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Supplementary Figure 1. "H NMR of 2a
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Supplementary Figure 3. "H NMR of 2b

3

2

1

0



©WO© ©OWMmONNNL
O, O YO MNO p
N O ©OHWOLW O S
I OONNNNN [}
/ T T D vl vl vl e Y v v A vl
N N B N e |
Me |

I I

©O© o™ © N~ NN To)

«Q v < 9 -~ ©

| © © o 0 © 0 o

I N oM N N NN N

Dyl vl Al Al T Al

!/ | S I

I I

L)L I

lllllllll]lllllllll]lllllllll]llll

135 130 125
Chemical Shift (ppm)

CH LOR(?FORM-d

-

llIIllllIllllIllll]llllIllllIlllIIllllIlllIIllll]llllIllll]lllIIllllIlllllllll]lllllllll]llllll

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

Supplementary Figure 4. 3C NMR of 2b
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Supplementary Figure 5. "H NMR of 2d
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Supplementary Figure 6. 3C NMR of 2d
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Supplementary Figure 7. "H NMR of 2e
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Supplementary Figure 9. '"H NMR of 2f
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Supplementary Figure 12. BC NMR of 2g
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Supplementary Figure 13. "H NMR of 2h
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Supplementary Figure 16. >C NMR of 2i
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Supplementary Figure 18. 3C NMR of 2j
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Supplementary Figure 19. "H NMR of 2k
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Supplementary Figure 22. 3C NMR of 21
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Supplementary Figure 26. B3C NMR of 2n
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Supplementary Figure 27. "H NMR of 20
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Supplementary Figure 28. 3C NMR of 20
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Supplementary Figure 105. Preparation of Fe-L1@EGO-900 catalyst

Supplementary Figure 106. FESEM image of Fe-L1@EGO-900 (scale bar 100 nm).
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Supplementary Figure 107. HRTEM of Fe-L1@EGO-900. a, Lattice fringes of 1.79 A
corresponding to the d spacing of (202) plane of Fe;Cs. b, Lattice fringes of 2.63 A
corresponding to the d spacing of (116) plane of Fe;O,4phase. ¢ & d, Lattice fringes of
2.46 A corresponding to the d spacing of (204) plane of p"Fe,0:. e, Lattice fringes of

2.96 A corresponding to (220) plane of Fe;Oy,
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Supplementary Figure 108. Raman Spectra of reduced graphine (black) and Fe-

L1@EGO0-900 (Blue).
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Supplementary Figure 109. EDX analysis of Fe-L1@EGO-900 catalyst.
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Supplementary Figure 110. (i) PXRD of Fe-L3@EGO-900, (ii) Fe-L2@EGO0O-900,

(iii) Fe-L1@EGO0-900 catalyst.
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Supplementary Figure 111. a & b) TEM images of Fe-L3@EGO-900 at the scale bar of
200 nm and scale bar of 20 nm; ¢ & d) TEM images Fe-L2@EGO-900 at the scale bar of
200 nm and the scale bar of 20 nm; e, f, g & h) TEM images of Fe-L1@EGO-900 at the

scale bar of 100 nm, scale bar 50 nm, scale bar of 20 nm and scale bar of 5 nm.
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Supplementary Figure 112. (i) PXRD of Fe-L1@EGO-400, (ii) Fe-L1@EGO-600,

(iii) Fe-L1@EGO0-900 catalyst.
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Supplementary Figure 113. TGA of exfoliated graphene oxide (black) and Fe-
phenothroline complex on graphene oxide support (red).
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Supplementary Figure 114. a & b) TEM images of Fe-L1@EGO-400 prepared at 400 °C
at the scale bar of 50 nm and scale bar of 20 nm; ¢ & d) TEM images Fe-L1@EGO-600
prepared at 600 °C at the scale bar of 50 nm and scale bar of 20 nm; e, f, g & h) TEM
images of Fe-L1@EGO-900 prepared at 900 °C at the scale bar of 50 nm, scale bar of 20

nm and scale bar of 5 nm.
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Supplementary Figure 115. Digital photograph showing a) the fine dispersion, and b)

magnetic separation of Fe-L1@EGO-900.
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Supplementary Figure 116. Gas gromatography (detection of dihydrogen).
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Supplementary Figure 117. GC-MS of hydrogenation of cyclohexene by in situ

generated hydrogen gas via dehydrogenation of 1a.
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Supplementary Figure 118. Setup for hydrogen gas evolution (a volumetric quantitative

analysis).
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Supplementary Figure 119. Recylabilty experiments.
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Supplementary Tables:

Supplementary Table 1. The weight percent of different elements in the Fe-L1@EGO-900

catalyst ( from EDAX analysis)

Element | Weight % | Atomic % | Uncert. % | Correction | k-Factor
C(K) 86.67 92.80 0.68 0.26 3.940
N(K) 2.01 184 0.12 0.26 3.826
O(K) 478 3.84 0.07 0.49 1974
Fe(K) 6.53 1.50 0.09 0.99 1.403

Supplementary Table 2. Conversion of 2-chlorobenzyl alcohol (8c) and selectivity of 2-

chlorobenzaldehyde (9¢) using different Fe-based catalysts in pure phases.

Entry Catalyst Conversion Selectivity
(Yo)* (Yo)*
1 Fe-LI@EGO-900 95 93
2 Fe304 15 55
3 Fe20s 38 40
4 FexN 15 80
5 FesC 12 70

* Yields are based on GC.

From Supplementary Table 2, it is clear that the Fe-L1I@EGO-900 with mixed phases in
core-shell morphology shows excellent conversion and selectivity. Other pure distinct phases
of iron are not as active for this catalysis. Hence, the mixed phases of iron having specific

core-shell morphology are necessary for the superior activity.
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Supplementary Methods:

General Information

All catalytic experiments were carried out using standard Schlenk techniques. All solvents
were reagent grade or better. Deuterated solvents were used as received without any
additional purification. Most of the chemicals used in catalysis reactions were purified
according to standard procedure (or by vacuum distillation/sublimation)." Thin layer
chromatography (TLC) was performed using silica gel precoated glass plates, which were
visualized with visualized with UV light at 254 nm or under iodine. Column chromatography
was performed with SiO, (Silicycle Siliaflash F60 (230-400 mesh). 'H NMR (400, 200 or
500 MHz), *C{"H} NMR (100 MHz) spectra were recorded on the NMR spectrometer.
Deuterated chloroform was used as the solvent, and chemical shift values (d) are reported in
parts per million relatives to the residual signals of this solvent [8 7.27 for *H (chloroform-d),
8 77.0 for *C{*H} (chloroform-d). Abbreviations used in the NMR follow-up experiments:
br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC analysis was carried out
using an HP-5 column (30 m, 0.25 mm, 0.25u). Mass spectra were obtained on a GCMS-QP
5000 instruments with ionization voltages of 70 eV. High-resolution mass spectra (HRMS)
were obtained on a High-resolution mass spectra (HRMS) were obtained by fast atom
bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron
impact (El) ionization technique (magnetic sector-electric sector double focusing mass

analyzer).
Materials and General Analytical Methods:

PXRD: Powder XRD samples were analysed on an Xpert Pro model PANalytical

diffractometer from Philips PANalytical X’PRET PRO instruments operated at a voltage of
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40 kV and a current of 30 mA with Cu Ko radiation (A=1.5406 A). The samples were

scanned in a 20 range from 10° to 80° with a scan rate of 0.39° per minute.

TEM: Samples dissolved in ethanol were drop cast onto separate 200 mesh carbon coated
copper grids and studied using a transmission electron microscope (TEM, FEI model

TECNAI G2 F20) operating at an accelerating voltage of 200 kV.

Electron Dispersive X-ray Analysis: Energy dispersive X-ray analysis (EDX)
measurements on the Iron supported graphene sample was Energy dispersive X-ray analysis
(EDX) measurement on active catalyst was performed using transmission electron
microscope (TEM, FEI model TECNAI G2 F20) operating at an accelerating voltage of 200

kV.

ICP analysis: Inductively couple plasma atomic emission spectroscopy (ICP-AES) were
acquired for the elemental analysis of absolute iron content within the sample. Analysis
performed by SPECTRO analytical instruments GmbH, model ARCOS simultaneous ICP

spectrometer, Germany.

Raman analysis: LabRam spectrometer (HJY, France) was used for Raman analysis with a

laser wavelength of 632 nm.

X-ray Photoelectron spectroscopy: XPS was done on a VG Microtech Multilab ESCA 3000
spectrometer that was equipped with a Mg Ka X-ray source (hv = 1253.6 eV). The XPS

peaks were fitted on XPSPEAK 4.1 having 70% Gaussian and 30% Lorentzian character,
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after performing a Shirley background subtraction. In the fitting procedure, the full width at

half-maximum (FWHM) values were fixed 1.5 eV for all the peaks.

EPR: EPR study was performed on EOL, Japan having JES - FA200 model with X and Q

band in which EStandard Frequency (X band) - 8.75-9.65 GHz.

STEM and EDX elemental Analysis: HAADF-STEM images were captured on a UHR

FEG-TEM, JEOL JEM-2100F electron microscope using a 200 kV electron source.

Catalyst Synthesis:
The modified Hummers method was followed to synthesize graphene oxide from graphite
powder.? Graphitic Oxide was heated at 160 °C for 12 h for exfoliation to get exfoliated

graphene oxide (EGO).

In a 100 ml beaker Fe(lll)acetylacetonate precursor (0.5 mmol) and 1,10-phenanthroline
ligand (0.5 mmol) were dissolved in 30 mL of ethanol and sonicated for 2 h to form Fe-
phenonthroline complex. In another 250 mL beaker 560 mg of EGO support was taken in 70
mL of ethanol and sonicated for 2 h. The above obtained EGO suspension and Fe-
phenanthroline complex solution were mixed together in 250 mL beaker and further
sonicated for 2 h. The suspension was refluxed at 85 °C for 4 h and after cooling down to
room temperature ethanol was evaporated in vacuum. The solid sample obtained was dried at
80 °C for 14 h. Then, it was ground to a fine powder followed by calcination at 900 °C under
a stream of argon with the flow rate of 30 mL/min and the heating rate: 25 °C/min for about 4
h to obtain a catalyst Fe-L1@EGO-900 (Supplementry Figure 105). ICP-AES analysis was

done to determine amount of Iron present and was found to be 5.32%.
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For the synthesis of other conventional based supports (SiO2,TiO,, Al,Os synthesis of
FeNSiO,, FeNTiO, and FeNAI,O5 catalysts was done using 560 mg of the respective support.
Other steps in the synthesis were identical as per explained in the synthesis of Fe-L1@EGO-

900.

Supplementary Discussion:
Characterization of catalysts

FESEM image in Supplementary Figure 106 shows the morphology of the as-prepared Fe-
L1@EGO-900. In the dark field, FE-SEM of Fe-L1L@EGO-900 was taken using secondary
electrons in which metal has high surface electrons density appears brighter than RGO. It can

be observed that Fe-rich particles are distributed spatially apart on the graphene layers.

Raman spectra of Fe-L1@EGO-900 and reduced graphine (RG) is shown in Supplementary
Figure 108. It shows two characteristic peaks. The first characteristic D band was seen at
1327 cm™ for Fe-L1@EGO0-900 and 1330 cm™ for RG arises due to vibration mode of Ay,
symmetry of the sp? carbon of graphite lattice. It characterizes structural defects or edges that
can break the symmetry and selection rule. The second characteristic G was located at 1595
cm™ for Fe-L1@EGO-900 and at 1586 cm™ for RG band that appears due to the first-order
scattering of the E,q observed for sp? carbon domains. G band represents the highly ordered
graphite carbon materials. Ip/lg increased to 1.36 in Fe-LIL@EGO-900 compared to
Io/lc=1.13 in RG which may be due to increased in disorderliness of graphene due to
deposition of iron nanoparticles in Fe-L1@EGO-900 sample. G band showed a blue shift of 9
cm™ in G band showed of Fe-L1@EGO-900 seen as compared to RG which is due to charge

transfer from graphene to iron nanoparticles.**
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Supplementary Figure 113 trace (i) shows TGA curve of exfoliated graphene oxide prepared
by Hummers method that was used as the starting material to prepare our catalyst. A weight
loss at 150 °C was due t to loss of physisorbed moisture. The weight loss at 350 °C is
characteristic of the loss of oxygen functional groups that are present on the surface of
graphitic oxide in the form of epoxide, alcohol and carbonyl groups. In comparison to trace
(i), trace (ii) did not show any weight loss at 150 and 350 °C. Trace (ii) is graphitic oxide
loaded with Fe-phenonthroline complex. The percentage weight loss due to loss of functional
groups is not seen due to the presence of relatively heavier Fe element. In addition, Fe is also

oxidized to Fe,O3 and Fe;0,.

General procedure for the acceptorless dehydrogenation of /V-heterocycles

H
|

N N
~, Cat. Fe (8 mol%) X, *
K : ' + n H2
t-BuOK (10 mol%), Ar atm

1 mesitylene, 145 °C ) n=1,2

(yields up to 90%)

To a oven dried schlenk tube (25 mL), Fe-LI@EGO-900 catalyst (43 mg, 8 mol%), -BuOK
(10 mol%), N-heterocycles (0.5 mmol), mesitylene (2 mL) were added under argon
atmosphere. The solution was heated at 145 °C with stirring under open argon flow for 18-24
h. After cooling down the reaction mixture to room temperature the catalyst was separated
from the reaction mixture by centrifugation and the reaction mixture was analyzed by GC and
GC-MS. The supernatant was transferred into another flask, and the catalyst was washed with
EtOAc (2 x 4 mL) and the washings were collected. The solvent was evaporated from the
reaction mixture, and the crude product was subjected to silica gel column chromatography

using EtOAc : petroleum ether to afford the product.
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General procedure for the acceptorless dehydrogenation of amines to imines

Cat. Fe (8 mol%) NS
R NH, - RTSVTR o+ !
t-BuOK (10 mol%), Ar atm

5 mesitylene, 145 °C ) 6
(yield up to 90%)

To a oven dried schlenk tube (25 mL), Fe-LI@EGO-900 catalyst (43 mg, 8 mol%), -BuOK
(10 mol%), an amine (0.5 mmol), mesitylene (2 mL) were added under argon atmosphere.
The solution was heated at 145 °C with stirring under open argon flow for 16-24 h. After
cooling down the reaction mixture to room temperature the catalyst was separated from the
reaction mixture by centrifugation and the reaction mixture was analyzed by GC and GC-MS.
The supernatant was transferred into another flask, and the catalyst was washed with EtOAc
(2 x 4 mL) and the washings were collected. The solvent was evaporated from the reaction
mixture, and the crude product was subjected to silica gel column chromatography using

EtOAC : petroleum ether to afford the product.

General procedure for the iron-catalyzed alcohol dehydrogenation

To an oven dried schlenk tube (25 mL), Fe-L1@EGO-900 catalyst (43 mg, 8 mol%), -BuOK
(10 mol%), alcohol (0.5 mmol), n-octane (2 mL) were added under argon atmosphere. The
solution was refluxed with stirring under open argon flow for 16-24 h. After cooling down
the reaction mixture to room temperature the catalyst was separated from the reaction mixture
by centrifugation and the reaction mixture was analyzed by GC and GC-MS. The supernatant
was transferred into another flask, and the catalyst was washed with EtOAc (2 x 4 mL) and
the washings were collected. The solvent was evaporated from the reaction mixture, and the
crude product was subjected to silica gel column chromatography using EtOAc : petroleum

ether to afford the corresponding carbony compound.
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Application in synthesis of precursor (4) for nMS5- lipoxygenase inhibitor’

Synthesis of 4

F

TfOH cat. [Fe O
[ ] . 2H2 HO—_ Me
oc it ourcondmon N FaC—

F B o
N\\ _N 7

R=H: 4a 81% N N
R= Me 4b (70%) nM5- lipoxygenase inhibitor

To a oven dried schlenk tube (25 mL), Fe-LI@EGO-900 catalyst (17 mg, 8 mol%), -BuOK
(10 mol%), 3° (0.2 mmol), mesitylene (1 mL) were added under argon atmosphere. The
solution was heated at 145 °C with stirring under open argon flow for 24 h. After cooling
down the reaction mixture to room temperature the catalyst was separated from the reaction
mixture by centrifugation. The supernatant was transferred into another flask, and the catalyst
was washed with EtOAc (2 x 4 mL) and the washings were collected. The solvent was
evaporated from the reaction mixture, and the crude product was subjected to silica gel

column chromatography using EtOAc : petroleum ether to afford the product 4a in 81%.

Magnetic separation of catalyst

The presence of Fe;O, in the catalyst was exploited to magnetically separate them after the
reaction. In the Supplementary Figure 115 (a), digital photograph show the catalyst in highly
dispersed form during the reaction. After the reaction was completed, the catalysts were
easily separated using a permanent magnet as shown in Supplementary Figure 115(b).
Efficient magnetic separation of the catalyst was possible even after several cycles of reaction
suggesting no phase transformation or leaching of the magnetic phase FesO4. This property of
the catalyst is a significant advantage compared to the homogeneous and heterogeneous

catalysts which are known to catalyze this reaction.
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Determination of hydrogen gas formation

Qualitative analysis of hydrogen gas formation

Cat. Fe (8 mol%) X
@ + 2
std.condition N/

N observed on GC
1a 2a
H
© OH [Fe] + t-BuOK o + HzT
—_—
tandard diti observed on GC
i standard condition cl
8c 9c

Under standard conditions the dehydrogenation of 1,2,3,4-tetrahydroquinaldine (1a), and (4-
chlorophenyl)methanol (8c) were carried out indepentently using the J. Young NMR tube.
After 24 h, the gas was also collected by a gas-tight syringe and qualitatively analyzed by
GC-TCD with a Carbon plot capillary column gas chromatography which showed the

presence of H, gas at retention time 0.903 (Supplementary Figure 116).

Quantitative analysis of hydrogen gas by dual catalysis

I For the detection of hydrogen dual reaction involving dehydrogenation of 1,2,3,4-

tetrahydroquinoline and hydrogenation of cyclohexene was peformed.

) - O
o =
H standard condltl(h N
1a 2a (61%)
(0.2 mmol)
@ RhCI(PPh3)3 (3 mol%) O

Benzene, 50 °C, 20 h

0.4 mmol 45% yield

To schlenk tube, Fe-LI@EGO-900 catalyst (8 mol%), ~BuOK (10 mol%), 1,2,3,4-
tetrahydroquinoline (0.2 mmol), mesitylene (2 mL) were added under argon atmosphere. The

entire system was degassed and flushed with argon for 5 minutes (three times) and packed
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with rubber septum. To another 25 mL Schlenk tube, RhCI(PPh3); (3 mol%) catalyst, and
cyclohexene (0.4 mmol) were dissolved in benzene (2 mL). Both the flasks were connected
through a double headed syringe and and allowed to equilibrate for 5 minutes. The mixture in
the former flask was heated at 145 °C, while the mixture in the latter flask was stirred at 50
°C. After 12 hours, the organic entities present in the latter flask were analyzed by GC-MS
(Supplementary Figure 117) which showed a clean conversion (45%) of the cyclohexene to

cyclohexane (yield of 2a = 61%).

II To an oven dried schlenk tube (25 mL), Fe-L1@EGO-900 catalyst (8 mol%), -BuOK
(10 mol%), cinnamyl alcohol (0.5 mmol), RhCI(PPhs); (3 mol%), and n-octane (2 mL) were
added under argon atmosphere and packed with rubber septum. Reaction mixture was heated
at 120 °C for 24 h and analyzed. In the rection mixture cinnamaldehyde (25%) as well as
reduced product 3-phenylpropanal (45%), and 3-phenylpropan-1-ol (5%) with the conversion
of 74% of 8q. This result clearly confirms the in situ generation of hydrogen (via

dehydrogenation of alcohol).

H H
X OH Cat. Fe (8 mol%) X e} e} OH
+ +
t-BuOK (10 mol%), Ar atm

n-octane, A
8q RuCI(PPh3)3 9q (25% yield) 45% yield ~5%

I Hydrogen gas quantification: A volumetric quantitative analysis

To an oven dried schlenk tube (25 mL), Fe-L1@EGO-900 catalyst (43 mg, 8 mol%), -BuOK
(10 mol%), 1,2,3,4-tetrahydroquinoline 1a (0.4 mmol), mesitylene (2 mL) were added under

argon atmosphere and packed with rubber septum. The vessel was connected to the gas
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collection apparatus (standard water displacement apparatus, using a graduated cylinder to
determine volume Supplementary Figure 118) and the entire system was flushed with argon
for 5 minutes and allowed to equilibrate for 5 minutes. Reaction tube was palced preheated
oil-bath to the appropriate temperature (145 °C). The reaction was stirred vigorously at a
constant temperature until gas evolution ceased. The volume of collected gas was noted and
the presence of hydrogen in the collected gas was confirmed by GC. After 24 h, the reaction
mixture (contains mesitylene) was removed to give a crude product which was analyzed by
'H NMR and confirmed 85% yield of the quinoline product (2a). The collected volume of gas
in the experiment above was 19 mL, which corresponds to 0.80 mmol of dihydrogen and

consisted with the release of 2 equivalents of H, per mole of 1,2,3,4-tetrahydroquinoline.

Reaction under presence of radical (079 scavenger

[Fe] +2eq. BHT N
_— =
standard condition =
N N

1a P 2a (83%)

To a 25 mL oven dried schlenk tube, Fe-L1@EGO-900 catalyst catalyst (8 mol%), -BuOK
(10 mol%), 1,2,3,4-tetrahydroquinoline (0.5 mmol), 2,6-di-tert-butyl-4-methylphenol (BHT)
(242 mg, 1.1 mmol), and n-mesiylene (2 mL) were added under argon atmosphere. The
schlenk tube was equipped with a reflux condenser and the solution was refluxed under argon
atmosphere for 24 h. After cooling to 30 °C the reaction mixture was subjected to
centrifugation and the supernatant was collected and the obtained solid was washed with
EtOAc (2 x 4 mL) and the washings were collected. The collected reaction mixture was

concentrated on rotavapor under reduce pressure. The crude product was purified
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(deactivated silica gel column chromatography and the eluvent is a mixture of petroleumether

and ethyl acetate) and the yield of quinoline is 83%.

Hot Filtration Test

To a 25 mL oven dried schlenk tube, Fe-LI@EGO-900 catalyst (8 mol%), -BuOK (10
mol%), 1,2,3,4-tetrahydroquinoline (0.5 mmol), were added under argon atmosphere. The
schlenk tube was equipped with a reflux condenser, and the solution was heated at 145 °C
with stirring under open argon flow for 10 h. After cooling to 30 °C the catalyst was
separated from the reaction mixture by an external permanent magnet (at this stage the crude
reaction mixture was analyzed by GC (43 % of 2a). Then, the reaction mixture was
transferred into another 25 mL oven dried schlenk tube under an argon atmosphere and was
equipped with a reflux condenser, and the solution was heated at 145 °C with stirring under
open argon flow further 12 h. After cooling to room temperature, the crude reaction mixture

was quantitatively analyzed by GC and observed that no change in the yield of 2a.

Leaching Test

To crude sample (after removal the catalyst) sulfuric acid and aqua regia were added. Then
the volume of the residue was adjusted to 50 mL using water to give a sample for Inductively
coupled plasma (ICP) for the measurement of the leaching of Iron and the analyses confirmed

that the iron concentration in the filtrate was less than 0.24 ppm.
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Recylability of the catalyst

To a oven dried schlenk tube (25 mL) Fe-L1@EGO-900 catalyst (43 mg, 8 mol%), -BuOK
(10 mol%), 1,2,3,4- tetrahydroginoline (0.5 mmol), mesitylene (2 mL) were added under
argon atmosphere. The solution was refluxed at 145 °C with stirring under open argon flow
for 24 h. After cooling down the reaction mixture to room temperature the catalyst was
separated from the reaction mixture by an external permanent magnet and washed several
time with mesitylene. Obtained catalyst was dried under vacuum at 60 °C for 12 h. Then the
catalyst was reused for the next cycle, and no deactivation of the material was observed up to
four cycles (Supplementary Figure 119). All yields (GC) are averages from at least 2 separate

runs.

Charecterization of products
O
=
N
Quinoline (2a)

Compound 2a was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 88% (57.2
mg); *H NMR (200 MHz, CDCls) & 7.27-7.79 (m, 4H), 8.09-8.15 (m, 2H), 8.90 (s, 1H); °C
NMR (125 MHz, CDCl3) & 120.9, 126.4, 127.6, 128.1, 129.2, 135.96, 148.03, 150.173;

HRMS (ESI) calculated for CoH;N [M+H]": 130.0651; found: 130.0651.
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Me

8-Methylquinoline (2b)

Compound 2b was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 59% (42
mg); *H NMR (500 MHz,CDCls) & 2.83 (s, 3H), 7.35-7.45 (m, 2H), 7.53-7.57 (d, J = 8.0 Hz,
1H), 7.66-7.62 (d, J = 8.0 Hz, 1H), 8.08-8.12 (d, J = 8.0 Hz, 1H), 8.93-8.96 (m, 1H); **C
NMR (125 MHz, CDCl3) 6 18.0, 120.6, 125.7, 126.1, 128.0, 129.4, 136.1, 136.8, 147.1,

149.0; HRMS (ESI) calculated for C1oHgN [M+H]": 144.0807; found 144.0808.

OMe

8-Methoxyquinoline (2¢)

Compound 2¢ was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate; Yield: 61%. 'H
NMR (300 MHz, DMSO-dg) &: 3.96 (s, 3H), 7.17 (m, 1H), 7.51 (m, 3H), 8.29 (m, 1H), 8.84

(m, 1H). The spectral data is identical with the literature compound.®

OH

Quinolin-8-0l (2d)
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Compound 2d was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 45% (33.5
mg); *"H NMR (500 MHz, CDCls) & 7.18-7.52 (m, 4H), 8.17 (dd, J = 8.4 Hz 1H), 8.80 (dd, J
= 4.2 Hz IH); ¥C NMR (126 MHz, CDCly) & 76.7, 77.3, 110.0, 117.9, 121.8, 127.7, 1285,

136.1, 138.3, 147.9, 152.2.

O
Pz
N

6-Methylquinoline (2e)

Compound 2e was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 75% (53.6
mg); "H NMR (500 MHz, CDCls) & 2.47 (s, 3H), 7.26-7.29 (d, J = 4.2 Hz, 1H), 7.48-7.49 (m,
2H), 7.97-8.00 (t, J = 8.5 Hz, 2H), 7.80-8.81 (dd, J = 3.9 Hz, 1H); ®*C NMR (125 MHz,
CDCls) 6 21.3, 120.8, 126.4, 128.1, 128.8, 131.5, 135.1, 136.1, 146.6, 149.2. HRMS (ESI)

calculated for C;oHgN [M+H]" 144.0807; found: 144.0808.

b7
N

6-Methoxyquinoline (2f)

Compound 2f was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 87% (61.3
mg); *H NMR (500 MHz, CDCls) 3 3.92 (s, 3H), 7.05-7.06 (d, J = 2.7 Hz, 1H), 7.32-7.34 (q,
J=4.2Hz, 1H), 7.35-7.38 (dd, /= 9.1 Hz, 1H), 7.99-8.01 (d, J = 9.1 Hz, 1H), 8.02-8.04 (d, J

= 8.2 Hz, 1H), 8.75-8.76 (d, J = 4.2 Hz, 1H); *C NMR (125 MHz, CDCls) 3 55.4, 105.1,
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121.3, 122.2, 129.3, 130.8, 134.7, 144.4, 147.9, 157.7; HRMS (ESI) calculated for C1oHsNO

[M+H]": 160.0756; found: 160.0756.

m
s
OoN N

2

7-Nitroquinoline (2g)

Compound 2g was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 33% (28.7
mg); 'H NMR (200 MHz, CDCls) & 7.61-7.63 (q, J = 4.1Hz, 1H), 7.96-8.01 (g, J = 8.9 Hz,
1H), 8.26-8.35 (dt, J = 8.9 Hz, 2H), 9.00-9.10 (d, J = 2.1 Hz, 1H), 9.07-9.10 (dd, J = 1.6 Hz,
1H); °C NMR (125 MHz, CDCls) & 120.1, 123.9, 125.8, 129.5, 131.4, 135.9, 147.1, 148.1,

152.7; HRMS (ESI) calculated for CoHgN,O, [M+H]": 175.0501; found: 175.0502.

X
=
N Me

2-Methylquinoline (2h)

Compound 2h was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 33% (23.5
mg); *H NMR (500 MHz, CDCls) & 2.70 (s, 1H), 7.18-7.20 (t, J = 8.2Hz, 1H), 7.40-7.43 (t, J
= 7.9 Hz, 1H), 7.61-7.64 (t, J = 8.5Hz, 1H), 7.68-7.70 (d, J = 7.9 Hz, 1H), 7.94-7.95 (d, J =
8.5 Hz, 1H), 7.99-8.01 (d, J = 8.5 Hz, 1H); *C NMR (125 MHz, CDCl) & 25.2, 121.8,
124.4, 126.3, 127.3,, 128.4, 129.2, 135.9, 147.7, 158.8; HRMS (ESI) calculated for C;oHgN

[M+H]" 144.087144.087; found: 144.0808.
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X
N
Isoquinoline (2i)

Compound 2i was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 76% (50
mg); *H NMR (200 MHz, CDCls) & 7.63-7.95 (m, 4H), 8.09-8.13 (m, 2H), 9.24 (s, 1H); °C
NMR (25 MHz, CDCls) & 120.3, 126.3, 127.1, 127.5, 128.5, 130.26, 130.64, 142, 152,

HRMS (ESI) calculated for CoH7N [M+H]": 130.0651; found: 130.0651.

Quinoxaline (2j)

Compound 2j was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 69% (44.8
mg): *H NMR (500 MHz, CDCly) 3 7.41 (s, 2H), 7.78-7.81 (m, 2H), 8.51-8.54 (m, 2H); **C
NMR (125 MHz, CDCls) 6 128.8, 129.3, 142.2, 144.3. HRMS (ESI) calculated for CgHsN;

[M+H]": 131.0606; found: 131.0604.

—
N

Acridine (2k)

Compound 2k was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 90% (81
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mg); *H NMR (500 MHz, CDCls) & 7.49-7.51 (q, J = 5.4 Hz, 2H), 7.74-7.78 (m, 2H), 7.94-
7.97 (t, J = 8.2 Hz, 2H), 8.24-8.25 (t, J = 8.8 Hz, 2H), 8.69-8.71 (d, J = 9.7 Hz, 1H); *C

NMR (125 MHz, CDCls) 6 125.6, 126.5, 128.1, 129.3, 130.1, 149.0.

e

—N

Benzo[Ak]quinoline (21)

Compound 21 was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 78% (71.7
mg); *H NMR (500 MHz, CDCls) & 7.49-7.51 (q, J = 4.2 Hz, 1H), 7.65-7.67 (d, J = 8.8 Hz,
1H), 7.70-7.73 (td, J = 6.7 Hz, 1H), 7.75-7.81 (m, 2H), 7.91-7.92 (d, J = 8.2 Hz, 1H), 8.13-
8.15 (dd, J = 7.9 Hz, 1H), 9.02-9.03 (dd, J = 4.5 Hz, 1H), 9.34-9.36 (d, J = 7.6 Hz, 1H); °C
NMR (125 MHz, CDCls) 6 121.6, 124.3, 125.2, 126.3, 126.9, 127.7, 128.1, 131.4, 133.5,

135.6, 146.5, 146.5, 148.7.

@E\>
N
H

1H-indole (2m)

Compound 2m was prepared according to the general procedure as described and was
purified by silica gel column chromatography using petroleum ether/ethyl acetate. Yield:
88% (51.5 mg); "H NMR (200 MHz, CDCls) & 6.62-6.65 (m, 1H), 7.15-7.32 (m, 3H), 7.44-
7.49 (d, J = 8.2 Hz, 1H), 7.70-7.75 (d, J = 7.5 Hz, 1H), 8.19 (s, 1H); *C NMR (25 MHz,

CDCls) 6 102.6, 110.9, 119.8, 121.9, 124.1, 127.8, 135.7.
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2-Methyl-1H-indole (2n)

Compound 2n was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 58% (38
mg); *H NMR (500 MHz, CDCls) & 2.46 (s, 3H), 6.29 (s, 1H), 7.15-7.21 (m, 2H), 7.30-7.31
(d, J=7.6 Hz, 1H), 7.60-7.11 (d, J = 7.6 Hz, 1H), 7.75 (s, 1H); ©*C NMR (125 MHz, CDCls)

0 13.6,100.2, 110.2, 119.5, 120.8, 128.9, 135.1, 135.9.

Br
m
N
H

5-Bromo-1H-indole (20)

Compound 20 was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield 82% (38
mg); *H NMR (500 MHz, CDCls) & 6.52-6.53 (s, 1H), 7.27-7.30 (m, 3H), 7.29 (s, 1H), 8.22
(bs, 1H); C NMR (125 MHz, CDCls) & 120.3, 112.4, 113.0, 123.2, 124.8, 125.3, 129.6,

134.4.

mcozH
N

H

1H-indole-2-carboxylic acid (2p)

Compound 2p was prepared according to the general procedure as described and was purified

by silica gel column chromatography using petroleum ether/ethyl acetate. Yield 74% (60
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mg); ‘*H NMR (500 MHz, CDCls) & 7.18-7.21 (t, J = 7.6 Hz, 1H), 7.36-7.40 (m, 2H), 7.46-
7.47 (d, J = 8.2 Hz, 1H), 7.73-7.75 (d, J = 8.2 Hz, 1H), 8.97 (bs, 1H); *C NMR (125 MHz,
CDCly) § 110.8, 111.9, 121.1, 122.9, 126.1, 127.4, 137.3, 166.1; HRMS (ESI) calculated for

CoH7NO, [M+H]": 162.0546; found: 162.0550.

OHC
\>
N
H

1H-indole-5-carbaldehyde (2q)

Compound 2q was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield 80% (58
mg); *H NMR (500 MHz, CDCls) 3 6.72-6.73 (s, 1H), 7.33-7.34 (t, J = 3.0 Hz, 1H), 7.49-
7.50 (d, J = 8.2 Hz, 1H), 7.78-7.80 (dd, J = 8.5 Hz, 1H), 8.20 (s, 1H), 8.95 (bs, 1H), 10.06 (s,
1H); °C NMR (125 MHz, CDCls) & 104.3, 111.8, 122.2, 126.3, 127.7, 129.6, 139.4, 192.8;

HRMS (ESI) calculated for CoH;NO [M+H]": 146.0599; found: 146.0600.

m
Z N
H

N

1H-pyrrolo[2,3-b]pyridine (2r)

Compound 2r was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 94% (58
mg); *H NMR (500 MHz, CDCls) 3 6.54-6.54 (d, J = 3.0 Hz, 1H), 7.11-7.14 (q, J = 4.8 Hz,
1H), 7.41-7.41 (q, J = 3.3 Hz, 1H), 8.00-8.02 (d, J = 7.6Hz, 1H), 8.35-8.35 (d, J = 4.5 Hz,

1H), *C NMR (125 MHz, CDCI3) 5 100.8, 115.8, 120.7, 125.4, 129.4, 141.9, 148.2.
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(E)-N-benzylideneaniline (2s)

Compound 2s was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. 84% (38 mg); ‘H
NMR (500 MHz, CDCls) 3 7.25-7.29 (m, 3H), 7.42-7.45 (t, J = 7.6Hz, 2H), 7.50-7.51 (m,
3H), 7.93-7.95 (dd, J = 3.6 Hz, 2H), 8.49 (s, 1H); *C NMR (125 MHz, CDCls) & 120.8,

125.9, 128.7, 128.8, 129.1, 131.3, 136.1, 152.0, 160.4.

Compound 4a was prepared according to the general procedure as described and was purified
by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 81%; 'H
NMR (500 MHz, CDCls) & = 7.29-7.16 (m, 3 H), 7.32 (d, J = 4.3 Hz, 1 H), 7.57 - 7.45 (m, 3
H), 7.75 (ddd, J = 1.2, 6.9, 8.3 Hz, 1 H), 7.98-7.83 (m, 1 H), 8.19 (d, J = 8.5 Hz, 1 H), 8.95
(d, J= 4.3 Hz, 1 H), *C NMR (125 MHz, CDCl,) & 115.6, 115.7, 121.4, 125.6, 126.7, 126.8,

129.4,129.9, 131.2, 133.9, 147.4, 148.6, 149.9, 161.9, 163.9.
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Compound 4b was prepared according to the general procedure as described and was purified

by silica gel column chromatography using petroleum ether/ethyl acetate. Yield: 70%; H
NMR (500 MHz, CDCls) 6 2.60 (s, 3H), 7.30-7.20 (m, 3H), 7.36 (d, J = 4.5 Hz, 1H), 7.47-
7.38 (m, 1H), 7.55-7.46 (m, 2H), 7.82 (d, J = 8.6 Hz, 1H), 8.15 (brs, 1H), 8.90 (m, 1H). The

spectral data is identical with the literature compound.

[Saae)

(E)-N-benzylidene-1-phenylmethanamine (6a)

Yield: 82% (41 mg); 'H NMR (200 MHz, CDClg) 6 4.74 (s, 2H), 7.15-7.35 (m, 8H), 7.68-
7.72 (m, 2H), 8.31 (s, 1H); 3¢ NMR (125 MHz, CDCl3) 8 65.0, 126.9, 127.9, 128.2, 128.5,
128.6, 130.7, 136.1, 139.2, 162.0; HRMS (ESI) calculated for C14H13N [M+H]": 196.1181;

found: 196.1121.

JORA SN
Me Me

(E)-N-(4-methylbenzylidene)-1-p-tolylmethanamine (6b)

Yield: 79% (44.3 mg); *"H NMR (500 MHz, CDCls) & 2.35 (s, 3H), 2.39 (s, 3H), 4.78 (s, 2H),
7.15-7.17 (d, J = 7.9 Hz, 2H), 7.22-7.28 (d, J = 6.4 Hz, 4H), 7.67-7.68 (d, J = 7.9 Hz, 2H),

8.35 (s, 1H): °C NMR (125 MHz, CDCl) & 21.1, 21.4, 64.7, 27.9, 128.2, 129.1, 129.3,
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133.6, 136.3, 136.5, 140.9, 161.7; HRMS (ESI) calculated for CigHi7N [M+H]": 224.1433;

found: 224.1434.

(E)-N-(4-chlorobenzylidene)-1-(4-chlorophenyl)methanamine (6¢)

Yield: 86% (57 mg); *H NMR (200 MHz, CDCls) & 4.66 (s, 2H), 7.11-7.28 (m, 6H), 7.49-
7.53 (m, 1H), 7.69-7.70 (s, 1H), 8.20 (s, 1H); **C NMR (125 MHz, CDCls) & 64.1, 125.9,
126.6, 127.2, 127.8, 129.9, 129.7, 129.8, 130.8, 134.3, 134.8, 137.6, 141.0, 160.8; HRMS

(ESI) calculated for C14H1:CIoN [M+H]": 264.0338; found: 264.0341.

/©A N /\©\
MeO OMe

(E)-N-(4-methoxybenzylidene)-1-(4-methoxyphenyl)methanamine (6d)

Yield: 76% (48.5 mg); "H NMR (500 MHz, CDCls) & 3.69 (s, 3H), 3.72 (s, 3H), 4.63 (s, 2H),
6.76-6.84 (m, 4H), 7.15 (d, J = 8.6 Hz, 4H), 7.62 (d, J = 8.6 Hz, 2H), 8.19 (s, 1H); *C NMR
(125 MHz, CDCls) 4 55.2, 55.2, 64.3, 113.8, 113.9, 129.1, 129.7, 131.6, 158.5, 160.8, 161.6.

HRMS (ESI) calculated for C16Hi7NO, [M+H]": 256.1328; found: 256.1332.

geaasl

(E)-N-(4-fluorobenzylidene)-1-(4-fluorophenyl)methanamine (6e)

Yield: 90% (52 mg); *H NMR (500 MHz, CDCls) & 4.78 (s, 2H), 7.04-7.07 (t, J = 8.5 Hz,

2H), 7.10-7.14 (t, J = 8.5 Hz, 2H), 7.30-7.33 (q, J = 5.4 Hz, 2H), 7.78-7.81 (q, J = 5.4 Hz,
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2H), 8.35 (s, 1H); *C NMR (125 MHz, CDCl3) & 64.0, 115.1, 115.6, 115.7, 129.3, 129.4,
130.0, 130.1, 132.2, 132.3, 134.8, 134.9, 160.4, 160.9, 162.9, 163.3, 165.3; HRMS (ESI)

calculated for C1,H33N, [M+H]': 232.0943; found: 232.0932.

OMe OMe

(E)-N-(2-methoxybenzylidene)-1-(2-methoxyphenyl)methanamine (6f)

Yield: 69% (44 mg); *H NMR (500 MHz, CDCls)  3.77-3.80 (m, 6H), 4.76(s, 2H), 6.78-6.94
(m, 4H), 7.13-7.31 (m, 3H), 7.94-7.98 (m, 1H), 8.77 (s, 1H); *C NMR (125 MHz, CDCls) &
55.3, 55.5, 59.6, 110.1, 110.9, 120.5, 120.7, 127.5, 127.9, 129.1, 131.7, 158.3; HRMS (ESI)

calculated for C16Hi17NO, [M+H]": 256.1328; found: 256.1332.

o

(E)-1-phenyl-N-(1-phenylethylidene)ethanamine (6h)

Yield: 71 % (40 mg); *"H NMR (500 MHz, CDCls) & 1.57-1.58 (m, 3H), 2.28(s, 3H), 4.85 (q,
J =6.4 Hz, 1H), 7.31-7.50 (m, 8H), 7.83-7.88 (m, 2H), 8.26 (s, 1H); HRMS (ESI) calculated

for CisHisN[M+H]": 224.1433; found: 224.1434.

@A”
Me

4-Methylbenzaldehyde (9a)
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Yield: 91 % (54.6 mg); 'H NMR (500 MHz, CDCl3) & 2.45 (s, 3H), 7.34-7.35 (d, J = 7.9 Hz,
2H), 7.78-7.80 (d, J = 7.9 Hz, 2H), 9.97 (s, 1H); 3C NMR (125 MHz, CDCl3) 8 21.8, 129.7,
129.8, 134.1, 1455, 192.0.; HRMS (ESI) calculated For CgHgO [M+H]": 121.651; found

121.0648.

@A“
MeO

4-Methoxybenzaldehyde (9b)

Yield: 85 % (57.8 mg); "H NMR (200 MHz, CDCls) & 3.87 (s, 3H), 6.96-7.01 (d, J = 8.8Hz,
2H), 7.80-7.84 (d, J = 8.8Hz, 2H), 9.86 (s, 1H); *C NMR (125 MHz, CDCls) 55.5, 114.2,

132.0, 190.9; HRMS (ESI) calculated for CgHgO, [M+H]": 137.0598; found: 137.0597.

4-Chlorobenzaldehyde (9¢)

Yield: 93% (65.1 mg); *H NMR (500 MHz, CDCls) § 7.50-7.52 (d, J = 8.5 Hz, 2H), 7.81-
7.83 (d, J = 8.5 Hz, 2H), 9.98 (s, 1H): *C NMR (125 MHz, CDCl) & 129.4, 130.9, 134.6,

140.9, 190.0; HRMS (ESI) calculated for C;HsCIO [M+H]": 141.0103; found: 141.0102.

O
J@A”
E

4-Fluorobenzaldehyde (9d)
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Yield: 51% (31.6 mg); *H NMR (500 MHz, CDCl;) & 7.18-7.22 (t, J = 8.5Hz, 2H), 7.89-
7.91 (q, J = 5.4 Hz, 2H), 9.95 (s, 1H); *C NMR (125 MHz, CDCls) & 116.2, 116.4, 132.1,
132.2, 132.8, 132.9, 165.4, 167.5, 190.5; HRMS (ESI) calculated for C;HsFO [M+H]":

125.0399; found: 125.0397.

MeO
OMe

3,4-Dimethoxybenzaldehyde (9¢)

Yield: 69% (57.3 mg); 'HNMR (200 MHz, CDCl3) & 3.94 (s, 3H), 3.96 (s, 3H), 6.96-7.00 (d,
J = 8.2 Hz, 1H), 7.40-7.48 (m, 2H), 9.85 (1H); 3C NMR (125 MHz, CDCl3) 6 55.9, 56.1,
108.7, 110.3, 126.8, 130.1, 149.5, 154.4, 190.8; HRMS (ESI) calculated for CgH1,03

[M+H]": 167.0701; found: 167.0703.

ﬁH
OoN

2!

4-Nitrobenzaldehyde (9f)

Yield: 45% (34 mg); *H NMR (200 MHz, CDCls) 5 8.05-8.10 (d, J = 8.7 Hz, 2H), 8.38-8.41
(d, J = 8.7 Hz, 2H), 10.16 (s, 1H); *C NMR (25 MHz, CDCly) 5 124.2, 130.4, 139.9, 151.0,

190.2.
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3-Chlorobenzaldehyde (9g)

Yield: 94%; *H NMR (400 MHz, CDCls): § 7.49 (t, J = 7.9 Hz, 1H), 7.61 (m, 1H), 7.77 (dt, J
= 7.9 Hz, 1.3 Hz, 1H), 7.86 (t, J = 2.0 Hz, 1H), 9.98 (s, 1H). **C NMR (125 MHz, CDCl): &

127.9, 129.3, 130.3, 134.4, 135.4, 137.8, 190.8.

OMe

3-Methoxybenzaldehyde (9h)

Yield: 78% (53 mg); ‘H NMR (200 MHz, CDCls) & 3.85 (s, 3H), 7.14-7.19 (m, 1H), 7.37-
7.38 (t, J = 2.2 Hz, 1H), 7.42-7.45 (m, 2H), 9.86 (s, 1H); *C NMR (125 MHz, CDCLs) &

55.4,112.0,121.4,123.5, 129.9, 137.7, 160.1, 192.1.

Terephthalaldehyde 9i

Yield: 70% (47 mg); *H NMR (200 MHz, CDCl3) & 8.05 (s, 4H), 10.12 (s, 2H); *C NMR
(125 MHz, CDCls) & 130.1, 139.9, 191.5; HRMS (ESI) calculated for CgHgO, [M+H]":

135.0440; found: 135.0441.
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Cinnamaldehyde (9j)

Yield: 69 % (42 mg); *H NMR (500 MHz, CDCls) & 7.69-7.74 (q, J = 7.6 Hz, 1H), 7.43-7.49
(m, 4H), 7.56-7.58 (m, 2H), 9.70-9.71 (t, J = 7.6 Hz, 1H); *C NMR (125 MHz, CDCls) &

128.4,129.0, 131.1, 133.9, 152.7, 193.6.

@”
Br

2-Bromobenzaldehyde (9k)

Yield: 71% (65 mg); ‘H NMR (200 MHz, CDCls) & 7.39-7.49 (m, 3H), 7.60-7.65 (m, 1H),
7.86-7.92 (m, 1H), 10.33 (s, 1H); *C NMR (125 MHz, CDCls) 3 127.8, 129.7, 133.7, 135.2,

191.7; HRMS (ESI) calculated for C;HsBrO [M+H]": 184.9595; found: 184.9597.

Cﬁ“
Me

2,6-Dimethylbenzaldehyde (91)

Yield: 52%. *H NMR (200 MHz, CDCl) 8 2.62 (s, 6H). 7.10 (d, J = 7.5 Hz, 2H), 7.33 (t, J =
75 Hz, 1H), 10.64 (s, 1H), *C NMR (125 MHz, CDCly) § 20.7, 129.9, 132.7, 133.2, 141.3,

193.8.
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2-Aminobenzaldehyde (9m)

'H NMR (400 MHz, CDCls): & 9.86 (s, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 6.8 Hz,
1H), 6.73 (t, J = 6.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.13 (s, 2H). *C NMR (125 MHz,

CDCls): 6 116.1, 116.4, 118.9, 135.2, 135.7, 150.0, 194.1.

OH

3-Hydroxybenzaldehyde (9n)

Yield: 61% (37 mg); "H NMR (200 MHz, CDCls) 8 6.42 (s, 1H), 7.14-7.20 (m, 1H) 7.40-7.46
(m, 3H), 9.95 (s, 1H); ©°C NMR (125 MHz, CDCl3) & 114.7, 122.2, 1235, 130.4, 137.7,

156.5, 192.7; HRMS (ESI) calculated for C;HsO, [M+H]": 123.0443; found: 123.0441.

Furan-2-carbaldehyde (90)

Yield: 55% (26.5 mg); *H NMR (200 MHz, CDCls) & 6.61-6.64 (q, J = 1.6 Hz, 1H), 7.27-
7.29 (9, J = 3.6 Hz, 1H), 7.71-7.72 (t, J = 0.7 Hz, 1H), 9.67 (s, 1H); *C NMR (125 MHz,
CDCl3) & 1125, 121.1, 147.9, 152.8, 177.7; HRMS (ESI) calculated for CsH,0, [M+H]":

97.0289; found: 97.0284.
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Benzophenone (11a)

Yield: 97% (88 mg); 'H NMR (200 MHz, CDCls) & 7.42-7.60 (m, 6H), 7.76-7.81 (m, 4H);
3C NMR (125 MHz, CDCl3) 3 128.2, 129.9, 132.3, 137.5, 196.6. HRMS (ESI) calculated for

C13H100 [M+H]": 183.0803; found: 183.0804.

(o]

MeO II I OMe

Bis(4-methoxyphenyl)methanone (11b)

Yield: 98% (118 mg); *"H NMR (200 MHz, CDCls) & 3.90 (s, 6H), 6.97 (d, J = 9 Hz, 4H),

7.80 (d, J = 9 Hz, 4H); *C NMR (50 MHz, CDCls) 8 55.5, 113.4, 130.7, 132.2, 162.8.

(o]

saol

(4-Chlorophenyl)(phenyl)methanone (11c¢)

Yield: 95% (102 mg); *H NMR (200 MHz, CDCls) & 7.45-7.54 (m, 4H), 7.58-7.66 (m, 1H),
7.75-7.80 (m, 4H); HRMS (ESI) calculated for Ci;3HoCIO [M+H]": 217.0415; found:

217.0415.
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Phenyl(p-tolyl)methanone (11d)

Yield: 90% (88 mg); *H NMR (200 MHz,CDCls) & 2.44 (s, 3H), 7.26-7.30 (d, J = 8.4 Hz,
2H), 7.43-7.62 (m, 3H), 7.70-7.81 (m, 4H); *C NMR (125 MHz, CDCls) 3 21.6, 128.2,
128.9, 129.9, 130.2, 132.1, 134.8, 137.9, 143.2, 196.5; HRMS (ESI) calculated for C14H1,0

[M+H]": 197.0961; found: 197.0961.

©ACH3

Acetophenone (11e)

Yield: 73 % (43.8 mg); *H NMR (200 MHz, CDCl5) & 2.60 (s, 3H), 7.42-7.56 (m, 3H), 7.93-
7.88 (m, 2H); *C NMR (25 MHz, CDCls) & 26.6, 128.3, 128.5, 133.0, 137.0, 198.1; HRMS

(ESI) calculated for CgHgO [M+H]": 120.0651; found: 120.648.

(o]

CH3

1-(Naphthalen-2-yl)ethanone (11f)

Yield: 77% (65.5 mg); *H NMR (500 MHz, CDCls) 8 2.72 (s, 3H), 7.54-7.62 (m, 2H), 7.86-
7.89 (d, J = 7.3Hz, 2H), 7.95-7.97 (d, J = 7.9 Hz, 1H), 8.02-8.04 (d, J = 8.5 Hz, 1H), 8.46 (s,

1H): ©*C NMR (125 MHz, CDCls) & 26.6, 123.8, 126.7, 127.7, 128.3, 128.4, 129.5, 130.1,
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132.4, 134.3, 135.5, 198.0; HRMS (ESI) calculated for Ci,H100 [M+H]": 171.804; found:

171.0804.

(o]

/©)kCH3
Me

1-p-tolylethanone (11g)

Yield: 71% (46.8 mg); *H NMR (200 MHz,CDCls) & 2.40 (s, 3H), 2.57 (s, 3H), 7.23-7.27 (d,
J = 8.3 Hz, 2H), 7.84-7.88 (d, J = 8.0 Hz, 2H); BC NMR (125 MHz, CDCls) 8 21.5, 26.4,
128.3, 129.1, 134.6, 143.8, 197.7; HRMS (ESI) calculated for CoH10O [M+H]": 135.0804;

found: 135.0804.

(o]

MeO

1-(4-Methoxyphenyl)ethanone (11h)

Yield: 80% (60 mg); 'H NMR (200 MHz, CDCls) 6 2.53 (s, 3H), 3.84 (s, 3H), 6.89-6.93 (d, J
= 8.9 Hz, 2H), 7.89-7.94 (d, J = 8.9 Hz, 1H); 3¢ NMR (125 MHz, CDCls) & 26.2, 55.3,
113.6, 130.2, 130.4 163.4, 196.7; HRMS (ESI) calculated for CoH100, [M+H]": 151.0752;

found: 151.0754.

(o]

/@)&C%
O5N

2

1-(4-Nitrophenyl)ethanone (11i)
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Yield: 69% (57 mg); 'H NMR (200 MHz, CDCls) & 2.68 (s, 3H), 8.09-8.13 (t, J = 8.8 Hz,
2H), 8.29-8.33 (d, J = 8.8 Hz, 2H); *C NMR (25 MHz, CDCls) & 26.9, 123.8, 129.2, 141.3,

150.3, 196.3; HRMS (ESI) calculated for CgH;NO3; [M+H]": 166.0498; found: 166.0499.

(o]

/©)kCH3
Br

1-(4-Bromophenyl)ethanone (11j)

Yield: 72% (71 mg); *H NMR (200 MHz, CDCls) & 2.56 (s, 2H), 7.55-7.59 (d, J = 8.5 Hz,
2H), 7.77-7.81 (d, J = 8.5 Hz, 2H); *C NMR (125 MHz, CDCls) 3 26.4, 128.1, 129.7, 131.7,

135.8, 196.8; HRMS (ESI) calculated for CgH;BrO [M+H]": 198.9751; found: 198.9753.
©J\/ ]

Propiophenone (11k)

Yield: 43% (29 mg); *H NMR (200 MHz, CDCly) & 1.19-1.26 (t, J = 7.3 Hz, 3H), 2.95-3.05
(d, J = 7.2 Hz, 2H), 7.40-7.55 (m, 3H), 7.54-7.55 (m, 2H); *C NMR (125 MHz, CDCl;) &

8.1, 31.6, 127.8, 128.4, 132.7, 136.8, 200.7.

(o]

CC

3.,4-Dihydronaphthalen-1(2H)-one (111)
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Yield: 54% (39.5 mg); *H NMR (200 MHz, CDCls) & 2.07-2.20 (m, J = 6.5 Hz, 2H), 2.63-
2.69 (t, J = 6.9 Hz, 2H), 2.94-3.00 (t, J = 6.0 Hz, 2H), 7.23-7.34 (m, 2H), 7.43-7.51 (m, 1H),
8.01-8.06 (d, J = 7.8 Hz, 1H); **C NMR (125 MHz, CDCls) & 23.1, 29.6, 39.1, 126.5, 127.0,
128.7, 132.5, 133.2, 144.4, 198.2; HRMS (ESI) calculated for C1oH100 [M+H]": 147.0803;

found: 147.0804.

5-Bromo-3.,4-dihydronaphthalen-1(2H)-one (11m)

Yield: 36%; 'H NMR: 3 2.1-2.2 (m, 2H), 2.65 (m, 2H), 3.0 (t, /= 7.0 Hz, 2H), 7.15-7.25 (t, J

= 6.9 Hz, 1H) 7.7 (d, /= 7.5 Hz, 1H), 8.0 (d, J = 8.0 Hz, 1H).

O

CO

2,3-Dihydro-1H-inden-1-one (11n)

Yield: 51% (31.11 mg); ‘H NMR (200 MHz, CDCls) & 2.65-2.71 (t, J = 6.2 Hz, 2H), 3.11-
3.17 (t, J = 6.2 Hz, 2H), 7.36-7.40 (t, J = 7.7 Hz, 1H), 7.45-7.49 (d, J = 7.7 Hz, 1H), 7.54-
7.62 (t, J = 6.9 Hz, 1H), 7.73-7.74 (d, J = 7.7 Hz, 1H); *C NMR (125 MHz, CDCls) & 25.7,
36.1. 123.6, 126.6, 127.2, 134.5, 137.0, 155.1, 207.0; HRMS (ESI) calculated for CyHgO

[M+H]": 133.0648; found: 133.0648.
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Cyclohexanone (110)

Yield: 40% (20 mg); *H NMR (500 MHz, CDCls) & 1.69-1.73 (m, 2H), 1.83-1.88 (m, 4H),
2.31-2.34 (m, 4H); *C NMR (125 MHz, CDCls) 5 128.2, 129.9, 132.3, 137.5, 196.6; HRMS

(ESI) calculated for CgH100 [M+H]": 99.0808; found: 99.0804.

o

Isobenzofuran-1(3H)-one (13)

Yield: 97 % (65 mg); 'H NMR (200 MHz, CDCl3) & 5.33 (s, 2H), 7.49-7.57 (t, J = 7.5 Hz,
2H), 7.65-7.73 (d, J = 7.5 Hz, 1H), 7.90-7.94 (d, J = 7.5 Hz, 1H); 3Cc NMR (125 MHz,
CDCls) 8 69.6, 120.0, 125.6, 128.9, 133.9, 146.5, 171.1; HRMS (ESI) calculated for CgHgO

[M+H]": 135.0440; found: 135.0441.
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