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1 Equation describing a cluster centre

Previously, we relied on the “phase flipping” method that simply involves changing the sign of
the resolution bands subjected to sign inversion by the CTF. This results in a cluster centre Cj

defined as

Cj =

PNp

i=1

�ijXisgn(CTFi)
PNp

i=1

�ij

(1)

where i is the particle image index, j is the cluster index, Np is the number of particle images,
�ij is the Kronecker delta function that is one if particle image i belongs to cluster j and zero
else, Xi is the particle image Fourier transform, and sgn(CTFi) denotes the sign of the CTF.
Assuming a simplified image formation model

Xi = FiCTFi +Ni (2)

where Fi is the 2D structure factor and Ni is a Gaussian noise term, we can write the equation
for the cluster centre as

Cj =< Fi|CTFi| > + < sgn(CTFi)Ni > (3)

where < . > denotes expectation value. If we let the number of images in cluster j, p(Cj), where

p(Cj) =

Np
X

i=1

�ij (4)
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approach infinity

lim
p(Cj)!1

Cj =< Fi|CTFi| > (5)

the cluster centre approaches the expectation value of the structure factor multiplied with the
absolute value of the CTF. If the number of observations are large and the defocus values vary
considerably, phase-flipping will provide a good estimate of the structure factor. However, in
2D analysis the number of images per cluster are often few, which results in the signal being
incorrectly weighted in the Fourier domain when using phase-flipped images. Furthermore, the
weighting of the information around the zero crossings of the CTF, where the signal component
is absent and only noise is present, is incorrect for phase-flipped images. Re-defining the cluster
centre as

Cj =

PNp

i=1

�ijXiCTFi
PNp

i=1

�ijCTF

2

i

=< Fi > + < Ni > (6)

results in a better behaved average that in the limit of infinite population

lim
p(Cj)!1

Cj =< Fi > (7)

approaches the expectation value of the 2D structure factor that we seek to reconstruct. This the-
ory is identical to that originally put forward by Frank and Penczek, reviewed in [Penczek(2010)].

2 Hadamard matrix theory for accelerated single-particle ori-
entation search

In PRIME2D, the global correlation function G subject to maximisation is the sum of all indi-
vidual particle-cluster centre correlations

G =

Np
X

i=1

�

(�i)

ij (8)

where �(�i)

ij denotes the band-pass limited cross correlation between the i :th polar particle Fourier

transform X
(�i)

i in rotational state �i and the j :th polar reference Fourier transform Yj .

�

(�i)

ij =
Re{

P

Yj

X
(�i)⇤
i

}
q

P

 |X
(�i)

i |2
P

 |Yj |2
(9)

where  defines a band-pass limited area in 2D polar Fourier space. Polar Fourier transforms
are generated by convolution interpolation [Yang and Penczek(2008)]. We assume that no CTF-
dependent modifications have been applied to the experimental images. Therefore, the reference
needs to be multiplied with the CTF

Yj = CjCTFi (10)

to accomplish correct weighting of the correlation, which is composed of two terms: a signal-
dependent component that depends on the linear association between the 2D structure factor
and the signal in the cluster centre and a noise component that embodies many sources of noise-
dependent errors that are di�cult to express in mathematical formulae. Therefore, we low-pass
limit the projection matching to avoid including frequencies with too weak SSNR.

Calculating correlations parameterised over in-plane rotations and origin shifts uptake most
of the computations of our stochastic SAC solver. It is therefore important that these operations
are e�ciently implemented. Let them⇥n dense complex matricesY := {y(�, k) 2 C |� 2 R, k 2
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Z} and X := {x(�, k) 2 C |� 2 R, k 2 Z} denote polar Fourier transforms (PFTs) with the first
dimension � 2 [0, 2⇡] spanning in-plane rotation and the second dimension k 2 [kH , kL] spatial
frequency. The entry-wise multiplication between Y and X is known as the Hadamard product,
denoted by � and defined as

[Y]�k[X]�k = [Y �X]�k. (11)

The PFTs are represented by a cyclically ordered set of n one-dimensional arrays of complex
numbers (the columns of Y or X). Each individual array contains components from low to high
Fourier index k 2 [kH , kL] where kH denotes the high-pass limit and kL denotes the low-pass
limit. The complex matrix Y represents the fixed reference PFT and X represents the rotating
PFT that we seek to register with Y. In-plane rotations � 2 [0, 2⇡] are represented by cyclic
permutations, where the successor �(�) of a given in-plane rotation � is defined

�(�) =

⇢

0 if �+�� > 2⇡
�+�� otherwise

(12)

where �� = 1/r
mask

is the angular resolution in the plane and r

mask

is the circular mask radius
in pixels. Solving SAC involves many billions of correlation function evaluations per iteration.
We begin noting that for any contiguous PFT segment in the range [�,�+ ⇡] where � 2 [0, 2⇡]
the PFT has constant power.

⇧(Y) =
⇡
X

�=0

kL
X

k=kH

|y�k|2 and ⇧(X) =
⇡
X

�=0

kL
X

k=kH

|x�k|2. (13)

These terms are pre-calculated because during one iteration (one pass over all particle images),
the references and the resolution range remain unchanged. Organising the data structure for
correlation calculations to take advantage of how the CPU uses the cache to access memory can
lead to substantial performance gains. Consider doubling the space complexity for the rotating
PFT X by concatenating two copies of X to create a new matrix X0 with elements X0

�k for
� 2 [0, 4⇡] and k 2 [kH , kL]. In this setting, the lower �l and upper �u rotational index bounds
for rotation � are calculated as follows

�l (�) = � and �u (�) = �+ ⇡. (14)

This allows reformulation of the normalised cross correlation coe�cient between the reference
PFT Y and the particle PFT X0 using the Hadamard product

�

(�)
ij =

P�u(�)
�=�l(�)

PkL
k=kH

Re
n

[Y �X0⇤]�k

o

p

⇧(Y)⇧(X0⇤)
. (15)

This restructuring of the calculation allows us to express discrete rotations using pointer arith-
metic to contiguous registers in random access memory, removing unnecessary loops and index
modifications, leading to more e�cient cache utilisation and improved performance. In the SHC
update step, the optimal in-plane angle �̃i is identified for the j

th reference Yj by solving the
stochastic optimisation problem

identify
8�

�ij(�)

subject to �ij(�
(t)
i ) > �ij(�

(t�1)

i )
(16)

where t denotes iteration number and 8� means any in-plane rotation. In words, we seek to
stochastically identify any cluster assignment and in-plane rotation that improves the correlation
obtained with the previous best parameters. This approach is called first-improvement heuristic
or stochastic hill climbing (SHC).
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We separate the rotation search from the origin shift search. Once a candidate reference
PFT and an in-plane angle has been identified, origin shifts are explored for this reference/in-
plane rotation pair using continuous optimisation in polar Fourier space. A shift in real-space
corresponds to a linear phase change in the Fourier domain. Using 2D Cartesian coordinates
and a shift of (x

0

, y

0

) pixels, the expression is

F [f (x� x

0

, y � y

0

)] = F (h, k) exp



�2⇡i

✓

hx

0

Nx
+

k y

0

Ny

◆�

(17)

where (Nx, Ny) is the even dimensions of the real image and (h, k) are the Fourier indices. The
shift can equivalently be expressed in polar coordinates via

F

shifted

(�, k) = F (�, k) exp
h

�i

⇣

t

(x0)(�, k)x
0

+ t

(y0)(�, k) y
0

⌘i

(18)

where

t

(x0)(�, k) = 2⇡

✓

k cos (�)

Nx

◆

and t

(y0)(�, k) = 2⇡

✓

k sin (�)

Ny

◆

(19)

denote the elements of the transfer matrices, T(x0)(�, k) and T(y0)(�, k), respectively. These
matrices are constant throughout the orientation search and can be pre-calculated and stored in

memory. The complex elements o(x0,y0)
�k of the shift transformation matrix O(x

0

, y

0

) for a given
rotational origin shift of (x

0

, y

0

) are obtained from

Re
n

o(x0,y0)�k

o

= cos( t(x0)(�, k)x
0

) (20)

Im
n

o(x0,y0)�k

o

= sin( t(y0)(�, k) y
0

) (21)

and a continuously shifted PFT is obtained with a simple Hadamard product

Y
shifted

= [Y �O(x
0

, y

0

)]�k (22)

Assuming that an optimal in-plane angle �̃i has been identified for the i

th reference Yi, the
below optimisation problem is solved to identify the optimal origin shift (x̃

0

, ỹ

0

)

�

(

˜�i)

ij (x̃
0

, ỹ

0

) = argmax
x0,y02[xl,xu]

�u(˜�i)
X

�=�l(˜�i)

kL
X

k=kh

Re

⇢

h

[Y
i

�O(x
0

, y
0

)]
˜�i,k

�X0⇤
i

˜�i,k

�

(23)

The Nelder–Mead method [Nelder and Mead(1965)] is used to solve the problem. The reference
PFT Y is shifted because, as explained above, the particle PFT X0 spans [0, 4⇡] rotations
whereas the reference only spans [0,⇡]. Hence, shifting the reference is more e�cient. A shift
vector independent of the in-plane rotation is obtained in Cartesian coordinates according to
the mapping

✓

x̃

0

ỹ

0

◆

7�!
✓

x̃

0
0

ỹ

0
0

◆

=

✓

x̃

0

ỹ

0

◆✓

cos� � sin�
sin� cos�

◆

. (24)
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