

Supplementary Figure 1. ERR γ is upregulated in chondrocytes of OA cartilage from mouse models. (**a,b**) Safranin-O staining (left) and ERR γ immunostaining (right) in OA cartilage from mice subjected to HIF-2 α overexpression via IA injection of Ad-*Epas1* (**a**) or adenovirus-mediated ZIP8 overexpression (**b**) (n = 5 mice per group). IA injection of Ad-C was used as a control.

Supplementary Figure 2. ERR α is not detected in OA chondrocytes. (a) Representative images of alcian blue staining and ERR α immunostaining in damaged and undamaged regions of human OA cartilage (n = 6). (b) Representative images of safranin-O staining and ERR α immunostaining in cartilage sections of sham- and DMM-operated mice (n = 6 mice per group). (c) RT-PCR analysis of ERR isoforms in primary cultured mouse articular chondrocytes treated with IL-6 (n = 6). Scale bar: 50 µm.

Supplementary Figure 3. Characterization of Ad-*Esrrg* IA injection. (a) Immunostaining for ERR γ in meniscus and synovial tissues of mice IA-injected with Ad-C (control) or Ad-*Esrrg* (to overexpress ERR γ) for 3 weeks. C, cartilage; M, meniscus; S, synovium. (b) Ad-C and Ad-*Esrrg* were IA-injected into 8- and 10-week-old mice. Safranin-O staining of joint sections, showing cartilage damage ($n \ge 8$ mice per group). (c) Mice of the indicated age were IA-injected with Ad-C or Ad-*Epas1*. Cartilage damage was detected by staining sections with safranin-O (n = 6 mice per group). Scale bar: 50 µm.

Supplementary Figure 4. Characterization of *Col2a1-Esrrg* Tg mice. (a) Immunostaining for ERR γ in meniscus and synovial sections of 10-week-old WT and Tg mice. C, cartilage; M, meniscus; S, synovium. (b) Representative skeletal staining images of E18.5 embryos of *Col2a1-Esrrg* Tg mice and WT littermates. (c) Alcian blue staining of 2-week-old metatarsal bones in Tg and WT littermates (left panel). Lengths of resting/proliferative and hypertrophic zones (right panel; $n \ge 10$ mice per group). (d) Tg mice and WT littermates ($n \ge 8$ mice per group) were subject to sham operation or DMM surgery. Cartilage sections were stained with safranin-O and immunostained for MMP3 and MMP13. Values are presented as means \pm s.e.m. Scale bar: 50 µm.

4				
4			۱	
4	۶	1	I	

Analysis of DMM surgery studies in recently published 196 papers (2013~201	(7)

Category	Sub-groups	Number of studies		
		No	%	
Age	Juvenile (6-7 week)	3	1.5	
	Young adult (8-11 week)	141	71.9	
	Mature adult (12-39 week)	49	25.0	
	Middle aged (40-71 week)	1	0.5	
	Old (>72 week)	Number No 3 141 k) 49 k) 1 2 5 eek) 27 2 week) 155 9	1.0	
	Mild (1-3 week)	5	2.6	
Duration of	Mild to moderate (4-7 week)	27	13.8	
post-operation	Moderate to severe (8-12 week)	155	79.1	
	Severe (>12 week)	9	4.6	

Supplementary Figure 5. Characterization of DMM surgery. (**a**,**b**) Analysis of DMM surgery studies in 196 recently published papers (2013–2017). (**c**) WT mice at the indicated ages were subjected to sham operation or DMM surgery. Representative images of safranin-O staining were obtained at 8 weeks after the operation (n = 15 mice per group). Scale bar: 50 µm.

Supplementary Figure 6. Characterization of $Esrrg^{+/-}$ mice. (a) Genotypes of $Esrrg^{+/-}$ mice and WT (+/+) littermates. RT-PCR and Western blotting were used to examine mRNA and protein levels, respectively, of ERR γ in primary cultured chondrocytes isolated from $Esrrg^{+/-}$ and WT littermates. GAPDH and lamin B were used as loading controls. (b) Immunostaining for ERR γ proteins in joint tissues of $Esrrg^{+/-}$ and WT littermates. C, cartilage; M, meniscus; S, synovium. (c) Skeletal staining of E18.5 embryos of $Esrrg^{+/-}$ and WT mice. (d) $Esrrg^{+/-}$ and WT littermates were subject to sham operation or DMM surgery. Cartilage sections were stained with safranin-O and immunostained for MMP3 (upper) and MMP13 (lower). (e) $Esrrg^{+/-}$ and WT littermates were stained with safranin-O to detect cartilage destruction. Scale bar: 50 µm.

Supplementary Figure 7. ERR γ regulation of catabolic and anabolic factors in chondrocytes. (a) mRNA levels of the indicated anabolic and catabolic factors were analyzed in primary cultured chondrocytes infected with Ad-C (800 MOI) or the indicated MOI of Ad-*Esrrg* for 36 hours. (b) mRNA levels of the indicated molecules were quantified in chondrocytes infected with Ad-C (800 MOI) or the indicated MOI of Ad-*Esrrg* (n = 12). (c) Binding of ERR γ to the indicated ERRE sequences was determined by ChIP assay of chondrocytes infected with 800 MOI of Ad-C or the indicated MOI of Ad-*Esrrg*. β -Actin was used as a negative control, and IgG was used as an isotype control for the anti-ERR γ antibody ($n \ge 4$). Values are presented as means \pm s.e.m. (*P < 0.05, **P < 0.005, and ***P < 0.0005; ns, not significant. One-way ANOVA).

Supplementary Figure 8. Overexpression of ERR α does not cause cartilage damage or synovitis. (a) Immunostaining for ERR α in cartilage sections from mice IA-injected with Ad-C (control) or Ad-*Esrra* (to overexpress ERR α) for 3 weeks. (b,c) Ad-C and Ad-*Esrra* were IA-injected into 10-week-old mice. Safranin-O staining and OARSI grade (b; n = 6 mice per group) and H&E staining and synovial inflammation (c; n = 6 mice per group). Values are presented as means \pm s.e.m. Mann-Whitney U test for OARSI grade and two-tailed t-test for synovitis. Scale bar: 50 µm.

a Uncropped blots related to Fig. 2c

b Uncropped blots related to Fig. 2d

C Uncropped blots related to Fig. 4a

d Uncropped blots related to Fig. 7a

e Uncropped blots related to Fig. S6a

Supplementary Figure 9. Uncropped scans of the immunoblots. (a-e) Uncropped immunoblots related to Fig. 2c (a), 2d (b), 4a (c), 7a (d), and S6a (e).

Upstream	Gene symbol	Protein —	Microarray (fold change)			
signal			IL-1β	HIF-2a	ZIP8	
	Cnrl	Cannabinoid receptor 1	-1.484 ± 0.120	-1.259 ± 0.008	-1.172 ± 0.109	
Alcohol	Mapk8	Mitogen-activated protein kinase 8	1.366 ± 0.131	1.099 ± 0.046	1.009 ± 0.088	
	Jun	Jun proto-oncogene	2.359 ± 0.079	1.492 ± 0.154	1.090 ± 0.106	
Inflammation	Il6	Interleukin 6	70.287 ± 0.291	5.321 ± 0.244	3.782 ± 0.305	
	Il6ra	Interleukin 6 receptor, a	-1.026 ± 0.105	-1.167 ± 0.084	-1.075 ± 0.091	
	Jak1	Janus kinase 1	1.511 ± 0.023	1.482 ± 0.069	1.263 ± 0.044	
	n Jak2	Janus kinase 2	-1.298 ± 0.105	1.078 ± 0.042	1.084 ± 0.044	
	Jak3	Janus kinase 3	-1.078 ± 0.086	1.196 ± 0.114	1.186 ± 0.097	
	Stat3	Signal transducer and activator of transcription 3	1.230 ± 0.030	1.397 ± 0.055	1.231 ± 0.058	
	Gcgr	Glucagon receptor	1.027 ± 0.072	-1.002 ± 0.092	-1.071 ± 0.084	
	Prkaca	Protein kinase A, α subunit	1.167 ± 0.063	1.233 ± 0.095	1.125 ± 0.089	
Fasting	Creb1	cAMP responsive element binding protein 1	-1.071 ± 0.079	1.067 ± 0.048	-1.051 ± 0.044	
	Creb2	cAMP responsive element binding protein 2	-	-	-	
	Creb3	cAMP responsive element binding protein 3	-1.208 ± 0.076	-1.128 ± 0.050	-1.194 ± 0.036	
Feeding	Insr	Insulin receptor	1.130 ± 0.104	-1.374 ± 0.098	-1.338 ± 0.042	
	Akt	Thymoma viral proto-oncogene 1	-1.449 ± 0.048	1.019 ± 0.057	1.027 ± 0.049	
	Sik2	Salt-inducible kinase 2	1.299 ± 0.082	1.051 ± 0.099	1.029 ± 0.097	
	Crtc2	CREB regulated transcription coactivator 2	1.036 ± 0.039	1.064 ± 0.119	-1.007 ± 0.098	
	Hifla	Hypoxia-inducible factor 1, α subunit	1.202 ± 0.072	1.440 ± 0.043	1.260 ± 0.038	
Нурохіа	Epas1	Hypoxia-inducible factor 2, α subunit	10.033 ± 0.139	58.574 ± 0.056	3.683 ± 0.135	
ER stress	Atf6	Activating transcription factor 6	-1.187 ± 0.099	-1.333 ± 0.056	-1.222 ± 0.055	
ERRs	Esrra	ERRα	1.03 ± 0.122	1.05 ± 0.043	0.99 ± 0.079	
	Esrrb	ERRβ	1.06 ± 0.077	0.85 ± 0.176	1.01 ± 0.189	
	Esrrg	ERRγ	0.87 ± 0.067	0.87 ± 0.091	0.91 ± 0.114	

Supplementary Table 1. Microarray analysis of the mRNA levels of ERR γ upstream signaling components in chondrocytes treated with IL-1 β (36 hours, 1 ng ml⁻¹) or infected (36 hours) with 800 MOI of Ad-*Epas1* (to overexpress HIF-2 α) or Ad-*Slc39a8* (to overexpress ZIP8).

Genes	Strand	Primer sequences	Size (bp)	AT (°C)	Origin
Adamts4	S AS	5'-CATCCGAAACCCTGTCAACTTG-3' 5'-GCCCATCATCTTCCACAATAGC-3'	281	58	Mouse
Adamts5	S AS	5'-GCCATTGTAATAACCCTGCACC-3' 5'-TCAGTCCCATCCGTAACCTTTG-3'	292	58	Mouse
Acan	S AS	5'-CTGTCTTTGTCACCCACACATG-3' 5'-GAAGACGACATCACCATCCAG-3'	581	55	Mouse
Col2a1	S AS	5'-CACACTGGTAAGTGGGGGCAAGACCG-3' 5'-GGATTGTGTTGTTTCAGGGTTCGGG-3'	173	57	Mouse
Epas1	S AS	5'-CGAGAAGAACGACGTGGTGTTC-3' 5'-GTGAAGGCTGGCAGGCTCC-3'	333	64	Mouse
Esrra	S AS	5'-TGCCAATTCTGACTCTGTGC-3' 5'-ATCATGGCCTCAAGCATTC-3'	264	60	Mouse
ESRRA	S AS	5'-TGCCAATTCAGACTCTGTGC-3' 5'-CCTCGAGCATCTCCAAGAAC-3'	257	60	Human
Esrrb	S AS	5'-CTAGGGGTTGAGCAGGACAA-3' 5'-ATCTCCATCCAGGCACTCTG-3'	200	60	Mouse
ESRRB	S AS	5′-TGTCAAGCCATGATGGAAAA-3′ 5′-GGTGAGCCAGAGATGCTTTC-3′	182	60	Human
Esrrg	S AS	5'-AAGATCGACACATTGATTCCAGC-3' 5'-GCTTCACATGATGCAACCCC-3'	350	64	Mouse
ESRRG	S AS	5'-AAGATCGACACATTGATTCCAGC-3' 5'-GCTTCACATGATGCAACCCC-3'	350	64	Human
Gapdh	S AS	5′-TCACTGCCACCCAGAAGAC-3′ 5′-TGTAGGCCATGAGGTCCAC-3′	450	58	Mouse
Mmp2	S AS	5'-CCAACTACGATGATGAC-3' 5'-ACCAGTGTCAGTATCAG-3'	233	60	Mouse
Mmp3	S AS	5'-AGGGATGATGATGCTGGTATGG-3' 5'-CCATGTTCTCCAACTGCAAAGG-3'	434	58	Mouse
Mmp9	S AS	5'-TGCACTGGGCTTAGATCATTCC-3' 5'-CGGTCCTTGAAGAAATGCAGAG-3'	450	58	Mouse
Mmp12	S AS	5'-CCCAGAGGTCAAGATGGATG-3' 5'-GGCTCCATAGAGGGACTGAA-3'	482	60	Mouse
Mmp13	S AS	5'-TGATGGACCTTCTGGTCTTCTGG-3' 5'-CATCCACATGGTTGGGAAGTTCT-3'	473	58	Mouse
Mmp14	S AS	5'-GTGCCCTAGGCCTACATCCG-3' 5'-TTGGGTATCCATCCATCACT-3'	580	55	Mouse
Mmp15	S AS	5′-GAGAGATGTTTGTGTTCAAGGG-3′ 5′-TGTGTCAATGCGGTCATAGGG-3′	260	62	Mouse
Sox9	S AS	5′-CACTGGCAGTTACGGCATCAG-3′ 5′-CATGTAAGTGAAGGTGGAGTAGAGC-3′	457	61	Mouse
Slc36a8	S AS	5'-GAACAATTGCCTGGATGATCACGC-3' 5'-AAGCCGGTTAACATCCCTGCATTC-3'	430	58	Mouse

Supplementary Table 2. PCR primers and conditions.

AT, annealing temperature; S, sense; AS, antisense

Target	Strand	Primer sequences	Size (bp)	AT (°C)	Origin
<i>Mmp3</i> #1(F)	S AS	5'-CACCTCCCCCTGTCATTTAG-3' 5'-GGGATCAAACTCAAGCCATC-3'	300	59	Mouse
<i>Mmp3</i> #2(F)	S AS	5′-AGCCACTACCAGATCCTTGC-3′ 5′-GAGGGAGCAAAGGGAAAAAC-3′	198	60	Mouse
<i>Mmp13</i> #1(F1)(F2)	S AS	5'-TTGACCATGGGGGCTAGAAAG-3' 5'-GCCTCAGCATTTTCATGGAT-3'	769	60	Mouse
<i>Mmp13</i> #2(R1)(R2)	S AS	5'-TGCCACATCACCTCCAATAA-3' 5'-CTTTCTAGCCCCATGGTCAA-3'	500	60	Mouse
<i>Mmp13</i> #3(F)	S AS	5'-GTGGCACAATGGTTTGAGTG-3' 5'-CCATCACTCCCAGTCAGGTT-3'	181	60	Mouse
<i>Mmp13</i> #4(R)	S AS	5'-CATAAGGCCAACCTCAGCTC-3' 5'-TGGCGTTTGAAACTGTTCTG-3'	568	60	Mouse

Supplementary Table 3. PCR primers and conditions for ChIP assays.

AT, annealing temperature; S, sense; AS, antisense