate an internal force along the cytoskeleton (Fin). Due to the 
balance of forces across the FAs, the in-plane membrane component Fm induces a tensional force across the FA site 
and induces the activation of the mechanoreceptors. (Right) When force is applied to the mechanoreceptors, a 
conformational change occurs within the receptor site which allows enhancing the binding to its ligand. In turn, the 
stabilized receptor-ligand interaction enhances the activation of internal signaling. 
 
2.3.3 Cellular measures 
 
The model assumes 3-D cells in native tissue that experience continued forces mainly from the 
surrounding matrix7, 16, 17. Here, the applied load 𝑄𝑄 is entirely contributed by the tension 
extracted by the surrounding ECM which is the main source of mechanical stresses in tissues14. 
ECM driving forces are mainly tensile in nature and pull the cell outward against the plasma 
membrane8, 16. The threshold magnitude forces that trigger cellular responses appear to be in the 
pN to nN range per focal adhesion10 18. Typical loads generated by the ECM are usually 
characterized by a magnitude of few hundreds of piconewtons per unit area7, 19. This range of 
forces is  in agreement with reported measurements of cell-generated contractile forces and show 
magnitudes from 0.1 − 1 nN per focal adhesion under force equilibrium9, 20. Therefore, here we 
use a value of  200 pN/µm2 to characterize the ECM load. Assuming a typical focal adhesion 
area of 2 µm2 (as also measured in this study for podocytes and SMCs), it yields a typical net 
force of ~0.4 nN per focal adhesion, which is satisfactory to allow the intact activation of 
mechanotransduction in cells7.  
 
Forces are not transmitted continuously throughout the entire cell membrane; this is because the 
membrane is not evenly anchored to the external matrix. Rather, the cell attaches to the external 
matrix by physically coupling its actin skeleton to the focal adhesion complexes onto the 
membrane which physically bridge between the inner and outer phases of the cells. Therefore, 
the model is fundamentally based on loads developed onto and sensed by focal adhesions (FAs), 
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hence, we must take into account a realistic arrangement of the FA sites on the cell membrane. 
Since the model is based on 3-D cellular morphologies, we can assume a similar case as showed 
in the pioneering work of Yamada and colleagues17, where 3-D cells in vivo present multi- 
interactions with the surrounding environment. In this work, FA sites were found to be located 
throughout the whole membrane when the interactions with the ECM are not limited to the apical 
or basal projection of the cell as usually found in culture (standard in vivo culturing). Hence, here 
we assumed that the spatial distribution of FAs onto the membrane for each of the considered 
shapes is homogenous (constant distance between sites) where the site density was taken to be 
0.1 FAs/µm2  as measured previously21. The FA area was taken to be  2 µm2 and assumed to be 
constant throughout the whole membrane. 
 
2.3.4 Analytical and computational methodology 
 
To quantify the tensional force onto the adhesion sites, scalar integration of the filamentous 
tension component 𝐹𝐹𝑐𝑐𝑐𝑐, over all focal adhesion sites onto the membrane was performed. 
Cartesian coordinates were built on the plane of a membrane to facilitate the integration 
(Supplementary Figure 54). The X-axis is defined to be in line with the edge and the Z-axis is 
normal to the membrane. The XY-plane defines the location of all points within the given 
membrane section. Since the vector 𝐹𝐹𝑐𝑐𝑐𝑐 lays on the in the XY-plane, we can dissect the vector to 
its vectorial components 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐, where: 𝐹𝐹�𝑐𝑐𝑐𝑐 = 𝐹𝐹�𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹�𝑐𝑐𝑐𝑐𝑐𝑐 .  
 

 
 
Supplementary Figure 54: Geometric definitions (Left) standard polyhedron geometry used for sphere, pentagon-
dodecahedron, cube, and tetrahedron. (Right) stellated polyhedron used for 6-pointed, 12-pointed, and 24-pointed 
stars. 
 
For a standard polyhedron geometry, which here includes icosahedron, pentagon-dodecahedron, 
cube and tetrahedron, the membrane section is considered as a superficial polygon. Respectively, 
the centroid is defined as: (0,𝑅𝑅𝑚𝑚,𝑅𝑅𝑖𝑖𝑖𝑖), where 𝑅𝑅𝑚𝑚[µm] is the inner radius of superficial polygon 
with an edge length defined as 𝐿𝐿[µm], and 𝑅𝑅𝑖𝑖𝑖𝑖[µm] is the inner radius of the polyhedron. For 
any given point on the membrane section (𝑥𝑥,𝑦𝑦, 0), the vector 𝐹𝐹𝑐𝑐𝑐𝑐 that points towards the 
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centroid is denoted as (−𝑥𝑥,𝑅𝑅𝑚𝑚 − 𝑦𝑦,𝑅𝑅𝑖𝑖𝑖𝑖), the corresponding vectorial components 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 and 
 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 are expressed as: 
 
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  = |𝐹𝐹𝑐𝑐|

−𝑥𝑥

�𝑥𝑥2 + (𝑅𝑅𝑚𝑚 − 𝑦𝑦)2 + 𝑅𝑅𝑖𝑖𝑖𝑖2
                                                                                                              (2.9) 

 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = |𝐹𝐹𝑐𝑐|
𝑅𝑅𝑚𝑚 − 𝑦𝑦

�𝑥𝑥2 + (𝑅𝑅𝑚𝑚 − 𝑦𝑦)2 + 𝑅𝑅𝑖𝑖𝑖𝑖2
                                                                                                    (2.10) 

       
where |𝐹𝐹𝑐𝑐| is vectorial norm, 𝑅𝑅𝑖𝑖𝑖𝑖[µm] is the inner radius of the polygon, and 𝑅𝑅𝑚𝑚[µm] is the inner 
radius of superficial polygon defined as: 
 

𝑅𝑅𝑚𝑚 =
𝐿𝐿
2 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡�

𝜃𝜃
2�                                                                                                                                    (2.11) 

 
where 𝜃𝜃[rad] is the angle of the tip at the intersection of the edges, and 𝐿𝐿[µm] is the length of 
the polygon edge (geometrical parameters of polyhedron shapes are summarized in 
Supplementary Table 7). 
 
 

Shape 𝑳𝑳[𝛍𝛍𝛍𝛍] 𝑹𝑹𝒊𝒊𝒊𝒊[𝛍𝛍𝛍𝛍] 𝑹𝑹𝒄𝒄[𝛍𝛍𝛍𝛍] 𝜽𝜽[𝐫𝐫𝐫𝐫𝐫𝐫] 𝝋𝝋[𝐫𝐫𝐫𝐫𝐫𝐫] 
sphere 38.5 29.1 - 1.05 - 
pentagon 25.4 17.4 - 1.9 - 
cube 50 25 - 1.6 - 
Pyramid 102 20.8 - 1.05 - 
6p star 65.9 - 72 0.44 0.13 
12p star 65.9 - 81.2 0.23 0.16 
24p star 65.9 - 81.9 0.35 0.1 

 
Supplementary Table 7: Geometrical parameters use for regular polyhedrons and stellated polyhedrons. 

 
For the case of stellated polyhedron (stars) geometry, built onto a standard polyhedron, which 
holds for 6-pointed, 12-pointed, and 24-pointed polyhedron, the membrane section is 
characterized as superficial side equilateral triangle and the centroid is given by the 
coordinates (0,𝐴𝐴,𝐵𝐵). For any given point onto the membrane section(𝑥𝑥,𝑦𝑦, 0), the vector 𝐹𝐹𝑐𝑐𝑐𝑐 that 
points towards the centroid is denoted as (−𝑥𝑥,𝐴𝐴 − 𝑦𝑦,𝐵𝐵), the corresponding vectorial 
components 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 and  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 are expressed as: 
 
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  = |𝐹𝐹𝑐𝑐|

−𝑥𝑥

�𝑥𝑥2 + (𝐴𝐴 − 𝑦𝑦)2 + 𝐵𝐵2
                                                                                                               (2.12) 

 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  = |𝐹𝐹𝑐𝑐|
𝐴𝐴 − 𝑦𝑦

�𝑥𝑥2 + (𝐴𝐴 − 𝑦𝑦)2 + 𝐵𝐵2
                                                                                                              (2.13) 
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where: 
 

𝐴𝐴 = 𝑅𝑅𝑐𝑐 ∙ cos(𝜑𝜑) − 𝐿𝐿 ∙ cos�
𝜃𝜃
2�

                                                                                                                          (2.14) 

 
𝐵𝐵 = 𝑅𝑅𝑐𝑐 ∙ sin(𝜑𝜑)                                                                                                                                                    (2.15) 
 
where 𝑅𝑅𝑐𝑐[µm] is the circumradius radius of the stellated polygon with the edge length 𝐿𝐿[µm], 
𝜃𝜃[rad] is the angle between two adjacent edges, and 𝜑𝜑[rad] is the angle between the 
circumradius and any given superficial side (geometrical parameters of stellated polyhedrons are 
summarized in Supplementary Table 7). 
 
Since any two symmetrically distributed vectors 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 across the symmetric membrane 
section counterbalance each other (e.g. two force vectors on the symmetric positions across the 
midline of a triangular side), the scalar integration of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 is only performed within the 
boundaries of the triangular bounded area. The shaded areas in Supplementary Figure 54 show 
examples of bounded membrane area where scalar integration is performed. The tension  𝐹𝐹𝐹𝐹𝐹𝐹 [N] 
generated onto a given FA site is then the product of this integration given by: 
 
𝐹𝐹𝐹𝐹𝐹𝐹= �� 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 +  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐� 𝑑𝑑𝑑𝑑                                                                                                                               (2.16) 
 
In order to calculate the average tensional force 〈𝐹𝐹𝐹𝐹𝐹𝐹〉 , we calculated the force for all given FAs 
and then averaged by the total number of sites N (summarized in Supplementary Table 8), where: 
 

〈𝐹𝐹𝐹𝐹𝐹𝐹〉 =
1
𝑁𝑁
∙�𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖                                                                                                                                              
𝑁𝑁

𝑖𝑖=1

(2.17) 

 
The average force as function of the evolving SA/V increases exponentially (Supplementary 
Figure 55). Since the mechanoreceptors are physically attached with the FA complexes, we 
assume that the force generated on the FA is transmitted entirely to activating receptors. Hence, 
these forces are taken as an input for the activation of the catch-bond model described in the next 
section. Calculated loads and forces for the FAs are summarized in Supplementary Table 8. 
 

Shape Number of  
FAs 

Mean force    
per FA 

〈𝑭𝑭𝑭𝑭𝑭𝑭〉[𝐩𝐩𝐩𝐩]   

Mean load per  
FA 〈𝑸𝑸𝑭𝑭𝑭𝑭〉 

[𝐩𝐩𝐩𝐩/𝛍𝛍𝛍𝛍𝟐𝟐] 

Total membrane  
force 𝑭𝑭𝑴𝑴[𝐧𝐧𝐧𝐧] 

Mean membrane  
load 〈𝑸𝑸𝑴𝑴〉 
[𝐩𝐩𝐩𝐩/𝛍𝛍𝛍𝛍𝟐𝟐]  

sphere 120 148 74 18 1.48 
pentagon 130 150 75 20 1.51 
square 150 154 77 23 1.54 
triangle 180 161 80 29 1.61 
6p star 250 171 85 43 1.71 
12p star 520 205 102 107 2.05 
24p star 990 334 167 332 3.33 

 

Supplementary Table 8: Calculated load and force values. 
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Supplementary Figure 55: Mean tension 〈𝐹𝐹𝐹𝐹𝐹𝐹〉 as function of SA/V ratio. The calculated force values are used as 
input for the activation of the catch-bond model. 
 
2.4 Catch-bond model 
 
Following the tension analysis, the interaction between the tensile force and the membrane 
mechanoreceptors 𝑋𝑋 is described by adapting the catch-bond mechanism for cellular activation22. 
Catch bonds are used as mechanical clutches and known to respond to external loads or tensile 
forces. This mechanism allows the system to increase bond strength to initiate intercellular 
signals to control homeostasis. When a receptor-ligand interaction occurs on the membrane, the 
bond could be subject to mechanical forces. This is the case for anchoring bonds that are 
stretched in response to mechanical tension generated by the contractile cytoskeleton 
(endogenous force) and the ECM (applied force). This was shown to be sufficient for mechanical 
activation of many mechanoreceptors such as integrins10. 
 
Generally, under tensile mechanical force, bonds would slip apart (less stable) also known as 
“slip bonds”; however, it was shown that chemical bonds can become longer lived under tensile 
forces, leading to the term “catch bonds”23. Catch bonds allow cells to stabilize their receptor-
ligand adhesion with the extracellular space when forces would otherwise pull the bonds apart. A 
practical example is integrins that are known to function as mechanoreceptors. Integrins are 
expressed on cells in an inactive from and show low affinity with slow on-rate (𝑘𝑘𝑜𝑜𝑜𝑜) and fast 
off-rate �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜� to their ligand; however, they become highly active under tension and show fast 
on and slow off rates10, 24. 
 
The effect of tensile forces on receptor-ligand interaction can be understood using the potential 
barrier ∆𝐸𝐸0 of the reaction. The larger is the height of the barrier separating the bound state from 
the dissociated state, the longer is the bond lifetime. Following Bell’s model25, applied force 
𝑓𝑓[N] induces linear changes in the barrier height ∆𝐸𝐸[m ∙ N], when: 
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∆𝐸𝐸(𝑓𝑓) = ∆𝐸𝐸0 ± ∆𝑥𝑥 ∙ 𝑓𝑓                                                                                                                          (2.18) 
 
where ∆𝑥𝑥[m]  is the barrier width. The sign in front of the barrier width determines the direction 
of the force. If the sign is negative, the force pulls the ligand out, as shown by Bell. The situation 
describes slip bonds, since force promotes bond breaking. On the other hand, if the sign is 
positive, the force pushes the ligand into the receptor, and the complex behaves as a catch 
bond23. It should be noted however that under sufficient force, catch bonds would transition to 
slip bonds. There are several number of models commonly used to describe the catch-slip 
transition. In this study, we use the bond-deformation model22, 26. This model argues that force 
lowers the minimum potential energy by changing the receptor-ligand bond structure, and these 
conformational changes correlate with increased bond lifetimes. Generally, proteins can undergo 
structural changes during bond formation or when subjected to tensile forces. In the context of 
receptor-ligand, this can enhance or weaken the interactions. This motivates the functional form 
of the deformation energy ∆𝐸𝐸[m ∙ N] given by: 
 

∆𝐸𝐸(𝑓𝑓) = 𝐸𝐸𝑚𝑚 �1 − exp �
−𝑓𝑓
𝑓𝑓0
��                                                                                                           (2.19) 

 
where 𝑓𝑓[N] is the applied tensile force, and 𝐸𝐸𝑚𝑚[m ∙ N] is the energy limit when conformational 
saturation is achieved under the force 𝑓𝑓0[N]. Putting together equation 2.2 with the Bell term 
leads to the following off-rate constant 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓), when: 
 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓) = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜0 ∙ exp �−
∆𝐸𝐸(𝑓𝑓) − 𝑓𝑓 ∙ ∆𝑥𝑥

𝑘𝑘𝐵𝐵 ∙ 𝑇𝑇
�                                                                                       (2.20) 

 
where 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜0 [1/s] is the off-rate constant at zero force, ∆𝐸𝐸[m ∙ N] is the energy barrier given by 
equation 2.19, 𝑓𝑓[N]  is the applied tensile force, ∆𝑥𝑥[m] is the length difference between the 
equilibrium and the transition states, 𝑘𝑘𝐵𝐵[m2 ∙ kg ∙ s−2 ∙ K−1] is the Boltzmann constant and  𝑇𝑇[K] 
is the temperature.  
 
Following the general frame we developed in Equation 2.1-2.4 at the beginning of 
Supplementary Note 2, the modified tension-dependent association rate constant 𝐾𝐾𝑎𝑎[M−1], 
which represents the ratio between on and off rates of the receptor-ligand interaction, is 
 

𝐾𝐾𝑎𝑎(𝑓𝑓) =
𝑘𝑘𝑜𝑜𝑜𝑜

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓) = 𝐾𝐾𝑎𝑎0 ∙ exp �
∆𝐸𝐸(𝑓𝑓) − 𝑓𝑓 ∙ ∆𝑥𝑥

𝑘𝑘𝐵𝐵 ∙ 𝑇𝑇
�                                                                             (2.21) 

 
where 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓) is replaced with the term in equation 2.20, and 𝐾𝐾𝑎𝑎0 = 𝑘𝑘𝑜𝑜𝑜𝑜 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜0⁄   is the association 
rate constant at zero force. 𝐾𝐾𝑎𝑎(𝑓𝑓) is calculated independently for each of the 3-D shapes 
presented in Supplementary Figure 43. The parameters used for the calculations are summarized 
in Supplementary Table 9. The tensile force 𝑓𝑓 associated with each of the shapes was taken 
based on equation 2.17, and it is assumed to represent a constant membrane tension that acts 
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uniformly on the mechanoreceptor 𝑋𝑋 to induce force-dependent activation that enhances the 
generation of membrane fraction 𝑋𝑋∗. 
 

 
Parameter Value Units 

𝑇𝑇 – Temperature 298 K 
𝑘𝑘𝐵𝐵 - Boltzmann constant 1.38·10-23 m2 ∙ kg ∙ s−2 ∙ K−1 
∆𝑥𝑥  - Distance  between states 5 Å 
𝑓𝑓0  - Force limit 200 pN 
𝐸𝐸𝑚𝑚- Energy limit 400 Å ∙ pN 

 
Supplementary Table 9: Parameters used for the catch-bond model 
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Supplementary Note 3: Control theory model 
 
3.1 Derivation of analytical framework 
 
Here, we derive the solution for the optimal control problem, where we find a control parameter 
𝛼𝛼(𝑡𝑡) that allows minimization of time t to achieve a mature phenotype 𝑋𝑋�∗(𝑇𝑇) = �𝑋𝑋𝑠𝑠∗(𝑇𝑇),𝑋𝑋𝑓𝑓∗(𝑇𝑇)�, 
where 𝑋𝑋𝑠𝑠∗(𝑇𝑇) and 𝑋𝑋𝑓𝑓∗(𝑇𝑇) represent the phenotypical contribution of the respective shape and 
tension signals to the overall phenotype. The optimal control problem is stated as: 
 

min
𝛼𝛼(𝑡𝑡)�𝑑𝑑𝑑𝑑

𝑇𝑇

0

                                                                                                                                                    (3.1) 

 
The dynamics of the variables are based on the scheme presented in Figure 2B in the main text, 
and they are mathematically described using the below differential equations: 
 

𝑋̇𝑋𝑠𝑠∗(𝑡𝑡) = 𝛼𝛼(𝑡𝑡)𝛽𝛽𝑘𝑘�𝑠𝑠𝑋𝑋𝑠𝑠∗(𝑡𝑡) �
𝑐𝑐 − 𝑋𝑋𝑠𝑠∗(𝑡𝑡)

𝑐𝑐
�                                                                                                   (3.2) 

 

𝑋𝑋𝑓𝑓∗̇ (𝑡𝑡) = �1 − 𝛼𝛼(𝑡𝑡)�𝛽𝛽𝑘𝑘�𝑠𝑠𝑋𝑋𝑠𝑠∗(𝑡𝑡) �
𝑐𝑐 − 𝑋𝑋𝑠𝑠∗(𝑡𝑡)

𝑐𝑐
� + 𝑋𝑋𝑓𝑓∗(𝑡𝑡)�𝑘𝑘�𝑓𝑓 − 𝛾𝛾�                                                      (3.3) 

 
where 𝑘𝑘𝑠𝑠[1/s] and 𝑘𝑘𝑓𝑓[1/s] are the rates by which the shape-dependent phenotype 𝑋𝑋𝑠𝑠(𝑡𝑡) and 
tension-dependent phenotype 𝑋𝑋𝑓𝑓(𝑡𝑡) are changed in respect to the activation of the cell by the 
extracellular cues; 𝛾𝛾[1/s] is the natural decay (degradation) rate of the phenotype, and 𝛽𝛽 
represents the contribution from outside-in biochemical signals. Biochemical signals are known 
to affect the way by which shape signals are translated by the cell27. Hence, biochemical cues can 
affect the rate by which the phenotype is changed with respect to the extracellular cues; 
therefore, 𝛽𝛽 is used as a correction factor that allows adjusting the actual rates in the system. The 
term 𝛽𝛽 ranges from 0 to 1. When 𝛽𝛽 = 0, the biochemical dependence is maximal, hence, no 
shape effect is observed; when 𝛽𝛽 = 1, the interdependence between shape and biochemical 
signals is insignificant, and the shape effect is independent of the chemical stimulation. C is the 
carrying capacity, which is the maximum sustainable phenotypic intensity that the cell can 
express. We assume that cellular phenotypes are bounded, meaning that any given phenotype 
cannot rise unrestrictedly and an upper level for the phenotypical appearance is always valid.   
 
For simplicity we define: 
 
𝑋𝑋𝑠𝑠∗(𝑡𝑡)
𝑐𝑐

= 𝑋𝑋𝑠𝑠(𝑡𝑡) ,
𝑋𝑋𝑓𝑓∗(𝑡𝑡)
𝑐𝑐

= 𝑋𝑋𝑓𝑓(𝑡𝑡) , 𝛽𝛽𝑘𝑘�𝑠𝑠 = 𝑘𝑘𝑠𝑠 , �𝑘𝑘�𝑓𝑓 − 𝛾𝛾� =  𝑘𝑘𝑓𝑓                                  (3.4) 
 
The state equations become: 
 
𝑋̇𝑋𝑠𝑠(𝑡𝑡) = 𝛼𝛼(𝑡𝑡)𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑡𝑡)�1 − 𝑋𝑋𝑠𝑠(𝑡𝑡)�                                                                                                        (3.5) 
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𝑋̇𝑋𝑓𝑓(𝑡𝑡) = �1 − 𝛼𝛼(𝑡𝑡)�𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑡𝑡)�1 − 𝑋𝑋𝑠𝑠(𝑡𝑡)� + 𝑋𝑋𝑓𝑓(𝑡𝑡)𝑘𝑘𝑓𝑓                                                                        (3.6) 
 
where the control parameter 𝛼𝛼(𝑡𝑡) must satisfy the constraint: 
 
0 ≤ 𝛼𝛼(𝑡𝑡) ≤ 1                                                                                                                                            (3.7) 

 
We define: 
 

𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓�𝑋𝑋�(𝑡𝑡),𝛼𝛼(𝑡𝑡)�  ,   𝑋𝑋�(𝑡𝑡) = �𝑋𝑋𝑠𝑠(𝑡𝑡),𝑋𝑋𝑓𝑓(𝑡𝑡)�
𝑇𝑇

                                                                            (3.8) 
 
And the terminal manifold is given by: 
 
𝜑𝜑[𝑋𝑋�(𝑡𝑡)] = 𝑋𝑋�(𝑇𝑇) − 𝑋𝑋#���� = 0                                                                                                                    (3.9) 
 
where  𝑋𝑋𝑠𝑠# ,𝑋𝑋𝑓𝑓#  are the shape and tension-driven phenotypes at time 𝑡𝑡 = 𝑇𝑇. At next stage, we 
define the Hamiltonian in the form: 
 
𝐻𝐻 = 𝜆𝜆0 + 𝜆̅𝜆𝑋𝑋�(𝑡𝑡) = 𝜆𝜆0 + 𝜆𝜆1𝑋𝑋𝑠𝑠(𝑡𝑡) + 𝜆𝜆2𝑋𝑋𝑓𝑓(𝑡𝑡)                                                                                  (3.10) 
 
Using equations 3.5 and 3.6, we get: 
 
𝐻𝐻 = 𝜆𝜆0 + (𝜆𝜆1 − 𝜆𝜆2)𝛼𝛼𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑡𝑡)�1 − 𝑋𝑋𝑠𝑠(𝑡𝑡)� + 𝜆𝜆2�𝑋𝑋𝑓𝑓(𝑡𝑡)𝑘𝑘𝑓𝑓 + 𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑡𝑡)�1 − 𝑋𝑋𝑠𝑠(𝑡𝑡)��                (3.11) 
 
Following Pontryagin’s minimum principle, optimum control is obtained by minimizing H 
subject to the following conditions: 
 
𝐻𝐻�𝜆̅𝜆(𝑡𝑡),𝑋𝑋#����(𝑡𝑡),𝛼𝛼#(𝑡𝑡)� = 0,     𝜆𝜆0(𝑡𝑡) = Constant ≥ 0,   𝑡𝑡 ∈ [0,𝑇𝑇]                                              (3.12) 
 
where 𝑋𝑋#����(𝑡𝑡) is the solution to equation 3.8. Based on equation 3.1 3, we define: 
 
𝜎𝜎(𝑡𝑡) = 𝜆𝜆1 −  𝜆𝜆2                                                                                                                                      (3.13) 
 
Equation 3.11 can be minimized by setting the value of 𝛼𝛼#(𝑡𝑡) according to: 
 

𝛼𝛼#(𝑡𝑡) = �0    𝜎𝜎(𝑡𝑡) > 0
1     𝜎𝜎(𝑡𝑡) < 0                                                                                                                        (3.14) 

 
This solution is known as “bang-bang” and depends on the sign of the switching function 𝛼𝛼#(𝑡𝑡).  
 
The costate variables follow the costate equations: 
 
𝜆̇𝜆1(𝑡𝑡) = −𝐻𝐻𝑋𝑋𝑠𝑠 = −𝜎𝜎(𝑡𝑡)𝛼𝛼𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑡𝑡)� − 𝜆𝜆2𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑡𝑡)�                                                 (3.15) 
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𝜆̇𝜆2(𝑡𝑡) = −𝐻𝐻𝑋𝑋𝑓𝑓 = −𝜆𝜆2𝑘𝑘𝑓𝑓                                                                                                                      (3.16) 
 
To calculate 𝜎𝜎(𝑡𝑡) following equation 3.14, we have to consider the two possibilities 𝛼𝛼(𝑇𝑇) = 0 
and 𝛼𝛼(𝑇𝑇) = 1. 
 
Case I: at 𝑡𝑡 = 𝑇𝑇,  𝜆𝜆1(𝑇𝑇) −  𝜆𝜆2(𝑇𝑇) > 0; and hence: 𝛼𝛼(𝑇𝑇) = 0. Since 𝜎𝜎(𝑡𝑡) > 0 on some terminal 
interval [𝑡̃𝑡,𝑇𝑇], 𝜎̇𝜎(𝑡𝑡) must be positive for some 𝑡𝑡 ∈ [𝑡̃𝑡,𝑇𝑇], therefore: 
 
𝜎̇𝜎(𝑇𝑇) = 𝜆̇𝜆1(𝑇𝑇) −  𝜆̇𝜆2(𝑇𝑇) =  −𝜎𝜎(𝑇𝑇)𝛼𝛼𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� − 𝜆𝜆2𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� + 𝜆𝜆2𝑘𝑘𝑓𝑓

= −𝜎𝜎(𝑇𝑇)𝛼𝛼𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)������������������
=0

− 𝜆𝜆2𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� + 𝜆𝜆2𝑘𝑘𝑓𝑓 > 0                       (3.17) 

  
From 3.12-3.14 we get: 
 
𝜆𝜆2(𝑡𝑡) = 𝜆𝜆2(𝑇𝑇)e−𝑘𝑘𝑓𝑓(𝑡𝑡−𝑇𝑇)                                                                                                                       (3.18) 
 

𝜆𝜆2(𝑇𝑇) =  
−1

𝑘𝑘𝑓𝑓𝑋𝑋𝑓𝑓(𝑇𝑇) + 𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑇𝑇)�1 − 𝑋𝑋𝑠𝑠(𝑇𝑇)�
< 0                                                                             (3.19) 

 
and hence, from 3.17 we get: 
 
𝑘𝑘𝑠𝑠∗ > 𝑘𝑘𝑓𝑓  ,   𝑘𝑘𝑠𝑠∗ = 𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑡𝑡)�                                                                                                       (3.20) 
 
Thus, 𝜎𝜎(𝑡𝑡) will cross zero only when 𝑘𝑘𝑠𝑠∗ > 𝑘𝑘𝑓𝑓 when a single switch occurs at 𝑡𝑡 = 𝜏𝜏. From here 
we can show that:  
 

𝜆𝜆1(𝑡𝑡) = 𝜆𝜆1(𝑇𝑇) +
𝑘𝑘𝑠𝑠
𝑘𝑘𝑓𝑓
�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)�

1 − e−𝑘𝑘𝑓𝑓(𝑡𝑡−𝑇𝑇) 
𝑘𝑘𝑓𝑓𝑋𝑋𝑓𝑓(𝑇𝑇) + 𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑇𝑇)�1 − 𝑋𝑋𝑠𝑠(𝑇𝑇)�

                                       (3.21) 

  
 𝜎𝜎(𝑡𝑡) = 𝜆𝜆1 −  𝜆𝜆2 = 𝜆𝜆1(𝑇𝑇) + 𝐴𝐴�1 − e−𝑘𝑘𝑓𝑓(𝑡𝑡−𝑇𝑇)� − 𝜆𝜆2(𝑇𝑇)e−𝑘𝑘𝑓𝑓(𝑡𝑡−𝑇𝑇)                                             (3.22) 
 
where: 
 

𝐴𝐴 =
𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)�

𝑘𝑘𝑓𝑓�𝑘𝑘𝑓𝑓𝑋𝑋𝑓𝑓(𝑇𝑇) + 𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑇𝑇)�1 − 𝑋𝑋𝑠𝑠(𝑇𝑇)��
                                                                                      (3.23) 

 
From 3.22 at 𝑡𝑡 = 𝜏𝜏, we can calculate the switching time: 
 

𝜏𝜏 = 𝑇𝑇 −
1
𝑘𝑘𝑓𝑓

ln�
λ1(T) + A
λ2(T) + A

�                                                                                                                 (3.24) 

 
The external control is given by: 
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𝛼𝛼(𝑡𝑡) = � 1    0 < 𝑡𝑡 < 𝜏𝜏
 0     𝜏𝜏 < 𝑡𝑡 < 𝑇𝑇                                                                                                                        (3.25) 

 
Integrating the state equations over the interval 0 < 𝑡𝑡 < 𝜏𝜏 yields: 
 

𝑋𝑋𝑠𝑠(𝑡𝑡) =  
1

1 + � 1
𝑋𝑋𝑠𝑠(0) − 1� e−𝑘𝑘𝑠𝑠𝑡𝑡

                                                                                                        (3.26) 

 
𝑋𝑋𝑓𝑓(𝑡𝑡) = 0                                                                                                                                                 (3.27)  
 
and for  𝜏𝜏 < 𝑡𝑡 < 𝑇𝑇: 
 
𝑋𝑋𝑠𝑠(𝑡𝑡) = 𝑋𝑋𝑠𝑠(𝑇𝑇)                                                                                                                                        (3.28) 
 

𝑋𝑋𝑓𝑓(𝑡𝑡) =
𝑘𝑘𝑠𝑠
𝑘𝑘𝑓𝑓
𝑋𝑋𝑠𝑠(𝑇𝑇)(𝑋𝑋𝑠𝑠(𝑇𝑇) − 1)�1 − e−𝑘𝑘𝑓𝑓(𝑡𝑡−𝜏𝜏)�                                                                               (3.29) 

 
The switching time τ and the final time T are given by: 
 

𝜏𝜏 =
1
𝑘𝑘𝑠𝑠

ln�
𝑋𝑋𝑠𝑠(0)
𝑋𝑋𝑠𝑠(𝑇𝑇) ∙

1 − 𝑋𝑋𝑠𝑠(𝑇𝑇)
1 − 𝑋𝑋𝑠𝑠(0)�                                                                                                           (3.30) 

 

𝑇𝑇 + 𝜏𝜏 =
1
𝑘𝑘𝑓𝑓

ln�1 −
𝑘𝑘𝑓𝑓𝑋𝑋𝑓𝑓(𝑇𝑇)

𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑇𝑇)(𝑋𝑋𝑠𝑠(𝑇𝑇) − 1)�                                                                                      (3.31) 

 
Case II: at 𝑡𝑡 = 𝑇𝑇,  𝜆𝜆1(𝑇𝑇) −  𝜆𝜆2(𝑇𝑇) < 0 , and hence: 𝛼𝛼(𝑇𝑇) = 1. Since 𝜎𝜎(𝑡𝑡) < 0 on some terminal 
interval [𝑡̃𝑡,𝑇𝑇], 𝜎̇𝜎(𝑡𝑡) must be negative for some 𝑡𝑡 ∈ [𝑡̃𝑡,𝑇𝑇], therefore: 
 
𝜎̇𝜎(𝑇𝑇) = 𝜆̇𝜆1(𝑇𝑇) −  𝜆̇𝜆2(𝑇𝑇) =  −𝜎𝜎(𝑇𝑇)𝛼𝛼𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� − 𝜆𝜆2𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� + 𝜆𝜆2𝑘𝑘𝑓𝑓 
= −𝜆𝜆1𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑇𝑇)� + 𝜆𝜆2𝑘𝑘𝑓𝑓 < 0                                                                                                  (3.32) 
 
and since  𝜆𝜆1(𝑇𝑇) < 𝜆𝜆2(𝑇𝑇) , from equation 3.32 we get: 
 
𝑘𝑘𝑓𝑓 > 𝑘𝑘𝑠𝑠∗ ,   𝑘𝑘𝑠𝑠∗ = 𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(𝑡𝑡)�                                                                                                        (3.33) 
 
Thus, 𝜎𝜎(𝑡𝑡) will cross zero only when 𝑘𝑘𝑓𝑓 > 𝑘𝑘𝑠𝑠∗ when a single switch occurs at 𝑡𝑡 = 𝜏𝜏. From here 
we can show that:  
 

𝜆𝜆1(𝑇𝑇) =  −
𝜆𝜆2(𝑇𝑇)𝑘𝑘𝑓𝑓𝑋𝑋𝑓𝑓(𝑇𝑇) + 1
𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(𝑇𝑇)�1− 𝑋𝑋𝑠𝑠(𝑇𝑇)�

                                                                                                      (3.34) 

 
𝜆𝜆1(𝑡𝑡) = 𝜆𝜆1(𝑇𝑇)e−𝐵𝐵(𝑡𝑡−𝑇𝑇)  , 𝐵𝐵 = 𝑘𝑘𝑠𝑠�1 − 2𝑋𝑋𝑠𝑠(0)�                                                                      (3.35) 
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at 𝑡𝑡 = 𝜏𝜏, a switch occurs and  𝜆𝜆1(𝜏𝜏) = 𝜆𝜆2(𝜏𝜏), using 3.18 the switching time 𝜏𝜏 is given by: 
 

𝜏𝜏 = 𝑇𝑇 +
1

𝐵𝐵 − 𝑘𝑘𝑓𝑓
ln�

λ1(T)
λ2(T)�                                                                                                                 (3.36) 

 
The external control is given by: 
 
𝛼𝛼(𝑡𝑡) = � 0    0 < 𝑡𝑡 < 𝜏𝜏

 1     𝜏𝜏 < 𝑡𝑡 < 𝑇𝑇                                                                                                                        (3.37) 
 
Integrating the state equations over the interval 0 < 𝑡𝑡 < 𝜏𝜏 yields: 
 
𝑋𝑋𝑠𝑠(𝑡𝑡) = 𝑋𝑋𝑠𝑠(0)                                                                                                                                        (3.38) 
 

𝑋𝑋𝑓𝑓(𝑡𝑡) =
𝑘𝑘𝑠𝑠
𝑘𝑘𝑓𝑓
𝑋𝑋𝑠𝑠(0)(𝑋𝑋𝑠𝑠(0) − 1)�1 − e−𝑘𝑘𝑓𝑓𝑡𝑡�                                                                                      (3.39) 

 
and for  𝜏𝜏 < 𝑡𝑡 < 𝑇𝑇: 
 

𝑋𝑋𝑠𝑠(𝑡𝑡) =  
𝑋𝑋𝑠𝑠(0)

𝑋𝑋𝑠𝑠(0) − (𝑋𝑋𝑠𝑠(0) − 1)e−𝑘𝑘𝑠𝑠(𝑡𝑡−𝜏𝜏)                                                                                           (3.40) 

 
𝑋𝑋𝑓𝑓(𝑡𝑡) = 𝑋𝑋𝑓𝑓(𝜏𝜏)e𝑘𝑘𝑓𝑓(𝑡𝑡−𝜏𝜏)                                                                                                                          (3.41) 
 
The switching time τ and the final time T are given by: 
 

𝜏𝜏 =
1
𝑘𝑘𝑓𝑓

ln�1 −
𝑘𝑘𝑓𝑓

𝑘𝑘𝑠𝑠𝑋𝑋𝑠𝑠(0)(𝑋𝑋𝑠𝑠(0) − 1) ∙
𝑋𝑋𝑓𝑓(𝑇𝑇)

e𝑘𝑘𝑓𝑓(𝑇𝑇−𝜏𝜏)�                                                                             (3.42) 

 

𝑇𝑇 − 𝜏𝜏 = −
1
𝑘𝑘𝑠𝑠

ln�
𝑋𝑋𝑠𝑠(0) − 𝑋𝑋𝑠𝑠(0)

𝑋𝑋𝑠𝑠(𝑇𝑇)
𝑋𝑋𝑠𝑠(0) − 1

�                                                                                                   (3.43) 

 
 
3.2 Estimation of control parameters: Nonlinear least squares (NLS) fit 
 
Estimation of the control parameters from the measured data is necessary in order to obtain 
quantitatively accurate information regarding the phase transitions of the examined cells. A 
general and powerful method for data fitting involves nonlinear least squares (NLS) fit. The 
theory of least squares curve fitting assumes that the expected variances of the experimental 
observations will all be equal. Since this technique gives confidence intervals for both the real 
and imaginary values it allows exact calculations of the matched weighting factors. Purpose of 
weighting is to give a transformation of the data so as to ensure effective equality of the 
variances. The inclusions of weighting factors lead to a reduction in the confidence intervals for 
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the parameters. Although the reduction in error is a useful feature of the method, it is not a 
requirement.  
 
NLS is an extension of ordinary least squares method. Achievement of a successful fit 
automatically ensures that the Kramers-Kronig relations hold. NLS fits avoid most of the 
weaknesses of known graphical methods since NLS fits both real and imaginary parts 
simultaneously and yields the parameters associated with all, rather than half, of the data. It also 
provides the confidence limits for all the estimated parameters, showing which parameters are 
well determined and which are deviated from the common range. The best fit parameters are 
generally determined by minimizing the sum of squares of the errors using a minimization 
function as given by: 
 

𝑆𝑆(𝑃𝑃�) = �𝑊𝑊𝑖𝑖�𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡𝑖𝑖,𝑃𝑃�) − 𝑋𝑋𝑠𝑠𝑠𝑠�
2

                                                                                                     (3.44)
𝑁𝑁

𝑖𝑖=1

 

 
where  𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑋𝑋𝑠𝑠𝑠𝑠 stand for the fitted and the source spectrum respectively, N is the number of 
sampling points, W is the weighting factor related to the standard deviation by 1/𝜎𝜎2 and  
𝑃𝑃� = [𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, … ,𝑃𝑃𝐾𝐾] stands for the K fitted parameters.  
 
As in any nonlinear fitting procedure, there is a problem in ensuring that a local minimum found 
in the parameter space is the global minimum28. This problem becomes more serious when the 
number of unknown parameters is large. Generally, no algorithm can ensure that the minimum 
found is indeed the absolute; thus, it is very important to have a logical initial estimate that relies 
heavily on the native values of the fitted parameters. In this work, the minimizing of 𝑆𝑆(𝑃𝑃�) has 
been performed using a slightly modified form of the Levenberg-Marquardt algorithm (LMA), 
which provides a numerical solution to the minimization problem over a space of parameters of 
the function29. LMA interpolates between the Gauss-Newton algorithm (GNA) and the method 
of gradient descent. LMA is more robust than GNA such that it finds a solution even if it starts 
very far off the final minimum in many cases; however, it tends to be slower than GNA. 
 
 
3.3 Levenberg-Marquardt Algorithm (LMA)  
 
Like other numeric minimization algorithms, the LMA is an iterative procedure. To start a 
minimization, an initial guess for the parameter vector 𝑃𝑃� should be decided and marked 
accordingly as 𝑃𝑃�0. 𝑆𝑆(𝑃𝑃�) can then be expend in respect to 𝑃𝑃�0 in the parameter space, when: 
 

𝑆𝑆(𝑃𝑃�) = 𝑎𝑎 + 𝑏𝑏� ∙ 𝑃𝑃� +
1
2
𝑃𝑃� ∙ 𝐸𝐸 ∙ 𝑃𝑃� + ⋯                                                                                                   (3.45) 

 
where: 
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⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑎𝑎 = 𝑆𝑆(𝑃𝑃�0)

 

𝑏𝑏� =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑖𝑖

�
𝑃𝑃�0 

𝐸𝐸𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑃𝑃𝑖𝑖𝜕𝜕𝑃𝑃𝑗𝑗

�
𝑃𝑃�0

 

 
where E is the Hessian matrix. When the size of 𝑃𝑃� is relatively small, the first three terms in 
Equation 3.45 are a good approximation to 𝑆𝑆(𝑃𝑃�) so the gradient can be given by: 
 
∆𝑆𝑆(𝑃𝑃�) = 𝑏𝑏� + 𝐸𝐸 ∙ 𝑃𝑃�                                                                                                                                 (3.46) 
 
Defining  𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 which brings 𝑆𝑆(𝑃𝑃�) to its minimum, Equation 3.46 can be written as: 
 
∆𝑆𝑆(𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑏𝑏� + 𝐸𝐸 ∙ 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 = 0                                                                                                             (3.47) 
 
Subtracting Equations 3.46 from 3.47 yields: 
 
𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃� = 𝛿𝛿𝑃𝑃� = −𝐸𝐸−1 ∙ ∆𝑆𝑆(𝑃𝑃�)                                                                                                       (3.48) 
 
Equation 3.48 represents the transformation from the trial parameters 𝑃𝑃� to the minimizing 
parameters 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚. In most cases, the following equality is chosen: 
 
𝛿𝛿𝑃𝑃�𝑗𝑗 = −𝑎𝑎 ∙ 𝑏𝑏𝑗𝑗   , 𝑗𝑗 = 1, … ,𝐾𝐾                                                                                                         (3.49) 
 
Equations 3.48 can now be written as: 
 

�𝛿𝛿𝑃𝑃𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖

𝐾𝐾

𝑖𝑖=1

= −𝑏𝑏𝑗𝑗  , 𝑗𝑗 = 1, … ,𝐾𝐾                                                                                                   (3.50) 

 
Equations 3.49 and 3.50 use as the basic equations for minimization of 𝑆𝑆(𝑃𝑃�), when: 
 

𝑏𝑏𝑖𝑖 = �𝑊𝑊𝑖𝑖�𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡𝑖𝑖,𝑃𝑃�) − 𝑋𝑋𝑠𝑠𝑠𝑠� ∙
𝜕𝜕𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓
𝜕𝜕𝑃𝑃𝑖𝑖

                                                                                              (3.51)
𝑁𝑁

𝑖𝑖=1

 

 

𝐸𝐸𝑖𝑖𝑖𝑖 = �𝑊𝑊𝑖𝑖 ∙
𝜕𝜕𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓
𝜕𝜕𝑃𝑃𝑖𝑖

∙
𝜕𝜕𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓
𝜕𝜕𝑃𝑃𝑗𝑗

                                                                                                                 (3.52)
𝑁𝑁

𝑖𝑖=1  
 
where the second derivative terms are dismissed since they are small enough to be negligible. In 
practice, the inclusion of higher derivatives can destabilize the procedure of the iteration.  
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Supplementary Figure 56: Flow diagram of the Levenberg-Marquardt algorithm. 
 
In order to find 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚, equations 3.49 and 3.50 are transformed to:  
 

�𝛿𝛿𝑃𝑃𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖′
𝐾𝐾

𝑖𝑖=1

= −𝑏𝑏𝑗𝑗  , 𝑗𝑗 = 1, … ,𝐾𝐾                                                                                                   (3.53) 

 
where: 
 

�
𝐸𝐸𝑖𝑖𝑖𝑖′ = 𝐸𝐸𝑖𝑖𝑖𝑖(1 + 𝜆𝜆) , 𝑖𝑖 = 𝑗𝑗

 
𝐸𝐸𝑖𝑖𝑖𝑖′ = 𝐸𝐸𝑖𝑖𝑖𝑖                , 𝑖𝑖 ≠ 𝑗𝑗
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At each step, 𝛿𝛿𝑃𝑃� is solved by means of Gauss elimination with full pivoting. Once 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 is 
obtained, the confidence limits of the estimated parameters are calculated, when: 
 
∆𝑃𝑃𝑖𝑖 = ±�𝐶𝐶𝑖𝑖𝑖𝑖                                                                                                                                           (3.54) 
 
where ∆𝑃𝑃𝑖𝑖 is the standard deviation and 𝐶𝐶𝑖𝑖𝑖𝑖 is the ith diagonal element of the covariance matrix 
𝐶𝐶 = 2𝐸𝐸−1, which gives information about the various parameters that are well determined. The 
overall algorithm and the iterative procedure is described by a block diagram and given in 
Supplementary Figure 56.  
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Supplementary Note 4: Signaling model 

 
Integrin activation in different subcellular regions and the immediate downstream recruitment of 
active focal adhesion kinase, which initiates the focal adhesion formation, were modeled as a 
system of partial differential equations (PDEs) in three dimensions using the Virtual Cell suite 
(http://www.nrcam.uchc.edu/). Reversible binding reactions for integrin activation and focal 
complex formation were described by mass action kinetics, whereas the autophosphorylation of 
focal adhesion kinase by active integrin, activation of ERM, RhoGEF, RhoA and talin were 
approximated with irreversible Michelis-Menten kinetics.  
 
Reversible reactions governed by mass action kinetics were characterized using PDEs for which 
binding of species A and B is described as:    
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝐴𝐴∇2𝐴𝐴 − 𝑘𝑘1[𝐴𝐴][𝐵𝐵] + 𝑘𝑘−1[𝐴𝐴𝐴𝐴]                                                                                                  (4.1) 
 
where 𝑘𝑘1 and 𝑘𝑘−1 are the forward and reverse reaction rate constants, respectively, and 𝐷𝐷𝐴𝐴 is the 
diffusion coefficient of species A.  
 
For enzyme-mediated reaction that are approximated by irreversible Michaelis-Menten kinetics, 
for which an enzyme E is operating on species A, reaction rates were described by: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝐴𝐴∇2𝐴𝐴 −
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐[𝐸𝐸][𝐴𝐴]
𝐾𝐾𝑚𝑚 + [𝐴𝐴]                                                                                                                    (4.2) 

 
where 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐾𝐾𝑚𝑚 are the turnover number and the Michelis-Menten constant, respectively.  
 
The kinetic parameters were calculated from experimentally measured literature values as 
referenced in Supplementary Table 10. The cell geometries for the shallow and deep channel 
micropatterns were approximated from experimentally observed morphologies as shown in 
Figure 1E in the main text. They were then discretized into 200 x 200 x 9 μm volumes with 
404,010 elements of 1.0 μm isotropic step size and resolved with Sundials variable time-step 
CVODE stiff solver with maximum allowable time-steps of 100 ms. 
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Supplementary Table 10: Parameters for the compartmentalized partial differential equations-based model of integrin activation. 
 

Reaction 
No 

 
Reaction Name 

 
Substrate 

 
Catalyst 

 
Product 

 
Km 

 
Kcat 

 
Kf 

 
Kr 

 
Biological Ref. 

(type) (type) (event) (μM) (1/s) (1/μM.s) (1/s) Kinetic Ref. 

1 Integrin activation 
by talin 

Integrin_Off 
receptor 

Talin_on 
cytoskeletal 

Integrin_On 
binding   0.033 0.0042 

30 
31 

2 FAK auto-
phosphorylation 

FAK 
kinase 

Integrin_On 
receptor 

pFAK 
phosphorylation 6.7 0.9375   

32 
33 

3 ERM activation 
by Src 

ERM 
adaptor 

pFAK 
kinase 

pERM 
phosphorylation 6.7 0.9375   

34 
33 

4 Formation of 
focal adhesion 

pERM 
kinase 

Integrin_On 
receptor 

Focal_adhesion 
binding   0.033 0.0042 

35 
   36* 

5 Positive feedback 
activating talin 

Talin_off 
cytoskeletal 

Focal_adhesion 
complex 

Talin_on 
enzymatic   0.17 0.1 

37 
     38** 

6 Activation of 
RhoGEF 

RhoGEF 
GEF 

pFAK 
kinase 

pRhoGEF 
phosphorylation 6.7 0.9375   

39 
33 

7 Activation of 
RhoA 

RhoGDP 
GTPase 

pRhoGEF 
GEF 

RhoGTP 
enzymatic 500 75   

40 
41 

8 Hydrolysis of 
RhoA 

RhoGTP 
GTPase 

RhoGAP 
GAP 

RhoGDP 
enzymatic 1.79 1.61    

42 
 43 

9 Localization of 
nephrin 

U_Nephrin 
membrane 

RhoGTP 
GTPase 

Nephrin 
phosphorylation  10    

44, 45 
*** 
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Molecule Name 

 
Location 

Start 

 
Location 

End 

 
Diffusivity 

(μm2/s) 

 
Initial 

Concentration 

 
Concentration 

Units 

 
Conc. Ref. 
Diff. Ref. 

 Integrin (on/off) Membrane Membrane 0.01 0/180 (molecules/μm2)                   46 
 47* 

 Talin (on/off) Cytoplasm Membrane 1.0 0.001/0.999 (μM) 
48* 
49* 

 FAK (pFAK) Cytoplasm Membrane 5.5 1.0 (0) (μM) 
48* 
49* 

 ERM (pERM) Cytoplasm Membrane 0.5 1.0 (0) (μM) 
48* 
49* 

 RhoA (GTP) Cytoplasm Cytoplasm 5.5 0 (1.0) (μM) 
48* 
49* 

 RhoGEF (p) Cytoplasm Cytoplasm 1.0 1.0 (0) (μM) 
48* 
49* 

 RhoGAP Cytoplasm Cytoplasm 1.0 1.0 (0) (μM) 
48* 
49* 

 Nephrin (U) Membrane Membrane 0.01 0 (180) (molecules/μm2)  
 

 Focal_Adhesion Cytoplasm Membrane 0.0 0 (molecules/μm2)  
 

* estimates based on parameters for similarly sized proteins 
** kinetics reflect activation through PIPKI and PIP2 
*** assumed relationship; linearly translated with estimated time constant 
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