The potential of a homogeneous voxel

Below, we generalize the formula derived in (Hummer, 1996) to the case of anisotropic voxels and

simplify the expressions. Let the voxel be given by the rectangular volume [—a,a] x [—

X [—e¢, (]

for certain constants a, b, c > 0 and suppose that p = 1 on the rectangle. The electric potential is then

is given by
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Integrating by parts yields
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where we have defined o, = /0,0, 0y = /0,0, and 0, = ,/0,0,. By using the identities
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we organize the solution to by defining functions f, g and h as follows:
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which is well-defined for all x,y, z, including at the origin where the argument of the arctan function

above assumes the limiting value 1/ \/g,

g (z1,70,91,%0,21,20) = [{f (w1,91,21) — f (w0, y1,21)} — {f (¥1,90,21) — [ (0, Y0, 21) }] —
{f (@1,91,20) = f (w0, 91, 20)} — {f (x1,90,20) — [ (z0,Y0,20)}],

and
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In terms of these functions, and in the case of o, = 0y = 0, = 1, the potential is given by
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The general solution to follows by a shift in the arguments of h: a — oya, b = o,b, ¢ — oyc, u — oy u,
v — 0,0, W — o, w and a multiplicative factor:
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