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Figure S1. Physiological analysis of CD-fed and HFD-fed mice and analysis of hepatic steatosis (related to
Figure 2).

(A, B) Insulin tolerance (ITT, A) and glucose tolerance (GTT, B) tests were performed using CD-fed and HFD-fed
(16 weeks) mice (mean £ SEM; n = 20; *, p < 1e-06; **, p < 5e-07; ***, p < 1e-07).

(C) CD-fed and HFD-fed mice were fasted overnight and the blood concentration of glucose was measured (mean +
SEM; n=20; *, p < 1e-06).

(D-F) The body mass of CD-fed and HFD-fed mice was measured (mean £ SEM; n=20; #, p < 5e-13). Fat and lean
mass were measured by 1H-MRS analysis (mean + SEM; n=20; ##, p < 5e-16).

(G) CD-fed and HFD-fed mice were treated with insulin (1 U/kg) by intraperitoneal injection. Hepatic AKT was
examined by immunoblot analysis by probing with antibodies to pSer473-AKT and AKT (mean + SEM; n = 3). The
data are normalized to total AKT.

(H) Consumption of a HFD causes hepatic steatosis: sections of the liver from CD-fed and HFD-fed mice were
stained with hematoxylin & eosin (H&E) or with Oil Red O. The images are representative of sections prepared

from three mice.
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Figure S2. Replicate correlations for MRNA-Seq, global proteomic, and metabolomic datasets (related to
Figure 2).

(A) Replicate correlations for mMRNA-Seq samples (left — CD replicates, n = 3, log, normalized read counts; right —
HFD replicates, n = 3, log, normalized read counts).

(B) Replicate correlations for global proteomic samples (left — CD replicates, n = 4, log, normalized iTRAQ levels;
right — HFD replicates, n = 4, log, normalized iTRAQ levels).

(C) Replicate correlations for metabolomics samples (left — CD replicates, n = 6, log, normalized abundances; right

— HFD replicates, n = 6, log, normalized abundances).
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Figure S3. TagMan assays for immune cell marker genes(related to Figure 2).

We performed TagMan assays on immune cell marker genes to further establish evidence for the role of
inflammatory processes in promoting and maintaining the insulin resistant state following HFD. All comparisons are
between nine independent liver samples for each condition, except for EmrIwhich used eight livers per condition.

5% p< 0,001, ** p < 0.01.



Figure S4

A ——
—
MRNA protein MRNA protein MmRNA protein
All gene-protein DE gene OR protein DE gene AND
pairs (6271) pairs (940) protein pairs (230)
r=0.069 r=0.204 r=0.414
! -
B down HFD  up HFD

2 : .
=5 DE gene AND :
% protein pairs oeph2 ®Apolda
'j':; 1 r=0.414 oTa } oPet112 L928d, eo]
(_gg\l usyt12| qk1‘(;c::j . 'GCk
© Op--————-——————%= | i —————————————
% el 'd'hC :?3"‘ - ekegf
o ®Ehha d Itga i
é 1F “Cyp4a10 LH Cé)caqr%f;%iiﬂtp)m
£ ®Cypdal4d I Nsdhl
2 |
o |
o |

) s | .

-4 -2 0 2 4

protein mMRNA

Down in HFD vs. CD
Gene Ontology

Gene expression Iogz(HFD/CD)

3-hydroxyacyl-CoA
dehydrogenase activity

homocysteine
metabolism

Fatty acid elonation,
unsaturated

Transaminase
activity
Oxidoreductace
activity

Heme binding

Response to
interferon-f3

Innate immune
response

Fatty acid
B-oxidation
Fatty acid
catabolism

Carboxylic acid
catabolism

Small molecule
catabolism

protein mRNA

Up in HFD vs. CD
Gene Ontology



Figure S4. Comparison of gene and protein expression changes between CD and HFD livers (related to
Figure 2).

(A) Clustergrams of mRNA and protein log, fold-changes between CD and HFD livers restricted to all observed
gene-protein pairs (left), differential genes or proteins (middle), and differential genes and proteins (right). Pearson
correlation coefficients are shown for all comparisons.

(B) Scatter plot of same data at right in panel (A), highlighting individual species.

(C) Comparison of gene ontology enrichments specific to either mMRNA or proteomic data in species that were either
down-regulated (left) or up-regulated (right) by HFD.
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Figure SS5. Schematic overview of PCSF algorithm(related to Table 1 and Figure 4).

The PCSF algorithm is initialized by connecting all terminal species (data in box at top right) via an artificial root

node. A message -passing algorithm is then run to generate a network model that minimizes the overall objective

function (middle box on right, first equation) which balances penalties accrued by excluding data (prize function is

in middle box on right, second equation) versus costs required to include edges between nodes (lower confidence

edges are more costly). The schematic on the left is a toy representation of a final forest output form one run of the

algorithm. The shading in the area with edges from transcription factors to genes indicates that we do not directly

include transcription factor-gene edges or gene nodes in the model, though the prize values on transcription factors

are influenced by inferred regulation near differentially expressed genes.
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Figure S6. PCSF model parameter selection criteria and final node specificities (related to Figure 4).

We ran the base PCSF algorithm across a number of settings for the major tuning parameters. The plot in (A) shows
the average degree of Steiner and terminal nodes included in the optimal solutions at the given parameter settings
and (B) shows a binary clustergram of nodes included/excluded in the same solutions. We show tested parameter
ranges for: £ on [5, 10], u for metabolite nodes on [1e-5, 1e-4, 1e-3], u for protein nodes on [1le-7, 5e-7, 1e-6, 5e-6,
le-5, 5e-5, 1le-4, 5e-4], and w on [1, 2, 3]. The blue arrows indicate the final parameter settings: g = 10, p for
metabolites = 1le-3, W for protein nodes = 5e-5, and w = 3. The final parameter values were chosen based on several
criteria: 1) there was a small difference in Steiner node and terminal node degrees (A), 2) very general, “hubby”
nodes (e.g. ubiquitin, water, etc.) were excluded from the solution (generally the left-most cluster, top row, in (B),
and 3) a high percentage of terminal nodes were included in the solution (note the elimination of several terminal
nodes at higher values of p and lower values of # towards the bottom right corner in (B)). Also note that the most
stable clustering of solutions is at the left-most side of the panel (B) clustergram; however, these solutions are
generally those that contain the most “hub” nodes and are the most discrepant in terms of node degree differences
and were therefore discarded.

(C) We ran the PCSF algorithm at the chosen optimal parameter settings 100 times with random, degree-matched
terminals and computed specificities as one minus the fraction of times a node in the optimal solution appeared in
the random solutions. Overall, both Steiner and terminal nodes included in our final model are generally highly

specific to our particular system.
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Figure S7. PCSF model sub-network rankings(related to Figure 5).
We ranked the PCSF sub -networks by prize density according to: sum(prizes) * (fraction of total network size).



DESCRIPTIONS OF SELECT PCSF MODEL SUB-NETWORKS
Related to Figure 2, Supplementary file 1, and Supplementary data 5

Sub-network 1: Sub-network 1 is the largest (124 nodes) and is most strongly enriched for pathways and processes
related to amino acid and amino sugar metabolism and transport. This sub-network is also enriched for species
involved in pyruvate metabolism, including the terminals PEP carboxykinase (PCK1) and the pyruvate kinase
liver/RBC isozyme (PKLR). The amino acid metabolites in this sub-network are included as both terminals (alanine,
asparagine, aspartic acid, cysteine, glycine, and serine) and Steiner nodes (glutamine, lysine, and tyrosine); all of the
terminal amino acids, with the exception of alanine, are down-regulated in HFD livers. Protein terminals involved in
amino acid metabolism include aminoadipate aminotransferase (AADAT), aminoadipate-semialdehyde synthase
(AASS), alanine-glyoxylate aminotransferase 1 and 2 (AGXT, AGXT2), glutaminase 2 (GLS2), glutamic-
oxaloacetic transaminase 1 (GOT1), and serine hydroxymethyltransferase 1 (SHMT1). Most of these protein
terminals are down-regulated in HFD livers, with the exception of AGXT2 and SHMT1 which increase. Steiner
nodes involved in amino acid metabolism in this sub-network include aldehyde dehydrogenase 7A1 (ALDH7A1),
asparagine synthetase (ASNS), and glutamine. Several of our high-ranking Steiner nodes are also present in this sub-

network, including glyoxylic acid, Glyoxylate/hydroxypyruvate reductase (GRHPR), and CNDP2, or peptidase A.

Sub-network 2: Sub-network 2 is enriched in glucose and glycogen metabolic processes and includes the up-
regulated carbohydrate metabolites D-glucose, D-fructose, and D-maltose from our metabolomic data as well as
enzymatic regulators of carbohydrate metabolism, including glucokinase (GCK), glucokinase regulator (GCKR),
and glycogen debrancher enzyme (AGL), that are up-regulated by HFD in our proteomic data. Notably, hepatic
GCK mutations (either activating or inactivating) cause glycemic dysregulation in humans (Agius, 2009) and
alteration of its activity is often seen in patients with diabetes (Caro et al., 1995). Pharmacological activators of
GCK can lower plasma glucose levels and likely confer their effects via disruption of the GCK-GCKR regulatory
interaction captured in our model (Futamura et al., 2006). The full PCSF model included 29 proteins and metabolites

annotated to gluconeogenesis and/or glycolysis pathways (of 128 possible from the databases queried).

Sub-network 5: This sub-network is enriched in apoptotic processes and is described in further detail in the main

text.

Sub-network 9: This sub-network is enriched in proteins involved in cell-cell interactions and is described in further

detail in the main text.

Sub-network 10: This sub-network is enriched in extracellular matrix (ECM) organizational and structural proteins

and described in further detail in the main text.



Sub-network 11: Sub-network 11 (71 nodes) is enriched in transcriptional processes and contains the majority of the
transcription factors from our motif regression procedure. Nuclear hormone receptors are strongly represented in this
sub-network, including the terminals RXRa, RXRp, PPARa, PXR (NR112), LXRB (NR1H2), and VDR. A number
of the Steiner nodes identified in this sub-network are also known to regulate processes relevant to insulin resistance
and type 2 diabetes. The thyroid hormone receptor (THRA), which also ranks highly in our Steiner node ranking
scheme, potentiates insulin signaling in db/db mice by enhancing tyrosine phosphorylation of IRS-1 and activation
of P13-kinase (Lin and Sun, 2011). The THRA agonists GC-1 and KB2115 reduce hepatic steatosis in ob/ob mice,
though they only improve glucose tolerance and insulin sensitivity at high doses that also disrupt thermogenic
control (Martagon et al., 2015). Additionally, the Steiner nodes NCOA6 and NCOR2 (aka SMRT) play roles in
regulating insulin signaling and sensitivity (Kim et al., 2012; Mottis et al., 2013).

Sub-network 13: Sub-network 13 is enriched in bile acid synthesis and is almost completely composed of protein-
metabolite interactions. The PCSF algorithm introduced many Steiner metabolites to connect differential bile acid
pathway members from our omic data. Previous studies have identified important roles for bile acid signaling
mediated by the nuclear hormone receptor FXR and the guanine nucleotide coupled receptor TGR5 in metabolic
syndrome (Chavez-Talavera et al., 2017). Among the terminal nodes in this sub-network are ATP binding cassette
B11 (ABCB11), cytochrome P450 proteins 27A1 (CYP27A1) and 7B1 (CYP7BL1), very long-chain acyl-CoA
synthetase (SLC27A2), and organic anion transporter 1B3 (SLCO1B3).The terminal CYP27A1 is connected to the
Steiner metabolite 27-hydroxycholesterol, the product of CYP27A1’s enzymatic action on cholesterol in the first
step of the alternate bile acid metabolism pathway. CYP7B1 further metabolizes 27-hydroxycholesterol to 7a-
hydroxysterol intermediates in this pathway. SLC27A2, another terminal, metabolizes the precursor of cholic acid
30,7a,12a-trihydroxy-5p-cholestanoic acid (THCA, a Steiner node) to its CoA derivative (THCA-CoA, another
Steiner node) in steps leading to formation of taurine- and glycine-conjugated bile acids (Mihalik et al., 2002). Bile
acid coenzyme A (BAAT), a high-ranking Steiner node, conjugates these bile acids for biliary excretion (Johnson et
al., 1991), and is indeed connected to, among other metabolites, the Steiner nodes taurocholic acid and glycocholic
acid. The terminal ABCB11 exports bile salts from hepatocytes (Garzel et al., 2014) and SLCO1B3, a liver-specific
organic anion influx transporter, transports bile salts, thyroid hormones, and eicosanoids (Ohtsuka et al., 2006). Both
of these terminals are connected by Steiner bile acids and bile acid conjugates in the PCSF network. Also included
as a Steiner protein is ACSL1, an acyl-CoA synthetase that plays a role in lipid biosynthesis and fatty acid
degradation, which ranks highly in our scheme and connects several fatty acid metabolite terminals.



SUPPLEMENTARY EXPERIMENTAL PROCEDURES

MRNA-Seq analysis

We prepared mRNA-Seq libraries from three CD and three 16 week HFD mouse livers using the TruSeq RNA
Sample Prep Kit v1 (lllumina) and size-selected using 2% agarose gel electrophoresis for 180 +/- 25 base-pairs of
insert. We multiplexed mRNA-Seq libraries and paired-end sequenced samples for 40-50 base-pairs on an Illumina
Hi-Seq 2000 machine. On average, we obtained ~20-30 million raw paired-end sequencing reads. The reads were
aligned to known mouse RefSeq gene transcripts obtained from the UCSC table browser (Karolchik et al., 2004)
(accessed on January 25, 2012) and the mouse genome (build mm9) with the splice junction-aware short-read
alignment tool TopHat (version 1.4.0) (Trapnell et al., 2009). We restricted TopHat to only align to known transcript
splice junctions. We observed strong intra-sample correlations between CD (Pearson’s r > 0.995) and HFD (r >
0.993) replicate gene read count levels (Figure S2A). We used the Bioconductor package conditional quantile
normalization (CQN, version 1.6.0) (Hansen et al., 2012) to remove systematic biases due to GC-content and gene
length coverage and used DESeq2 (version 1.0.18) (Love et al., 2014) to perform differential expression analyses.
We considered a gene to be differentially expressed if it possessed an absolute log, fold-change between conditions
> 0.5, an FDR-adjusted p-value (g-value) < 0.05, and was expressed in at least one tested condition (i.e. > 0.1
FPKM).

Differential ChlP-Seq peak analysis

We performed differential peak analyses independently for each histone mark between CD and HFD samples. We
used MACS-called peaks (version 1.4.0rc2) from replicate-pooled runs possessing a p-value < 1le-6 and an FDR <
10% and merged significant peak regions from each condition into one set of common genomic loci using
BEDTools (Quinlan and Hall, 2010). We then extracted raw read counts in these regions from each individual
replicate ChlP-Seq sample and used DESeq?2 (Love et al., 2014) to perform the differential enrichment analyses on

the read counts. We considered regions possessing an FDR-corrected p-value < 0.05 as significant.

Global proteomics data acquisition and analysis details

We collected global proteomic data from four CD and four 16 week HFD mouse livers. Liver powder was
homogenized (Polytron) in ice-cold lysis buffer consisting of 8M urea supplemented with 1 mM sodium
orthovanadate, 0.1% Nonident P-40 (NP-40), and protease inhibitor and phosSTOP tablets (Roche). Samples were
homogenized on ice using 5x10 sec pulses, with 10 sec intervening periods to prevent tissue heating. Protein
concentrations were quantified by a bicinchoninic acid (BCA) assay (Pierce). Homogenized liver samples were
reduced in 10 mM DTT at 56°C for 45 min and alkylated with 50 mM iodoacetamide at room temperature for 1

hour in the dark. Proteins were digested to peptides with sequencing grade trypsin (Promega) at 1:100 enzyme to



substrate ratio at room temperature overnight in 200 mM ammonium acetate, pH 8.9. Trypsin activity was then
quenched with acetic acid at a final concentration of 10%. Urea was removed by reverse-phase desalting using C18
cartridges (Waters). Samples were then lyophilized and stored at -80°C. Peptides were labeled with iTRAQ 8plex

isobaric mass tags (iTRAQ, AB Sciex) according to the manufacturer’s protocol.

The iTRAQ labeled peptides were analyzed by multidimensional LC-MS/MS (DEEP SEQ mass spectrometry) as
described previously (Zhou et al., 2013). Briefly, a NanoAcquity UPLC system (Waters, Milford, MA) utilized 2
binary pumps, an autosampler, and an additional 6-port, 2-position valve (Valco, Austin, TX). Peptides were first
fractionated at high pH (10.0) using a reversed phase column (200 um ID fused silica x 20 cm packed with 5 uM
XBridge C18). In the second dimension, peptides were further resolved at high pH by strong anion exchange
chromatography (200 um fused silica x 20 cm packed with 5 uM SAX; SEPAX technologies, Newark, DE).
Peptides were eluted from each dimension using solutions of acetonitrile and/or ammonium formate (pH 10) for a
total of 20 fractions. Peptides from each fraction were trapped on the final dimension precolumn (200 um ID fused
silica x 4 cm of POROS 10R2) after in-line dilution with 0.1% formic acid, and subsequently resolved on an
analytical column (25 pum ID fused silica packed with 100 cm of 5 um Monitor C18, Column Engineering, Ontario,
CA) using an organic gradient: 2-50% B in 580 min, A=0.1% formic acid, B=acetonitrile with 0.1% formic acid.
The analytical column terminated with a ~1 um diameter electrospray emitter (Ficarro et al., 2009), positioned near
the mass spectrometer orifice (5600 Triple TOF mass spectrometer, ABI, Framingham, MA) by use of a computer
controlled Digital Picoview Platform (New Objective, Woburn, MA). The 5600 Triple TOF was operated in
information dependent mode (IDA), with the top 50 precursors (charge state +2 to +5, >70 counts) in each MS scan
(800 ms, scan range 350-1500 m/z) subjected to MS/MS (minimum time 140 ms, scan range 100-1400m/z).
Dynamic exclusion was enabled, exclusion duration 20 seconds, and the isolation window was set to unit resolution.

Electrospray voltage was set to 2.2 kV.

Raw mass spectrometry data files were searched using Protein Pilot V4.4 (AB Sciex, Framingham, MA), with
parameters specifying trypsin digestion, 8-plex labeling of peptides, and carbamidomethylation of cysteine residues.
Multiplierz scripts (Parikh et al., 2009) were used to filter PSMs to a 1% false discovery rate, extract iTRAQ
reporter ion intensities, and correct for isotopic impurities as well as minor variations in source protein
concentration. We re-aligned peptides to the set of hon-redundant protein sequences (filtered for mouse sequences)
obtained from NCBI’s BLAST FTP database (accessed August 5, 2013) using the BLAST command line tool with
the recommended parameters for short amino acid sequence alignment: -p blastp -e 200000 -F F -G 9 -E 1 -M
PAM30-W 2-A40-CF.

We used a weighted least squares (WLS) regression procedure to find differentially expressed global proteins
between conditions (based on (Oberg and Mahoney, 2012)). We included only peptides that uniquely mapped to one
protein and ignored isoform-specific information. We first performed a sample-wise normalization on the isotope-

corrected iTRAQ channels using the procedure described in (Anders and Huber, 2010) to adjust for global



differences in overall protein abundance and imputed missing values with a k-nearest-neighbors procedure (k = 10).
We observed strong intra-sample correlations between CD (Pearson’s r > 0.946) and HFD (r > 0.921) replicates
using these normalized and imputed values (Figure S2B). We then assigned weights to individual peptide
measurements per condition by fitting a locally weighted curve through a plot of the coefficient of variation (CV)
versus log, mean abundance for all peptides. The CV for each peptide in each condition was set to the maximum of
the fit value or the raw calculated CV value and weights were assigned as the inverse of this value. For every protein
i, we fit a WLS regression model that included information from all peptides 1...J to estimate the overall effect of

the treatment condition on the expression level of the protein, i.e.:
Iogz(yijcr) = /ui + pepij + Condic + gijcr

where vy are the corrected abundances (iTRAQ intensities) from replicate measurements r of peptides j derived
from protein i in conditions c (i.e. CD and HFD), y; is the overall fit mean for protein i, the pep;; terms are the fit
mean abundances for peptides j (necessary for aligning distributions as individual peptide abundances from the same
protein can vary over orders of magnitude), cond;. is the overall treatment effect on protein i, and e, are the error
terms. The cond;. terms are of interest as these are the fit log, fold-change values for the proteins between the
conditions. We tested the cond;. terms for significance using two-tailed t-tests and corrected p-values for multiple
hypothesis testing using the Benjamini-Hochberg false discovery rate (FDR) procedure for all i proteins tested. The
Iscov function in MATLAB (The MathWorks, Inc., Natick, MA) was used to implement the WLS regression
procedure. We retained as significantly differentially expressed proteins those with an FDR-corrected p-value < 0.1.
The data used for the weighted least squares regression procedure and results are provided in Supplementary data
1.

Motif regression details

Histone valleys: We scanned enriched H3K4mel, H3K4me3, and H3K27Ac regions for histone valleys, or areas of
local signal depletion in broad enrichment regions. We used peaks called from pooled-replicate runs of MACS
(Zhang et al., 2008) against 1gG controls for each ChlP-Seq data type. We created smoothed signal profiles for these
peaks from the aligned sequencing reads for each dataset. To do this, we shifted reads a fixed distance towards their
3’ ends (by the amount estimated from the MACS peak-shift model), created profiles from the read pileup data in
the peak regions, and smoothed these profiles using a moving average filter. We then used a numerical procedure to
find local minima in each signal profile. For each base-pair in an individual enrichment region, a “valley score” was
calculated as the difference in read pileup height between the minimum of the two neighboring local maxima in the
+/- 500 base-pair windows around the current point and the current point pileup height itself. A point whose valley
score was 50% smaller in magnitude than the smaller of the two nearest local maxima was designated as a valley
point. Neighboring valley points were then merged into a single region and the point with the maximum valley score

in this region was reported as the valley location. We then took a fixed 100 base-pair window around each valley



location and reported these as the valley regions for each dataset. We then created a combined set of valleys from all
the discovered regions in the H3K4mel, H3K4me3, and H3K27Ac peak regions, considering one base-pair overlap
as a valid intersection while also retaining unique regions from each individual dataset. In total, we found 123,974

unique valley regions that were used for further analyses.

Motif matching and scoring in valleys: We used 1,588 DNA-binding motifs annotated to human and mouse
transcriptional regulatory proteins from release 2013.3 of TRANSFAC® (Wingender et al., 1996), represented as
position-specific scoring matrices (PSSMs). We extracted the underlying genomic sequences from the histone valley
regions and used TAMO (Gordon et al., 2005) to store the motif PSSMs, read in the valley region sequences, and
score the sequences for matches to the motifs. We computed a normalized log-likelihood ratio (LLR) score as
LLRporm = (LLR — LLRpin)/(LLRmax — LLRmin) for every k-base-pair sub-sequence in the valley regions, where k is the
length of the motif PSSM. A motif match was called if LLR,m, Was greater than or equal to the TRANSFAC®-
computed minimum false positive matrix similarity score threshold (minFP) for that motif. The maximum matching
LLRm for each motif in each sequence was retained and used to create a matrix of genomic regions by motifs.

Regions with no matches to a given motif were given a score of zero.

Transcription factor affinity score calculations: We retained histone valley regions that were within -50/+10
kilobases from the transcription start sites of at least one differentially expressed gene between CD and HFD livers.

We computed transcription factor affinity (TFA) scores for each motif against each gene as:

— n 7dm,g,i/do(m)
TFA, , = ZHLLRMJ e

where TFA g is the TFA score for motif m against gene g, LLRy g is the normalized LLR score in the i" valley
region near gene g for motif m, dy,g; is the distance of the i™ motif match from the TSS of gene g in base-pairs, and
do.(m) is the exponential distance constant for motif m (set to 10,000 bases for all motifs here). Transfer functions
incorporating the number of binding sites and distances of these from genes perform well when predicting regulator
influences on gene expression (Sikora-Wohlfeld et al., 2013). From here, a matrix of genes by TFA scores was

created for the set of differentially expressed genes between CD and HFD.

Motif regression: For each transcription factor motif, we built a simple univariate linear regression model to predict
gene expression levels from the computed TFA scores. We used the individual TFA scores for each gene as the
predictor variables and the corresponding log, FPKM expression values as the response variables. We mean-
centered and variance scaled (i.e. z-scored) both the predictor and response data and assessed the significance level
for each regression slope using the t-distribution. We corrected individual p-values for multiple hypotheses and
retained significant motifs as those possessing an FDR g-value < 0.01. By this metric, 358 motifs possessed
significant regression slopes. The data and code used to perform this procedure are provided in Supplementary
data 3.



PCSF modeling details

PCSF formulation: The prize-collecting Steiner forest (Tuncbag et al., 2013; Tuncbag et al., 2016) aims to find a
forest F(Vg, EF) from the graph G(V, E, c(e), p(v)), with nodes V, edges E, edge costs c(e) > 0, and node prizes p(v)

for v € V, that minimizes the objective function:

PCSF(F) =Y pW)+ D cle)+w-«

veVe ecEp

where x is the number of trees in the forest, w is a tuning parameter that influences the number of trees included in

the final forest, and:

P(V) =B p,(v) — - degree (v)".

The p parameter scales the importance of node prizes versus edge costs in the optimization and can be a uniform
value for all terminals or uniquely set for a given input data type. We employed a “negative prize” scaling scheme to
each node in G proportional to its degree, or number of connections in the graph, to reduce the influence of highly-
connected, well-studied nodes that have a high likelihood of appearing in PCSF solutions run with almost any input
data. The parameter u scales the influence of the negative prizes and the exponent n allows for non-linearity in the

scaling.

Interactome: We built a combined protein-protein and protein-metabolite interactome from which the PCSF derived
connections between our input data. We used the set of human interactions contained in version 13 of the iReflndex
database (Razick et al., 2008) as our source for protein-protein interactions, which consolidates information from a
variety of source databases. We used the Mlscore system (Villaveces et al., 2015) to assign confidence scores
(ranging from 0 to 1) to these interactions, which considers the number of publications (publication score), the type
of interaction (type score), and the experimental method used to find the interaction (method score). We extracted
the relevant scoring information for interactions from the iRefIndex MITAB2.6 file, using the redundant interaction

group identifier (RIGID) to consolidate interactions between the same two proteins reported by multiple databases,

and used a java implementation of Miscore (version 1.3.2, obtained from https://github.com/EBI-

IntAct/miscore/blob/wiki/api.md) with default parameters for individual score weights. We only considered
interactions between two human proteins (i.e. we excluded human-viral interactions) and converted protein
identifiers, generally provided as UniProt or RefSeq accessions, to valid HUGO gene nomenclature committee

(HGNC) symbols. Once converted, we removed redundant interactions (generally arising from isoform-specific


https://github.com/EBI-IntAct/miscore/blob/wiki/api.md
https://github.com/EBI-IntAct/miscore/blob/wiki/api.md

interactions that map to the same protein/gene symbols) and retained the maximum observed score. This produced a

total of 175,854 unique protein-protein interactions.

We collected protein-metabolite interactions from version 3.6 of the human metabolome database (HMDB) (Wishart
et al., 2013) and supplemented these with additional manually curated interactions from the human metabolic
reconstruction Recon 2 (version 3) (Thiele et al., 2013). We assigned uniform weights to the HMDB interactions,
using the median of protein-protein interaction scores (~0.448) as this value, and protein identifiers were converted
to valid HGNC gene symbols. We extracted reaction-gene link information from the Recon 2 MATLAB file
Recon2.v03.mat, available at humanmetabolism.org. For edges included in both HMDB and Recon 2, we added 0.2
or 0.3 to their default edge scores if they were assigned a curated score of 3 or 4 in Recon 2. We included unique
edges from Recon 2 with a curated score of 2 or greater, adding 0.1 or 0.3 to their edge scores if they were assigned
a score of 3 or 4. We also excluded edges between drugs, drugs metabolites, and metabolites of non-endogenous
origins (according to HMDB’s origin information). This protein-metabolite interactome was merged with the
iRefIndex protein-protein interactions to produce a final interaction network of 1,016,322 edges between 36,891
nodes.

PCSF run details and final model selection: We converted all mouse genes (proteins) to their human orthologs using
orthology information from the mouse genome informatics (MGI) database and HGNC for proteins. Also, we
retained metabolites that mapped to a valid HMDB identifier. We used as prize values in the PCSF optimization the
absolute values of the log, fold-changes between CD and HFD livers for the global protein and metabolites
terminals and used the absolute values of the regression coefficients from the motif regression results for the
transcription factor terminals. In total, we supplied to the PCSF 83 metabolites that possess valid HMDB identifiers,
329 global proteins that were successfully mapped to orthologous human genes, and the 272 transcriptional

regulators identified by our motif regression analysis.

We ran the PCSF across an array of values for the relevant tuning parameters. The S values for global proteins and
metabolites varied over [5, 10] and for transcription factors over [1, 5, 10]. The w parameter was varied over [1, 2, 3]
and the p for protein terminals (global proteins and transcription factors) varied over [1e-7, 5e-7, 1le-6, 5e-6, 1e-5,
5e-5, 1e-4, 5e-4]. The u for metabolite terminals was varied over [1e-5, 1le-4, 1e-3]. The exponent n used in the
negative prize scaling was set to 2 for all PCSF runs. We elected to use different 5 values for the transcription factor
termini as the prize values for these are on a different scale from the global proteins and metabolites (regression
coefficients versus observed log, fold-changes). We also used independent p1 values for metabolites and proteins as
the degree distributions between the two source databases differ. The message-passing algorithm used to solve the
PCSF problem requires as additional input a depth parameter D, which specifies the maximum path length from the
artificial source node to any node in the forest, a reinforcement parameter g, which influences the convergence of
the solution by producing more optimal solutions at lower values at the expense of increased run time, and a noise

parameter r, which adds random noise to edges during run time. We used D values of 5, 7, and 10, a g of 1e-3 (to



force more optimal solutions), and an r of 1e-5. For sub-optimal runs (see below), this r value was manipulated to

add noise to the interactome edge scores.

We used several selection criteria to arrive at a final set of parameters for our network model. Generally, we
preferred larger values for § in an effort to include as much data as possible in the final networks. The p parameters
strongly influences the type of nodes included in the solution. To select appropriate p values, we visualized, for
every combination of all the tuning parameters, both the average degrees of selected terminal and Steiner nodes, as
well as the nodes included in the optimal solutions (see Figure S6A-B). We preferred solutions in which the
difference in average degree distribution between the terminal and algorithm-introduced Steiner nodes were similar;
a large disparity here is indicative of generic solutions in which very common, high degree nodes are used to
connect the data. We also clustered a binary heatmap of nodes included in the various solutions to look for
parameter regimes in which the included nodes at least partially stabilize. The most stable region occurs at low p
values for both proteins and metabolites; however, it is in these regions where we see the most generic Steiner nodes
included (e.g. ubiquitin and amyloid beta precursor for proteins and water, oxygen, and NADH for metabolites) and
where the degree distributions are very discrepant between terminal and Steiner nodes. Therefore, we selected a
solution in a semi-stable region of included nodes that excluded most of these generic species and where the Steiner
and terminal node degree separation was not too large. We also employed robustness and specificity tests of results

to our particular input data to validate our parameter selections.

The final PCSF solution presented here used 8 = 10 for global proteins and metabolites, g = 1 for transcription
factors, o = 3, D =7, u = 5e-5 for global proteins and transcription factors, and p = 1le-3 for metabolites. We
merged the optimal PCSF run with 50 “sub-optimal” solutions run at the same parameter settings but with random
noise added to the interactome edge weights. Edge noise was introduced via the r parameter in the message-passing
code and was set to 0.1. This particular randomization procedure allows the algorithm to find alternative connections
between the data nodes that may be of biological importance when interpreting the data and network results. Note
that the PCSF model is no longer a forest due to the merger of random runs. We also re-introduced all available
edges between included solution nodes from the interactome, whether selected by the algorithm or not, into the final

solution.

We assessed the specificity of each node in the final solution by running the algorithm 100 times at the same
parameter settings, but with random input data. We define specificity in this context as the frequency with which a
given terminal or Steiner node in the final PCSF model appears in runs with random input data. For each random
run, we selected random terminals matching the degree distribution of the real terminals. For each real terminal, a
node from the interactome matching (within a small error range) the degree of the original true terminal was
randomly selected and assigned the same prize value as the original true terminal. At these final parameter settings,
we found that the included terminal and Steiner nodes were generally highly specific to our particular data (see
Figure S6C).



The full PCSF solution includes 76%, 91%, and 13% of includable (i.e. species converted to appropriate identifiers
or genes/proteins possessing a human ortholog) metabolites, global proteins, and transcription factors. The low
inclusion percentage of transcriptional regulators results from the fact that the £ value for these terminals is lower
than the 4 value applied to the metabolites and global proteins. When solutions were run with larger 5 values, a
greater percentage of the transcriptional regulators were indeed included in the models (74% at frr = 5 and 86% at
Pre = 10). The solutions run with these larger values generally produced networks with large sub-clusters comprised
almost completely of interconnections amongst the transcriptional regulators themselves. Therefore, we selected a

smaller value to highlight the most influential transcriptional regulators.

PCSF model clustering and visualization. We used a community clustering algorithm that maximizes network
modularity (Blondel et al., 2008) to break the full PCSF model into smaller sub-networks. We performed enrichment
analyses on the nodes in each of these subnetworks using as gene sets human gene ontology terms, pathway
members from the small molecule pathway database (SMPDB) (Jewison et al., 2014), and canonical pathway node
sets provided by MSigDB (Subramanian et al., 2005) derived from various database sources. We visualized all

networks with Cytoscape (Shannon et al., 2003).

PCSF model node ranking scheme. We used a weighted sum of feature scores to rank nodes contained in our PCSF
network. We did this for Steiner and terminal nodes separately as some feature score distributions differ between the
two node sets. The features we used for each node were: 1) the robustness of the node to edge noise (i.e. the
frequency of solutions run with random edge noise including this node), 2) the specificity of the node (one minus the
frequency with which the node showed up in solutions run with random input data), 3) the mean of nearest neighbor
node specificities (k = 2 for all neighborhood features), 4) the mean of interactome edge weights connecting the
nearest neighbor nodes, 5) the fraction of neighbor nodes that are terminals, and 6) and the size of the local
neighborhood to which the node belongs, which was scored as a saturating function of the neighborhood size. We
set the weights for the six feature scores by taking the inverse of the score variances across all nodes; this scheme
favors features that have more discriminatory power between nodes. For example, the robustness feature had a
higher weight than specificity as the majority of included nodes were highly specific to our problem. The final

weights were adjusted such that the sum of the weights equaled one.

TUNEL imaging analysis with CellProfiler

We used CellProfiler (version 2.1.1) (Carpenter et al., 2006) with a custom-built analysis pipeline from modules
included in the program to analyze TUNEL images. All images across CD and HFD samples were analyzed in a
single run of the program at the same settings. The pipeline we used: 1) loaded images (two channel images for all
fields of view, red for DAPI and green for TUNEL), 2) converted images to grayscale, 3) identified nuclei by DAPI

staining using the “IdentifyPrimaryObjects” module, setting the typical diameter minimum and maximum to 5 and



25, discarding objects touching the border, using the automatic thresholding strategy, and using shape to distinguish
clumped objects and to draw dividing lines between objects, 4) identified TUNEL positive objects with
“IdentifyPrimaryObjects” with same settings for DAPI, though we set the minimum and maximum diameter to 4
and 20, 5) used the “RelateObjects” module with nuclei treated as parents and TUNEL objects treated as children,
and 6) used “FilterObjects” to filter nuclei by TUNEL positive objects. The TUNEL positive percentage per field of
view was calculated as the number of positive nuclei over the total. For each liver, we calculated a single TUNEL
positive fraction by dividing the total number of TUNEL positive nuclei by the total number of nuclei across all
fields of view (n =9, 7, and 4 for HFD livers; n = 4, 5, and 5 for CD livers). We used a two-tailed t-test to test for

statistical significance between CD and HFD livers.
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Data S6 (page 4)
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Data S6. PCSF model sub-networks (related to Figures 4 and 5).
Displays for all 20 PCSF model sub-networks, including numeric labels and biological process/pathway

enrichments.



