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Supplementary Note 1. Theoretical framework for the CLASS microscopy 

As discussed in the main text, the maximization of the total intensity of CLASS image leads to 

the finding of angle-dependent aberrations. In this section, we provide detailed mathematical 

description of its working principle and conditions for the convergence.  

 

Mathematical formulation of the aberration correction for the input  

Let us begin with the first round of iteration for the aberration correction in the illumination beam 

path. After applying for initial arbitrary angle-dependent phase corrections   
   ( ⃗ ), the 

spectrum of the CLASS image is written as 
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For each  ⃗  , we identified   
   ( ⃗ ) that maximizes the total intensity of the corrected CLASS 

image: 
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The maximum of the total intensity occurs when the sum of the cross-terms between single-

scattered waves in Eq. (2) are the largest. This is the case when the following cross-term 

originating from the two arbitrary incident wavevectors,  ⃗ 
  and  ⃗ 
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 ), are real valued. 
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Because only relative phase matters, we can set  
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   ⃗  . Then the maximization operation leads to  
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where Φ
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a }( ⃗ ). Here ∠ stands for the phase angle of the associated complex number. 

Therefore Φ 

   ( ⃗ ), which is mainly determined by the autocorrelation of the output pupil 

function, can be considered the error of aberration correction for the illumination. 

 

Conditions for the convergence of iteration 

Let us take a close look at the phase correction error Φ   ( ⃗ ). If there were no output aberration 

in the reflection process, i.e.   ( ⃗
 )  0 and 𝑃 

a( ⃗ )  𝑃( ⃗ ), then Φ   ( ⃗ ) is zero. This 

means that the aberration in the illumination beam path can be perfectly corrected by just the 

single run of operation in Eq. (2). In reality, the output aberrations always exist and Φ
 

   ( ⃗ )  

0 . Therefore, the presence of output aberrations makes the aberration correction of input 

imperfect in the coherent imaging. In the worst case when Φ 

   ( ⃗ ) are randomly distributed 

between –π and π, then the maximization process cannot correct the input aberration at all. In 

order for our aberration correction approach to be effective and the iterative operation explained 

in the main text to be convergent, Φ 

   ( ⃗ ) should not be completely random, but have a finite 

width of distribution near zero.  

There are two requirements that set the convergence condition. First,  (Δ ⃗)𝑃 
a(Δ ⃗) needs to be 

a slowly varying function with respect to Δ ⃗⃗. Then the phase angle of its autocorrelation, 

Φ
 

   ( ⃗ ), has a finite width of distribution around zero. Even with the severe aberrations assumed 

in Supplementary Figures 1a and 1b, we can make  (Δ ⃗)𝑃 
a(Δ ⃗) a slowly varying function by 

the fine sampling of individual images in the k-space. This can be done by taking images over a 

wide view field because the sampling resolution in k-space is determined by the reciprocal of the 

width of view field. And this is reason why the CLASS microscopy needs the wide-field imaging 

in the first place.  
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The second condition that determines the convergence of iteration is the relative intensity of 

multiple light scattering with respect to that of single scattering. In assessing the cross-term of the 

single-scattered waves shown in Eq. (3), the cross-term of the multiple-scattered waves described 

in the second term in Eq. (1) serve as noise. If 𝛽  𝛾 is too large, then the phase of this cross-

term will not be finite in width, but uniformly distributed between –π and π. See the detailed 

numerical test of the convergence at Supplementary Note 2. 

 

Closed-loop iteration by the phase-conjugation operation 

After identifying   
   ( ⃗ ) that maximizes the total intensity of the CLASS image (Eq. (4)), we 

inserted it into Eq. (1). This modifies the spectrum of CLASS image to 
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Here, the input pupil function 𝑃 
a( ⃗ ) is replaced by the modified pupil function, 
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Therefore, finding   ( ⃗
 ) that maximizes the total intensity of CLASS image is identical to 

replacing input aberration   ( ⃗
 ) with Φ 

   ( ⃗ ). Under the convergence conditions discussed 

in 1.2, the uniform random phase distribution of initial aberrations is reduced to the finite width 

of the distribution of Φ   ( ⃗ ). However, there will not be a further reduction without additional 

independent operation to correct the sample-induced aberrations in the collection process. In 

order to form a closed-loop correction, we considered a phase conjugation process in which the 

wave is incident from   ⃗  and reflected to   ⃗    ( ⃗  Δ ⃗). With this reverse process, the 

CLASS spectrum after the initial correction in Eq. (5) can be written as  
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where     is inverse convolution of object transfer function, such that        . Note that 

the summation operation is now performed over  ⃗ . Similar to the correction of illumination, we 

add angle-dependent phase correction   ( ⃗
 ), and then maximized the total intensity of the 

phase-conjugated CLASS image:  
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Similar to the illumination correction,   
   ( ⃗ ) is determined as 
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And this output correction replaces the output pupil function with  
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This is equivalent to replacing output aberration   ( ⃗
 ) with Φ 

   ( ⃗ ) . Note that the 

Φ 
   ( ⃗ )  is even more narrowly peaked around zero than Φ 

   ( ⃗ )  because the input 

correction   ( ⃗
 ) has converted 𝑃 

a to a more slowly varying function 𝑃 
   

. As a consequence, 

the error of the first round of output aberration correction is smaller than that of the illumination 

correction. 

  

With the first round of input and output corrections in place, the second round of input and output 

corrections,  
 

   ( ⃗ ) and   
   ( ⃗ ) respectively, are applied to progressively reduce the residual 

error of the aberration corrections. And the iteration keeps going until the residual error is made 
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below certain level, which is typically set as 0.1 radians. We can find the recursion relation for 

both input and output pupil functions after n iterations. 
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with initial condition 𝑃 
 0 

 𝑃 
a, and 𝑃 

 0 
 𝑃 

a.  

As the iteration number 𝑛 is increased, the phase angles Φ 

 𝑛 
( ⃗ )  and Φ 

 𝑛 ( ⃗ ) converge to 

zero on the conditions described in 1.2. Consequently, the pupil functions for the input and output 

in Eqs. (11) and (12) converge to the ideal pupil function 𝑃( ⃗). 

After all, we can find the initial aberrations by accumulating phase corrections identified in all the 

iterations: 

  ( ⃗
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Note that the complex conjugation operation is not critical from the mathematical point of view in 

the second step of CLASS algorithm. It doesn’t make any difference in the result except for the 

sign of the output phase correction map. What is important is the transpose operation, which 

enables us to swap input and output, and to correct the specimen-induced aberration from the 

output side. The reason we take phase conjugation (transpose + complex conjugation) rather than 

just the transpose is to impose a physical meaning to the operation. In this way, the second step is 

equivalent to physically sending the waves from the output side and measuring the backscattered 

waves at the input side. 
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Supplementary Note 2. Numerical simulation study 

For the complete understanding of the effect of CLASS algorithm on correcting the aberrations of 

single-scattered waves and attenuating the contribution of multiple light scattering, we performed 

a numerical simulation study by assuming a representative example of sample-induced 

aberrations.  

 

Applying CLASS algorithm to the numerically prepared aberrations 

We set up a numerical simulation at the condition of 𝛽   0𝛾 and 𝑁m  1, 4 , which 

corresponds to the number of free modes for a 20×20 m2 field of view. Also, we introduced 

arbitrary aberrations   ( ⃗
 ) and   ( ⃗

 ) as depicted in Supplementary Figures 1a and 1b, 

respectively, which led to   1 400 and   1  600. The amplitude of the cross-correlation 

map of these two complex pupil functions (Supplementary Figure 1c) was well below unity, 

suggesting that the accumulation of single scattering would be compromised. Supplementary 

Figures 1d and 1e show CASS images without and with aberrations, respectively, in the absence 

of multiple scattering. The target objects were a pair of point particles separated by 600 nm, 

which corresponds to the diffraction-limit resolution for 0.8 NA at the source wavelength  = 800 

nm. As expected, the aberrations made the two particles completely indistinguishable. 

Supplementary Figures 1f and 1g show CASS images without and with aberrations, respectively, 

but this time in the presence of multiple scattering. As long as there is no aberration, CASS 

microscopy works well even if there is strong multiple scattering (Supplementary Figure 1f). The 

simultaneous presence of scattering and aberration (Supplementary Figure 1g) makes it even 

more difficult to resolve the two particles than in the aberration-only case because, in addition to 

being improperly accumulated, the single-scattered waves are concealed by the multiple-scattered 

waves.  
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Supplementary Figure 1. The effect of sample-induced aberration in imaging targets inside a thick 

scattering medium. a and b, Angle-dependent phase retardations simulated for incident and reflected 

waves, respectively. For the illumination and reflection processes, random phase shifts were added to the 

average spherical aberration induced by a 1 mm-thick tissue (refractive index n~1.37) in water. Circular 

central region corresponds to the pupil of the objective lens with numerical aperture of 0.8. c, Amplitude 

transfer function of CASS microscopy obtained by cross-correlation between the input and output 

aberrations shown in a and b. Color scale indicates amplitude transmittance. Scale bars in a and c 

correspond to  0 . d-g, CASS images of two point particles separated by 600 nm, the diffraction limit of 

the model system. d: without either aberration or multiple scattering. e: in the presence of the aberrations 

shown in a and b, but with no multiple scattering. f: in the presence of multiple scattering but with no 

aberration. g: in the presence of both aberration and scattering. The mean intensity of the multiple 

scattering was set 200 times stronger than that of single scattering. Color scales in d-g are normalized by 

the peak value in d. 

 

 

We confirmed the effectiveness of CLASS algorithm for the aberrations considered in 

Supplementary Figures 1a and 1b. The first image in Supplementary Figure 2a shows that 

     
   

 after the first round of the maximization process. The   
   

 resembles the input 

aberration shown in Supplementary Figure 1a with a correlation value of 35 %. The first image in 

Supplementary Figure 2b shows the CLASS image reconstructed after applying this phase 

correction. The existence of particles becomes better visualized than before. However, the 

resolving power has not been sufficiently recovered to distinguish the two particles because the 

output aberration has not yet been addressed. 
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This first round of maximization operation is incomplete because only the aberration arising from 

the incident wave can be dealt with. With the correction     
 
   

 in place, we apply the phase 

correction to the output and identified the      
   

 that would maximize the total intensity of 

the phase-conjugated CLASS image. Similar to the correction for the illumination path, this 

iteration leads to the convergence of   
   ( ⃗ ) to   ( ⃗

 ). In fact, this correction for the 

reflection process converges faster than that of   
   

 to   ( ⃗
 ). Because of the prior correction 

  
   

, the width of the phase histogram of Φ 
   ( ⃗ ) is narrower than that of Φ 

   ( ⃗ ) (see 

Supplementary Figure 3). 

 

The second image in Supplementary Figure 2a shows the   
   

 identified through this phase-

conjugation process, and it shows good correlation with the original aberration map in 

Supplementary Figure 1b with a correlation value of about 66 %. After this first round of 

illumination and reflection corrections, the reconstructed CLASS image shown in the second 

image of Supplementary Figure 2b now resolves the two particles better than before. Since the 

identif ied aberration maps are not yet complete, we iterated the aberration correction to improve 

its accuracy. We observed that the accumulated phase corrections converge to the system 

aberrations as the number of iterations n is increased, i.e. ∑   
 𝑛 ( ⃗ )𝑛    ( ⃗

 ) and ∑   
 𝑛 

𝑛  

  ( ⃗
 ) (Supplementary Figure 2a). For this example, 3 rounds of iteration led to the 

determination of the input and output aberrations to an accuracy of 97 %. The reconstructed 

image became almost the same as the ideal image shown in Supplementary Figure 1d. The 

resulting CLASS images show the increase in the signal intensity, suggesting that the cross-

correlation of the aberration-corrected pupil functions had been increased in magnitude. Taken 
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together, these observations confirm that the proposed method works extremely well, even in the 

presence of strong multiple-scattered waves. 

 

 

Supplementary Figure 2. Improvement of resolving power with the iterations of CLASS algorithm. 

Aberrations and the intensity ratio of single- to multiple-scattered waves are the same as those considered 

in Supplementary Figure 1. a, Angle-dependent phase corrections   
 𝑛 

 and   
 𝑛 

 as the iteration 

number 𝑛 is increased. Scale bar corresponds to  0 . Color bar, phase in radians. b, Reconstructed 

CLASS images when   
 𝑛 

 and   
 𝑛 

 in a were applied. Color bar, intensity normalized by the peak value 

of the reconstructed image obtained at the end of iteration. Total number of iterations was 6 for the 

presented data. 

 

Reduction of phase correction error with the increase of iteration number 

In this section, we present the numerical simulation data that visualizes the way the iterative 

maximization operations (Eqs. (2) and (8)) reduce the phase correction error. In Supplementary 

Figures 3a and 3c, the phase maps of the modified input and output pupil functions, Φ 

 𝑛 
 and 

Φ 
 𝑛 

, were shown respectively for the same numerical data used in Supplementary Figure 1. 

Initially (n=0), we assumed severe aberrations enough to make the phase of the complex pupil 

functions, Φ 

 0 
 and Φ 

 0 
, randomly distributed between – π and π (Supplementary Figures 

3b and 3d). After the first round of iteration process, the phase maps of input and output pupil 

functions were replaced by Φ 

   
 and Φ 

   
, respectively. As a consequence, the phase maps 
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shown in Supplementary Figures 3a and 3c (𝑛  1) were smoothened and the width of phase 

distribution shown in Supplementary Figures 3b and 3d (𝑛  1) were narrowed down. The  
 
   

 

and   
   

 applied to this reconstruction were shown in Supplementary Figure 2a, where they 

were shown to resemble the aberrations assumed in the beginning. 

 With the increase of 𝑛, the phase distribution of the modified pupil functions became almost 

constant across the pupils and the widths of the phase distributions were progressively narrowed 

down. Indeed, the iteration process almost completely counteracted the aberration, thereby 

converting initial complex pupil functions into aberration-free ones. Our approach is so effective 

that only a few steps of iterations were good enough to identify the aberrations. At the end of 

iteration, the sum of phase corrections converged to the initial aberrations (Supplementary Figure 

2a). 
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Supplementary Figure 3. Phase distribution of the modified pupil functions with the increase of 

iteration number. a and c, Phase maps of the modified input and output pupil functions, Φ 

 𝑛 
( ⃗ ) and 

Φ 
 𝑛 ( ⃗ ), respectively, depending on the iteration number n. Color bar, phase in radians. Scale bar,  0 . b 

and d, Histograms of phase angles displayed in a and c, respectively. 

 

In order to quantitatively assess the effectiveness of convergence, we computed the correlation 

between the original aberrations and the aberration correction maps identified from CLASS 

algorithm. To this end, the correlation between the obtained aberration maps and the initial 

aberration maps in Supplementary Figures 1a and 1b was computed for each iteration number. As 

shown in Supplementary Figure 4, only 3 iterations were good enough to recover the initial 

aberration map with the accuracy of more than 97%. Note that the output correlation for the nth 
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iteration step is always larger than nth input correlation because the nth output correction was 

performed after nth input correction.  

 

 

Supplementary Figure 4. Correlation between obtained aberration map and initial aberration for the 

input (red curve) and output (blue curve) aberrations. 

 

 

The effect of aberration corrections to the transfer function of CLASS image 

By Eqs. (1), (6), and (10), the spectrum of single-scattered waves in CLASS image after 𝑛 times 

of input-output phase corrections can be written as  

      

 𝑛 
(Δ ⃗)  √𝛾 (Δ ⃗)  (𝑃 

  𝑛 
⋆ 𝑃 

 𝑛 
)(Δ ⃗)                      14  

The amplitude transfer function (ATF) of CLASS image is modified to 𝒜 𝑛  𝑃 
  𝑛 

⋆ 𝑃 
 𝑛 

 

after nth round of iteration process. The width and height of ATF are related to the spatial 

resolution and signal strength of single-scattered waves, respectively. In Supplementary Figure 5, 

we present 𝒜 𝑛  for various n for the numerical simulation data. As expected, 𝒜 𝑛  converged 

to the ideal ATF without aberration as n was increased. The width of ATF was broadened to that 

of the ideal ATF, indicating that the diffraction-limited spatial resolution was almost recovered. 
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More importantly, the average height of ATF was increased by about 20 times after the correction, 

which corresponds to the increase of the intensity of single-scattered waves by about 400 times. 

This is critical in recovering single-scattering signals when there exists strong multiple-scattering 

background. Indeed, our correction method not only recovers spatial resolution, but also enhances 

the signal strength of single-scattered waves. 

 

 

Supplementary Figure 5. Amplitude transfer function of single-scattered waves with the increase of 

iteration number. a-d, Amplitude transfer functions of CLASS microscopy for n=0, 1, 2, 3, respectively. 

Scale bar,  0 . e, Dashed lines: line profiles of ATFs shown in a-d at    0. Solid line: ATF of an ideal 

pupil function. The plots were normalized by the maximum value of the ideal ATF.  

 

 

The intensity of single- and multiple-scattered waves with the increase of iteration number 

Since our aberration correction method is based on enhancing the coherent summation of single-

scattered waves, the total intensity of CLASS image should increase by the iteration process. In 

the simulation data, we can separate out single- and multiple-scattered waves in the CLASS 

image. Therefore, we could analyze the way the correction process affects to the intensities of 

single- and multiple-scattered waves. Supplementary Figure 6 shows the intensities of the single- 

and multiple-scattered waves as well as the total intensity of the CLASS image as a function of 

the iteration number. Initially, multiple-scattered waves was about 20 times larger than the single 
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scattered waves because of the strong aberration. Total intensity of CLASS image was almost 

equal to that of multiple-scattered waves, and this is the reason the target was initially invisible. 

When the iteration number was increased, the intensity of single-scattered waves increased 

significantly by up to about 400 times while that of the multiple-scattered waves didn’t change 

much. As a result, the intensity ratio between single- and multiple-scattered waves was reversed, 

and the contribution of single-scattered waves became dominant in the CLASS image. The led to 

the clear identification of targets as shown in the last image of Supplementary Figure 2b.  

 

Supplementary Figure 6. The effect of aberration correction to the intensities of single- and multiple-

scattered waves in the reconstructed CLASS images. Red, blue, black markers correspond to the total 

intensity of CLASS image, the intensity of single-scattered waves, and that of the multiple-scattered waves, 

respectively. Plots were normalized by the initial contribution of single-scattered waves.  

 

 

Relation between   and Strehl ratio S 

In adaptive optics, the degree of aberration is measured by Strehl ratio, which is the peak intensity 

of the point spread function with aberration relative to that without aberration. For the case when 

both the input and output aberration matter, this parameter can be described by the amplitude 

transfer function,  

  |〈𝒜( ⃗)〉|
 
  |〈𝒜0( ⃗)〉|

 
                       1   
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Here 𝒜  𝑃 
a  

⋆ 𝑃 
a, and 𝒜0( ⃗) is the ideal amplitude transfer function. For a relatively mild 

aberration and weak multiple scattering noise,   faithfully describes the effect of aberrations to 

the signal strength and image contrast. But it’s use is limited in case of severe aberration or strong 

multiple scattering noise. In our study, we introduced the parameter   in Eq. (3), which is the 

ratio of the total intensity of single-scattered waves in the presence of aberration with respect to 

that in the absence of aberration. In terms of the amplitude transfer function,   can be simplif ied 

to 

  〈|𝒜( ⃗)|
 
〉  〈|𝒜0( ⃗)|

 
〉                             16  

In other words,   is the ratio of the total intensity of the point spread function with aberration to 

that without aberration. As described in the main text,   is responsible for the degradation of the 

signal to noise ratio of CASS microscopy from  𝛾 𝛽⁄  𝑁m to  ×  𝛾 𝛽⁄  𝑁m. And the main aim 

of CLASS microscopy is to increase   enough to raise the signal to noise ratio above unity. And 

the initial   will set the limit that the CLASS microscopy can work. 

The   and   are related to a certain extent. The increase of aberration accompanies the 

simultaneous reduction in the peak height and the total intensity of the point-spread-function. In 

general, the peak height is more susceptible than the total intensity to the aberration. Therefore,   

is usually smaller than  . But their relation depends on the type of aberration, making it difficult 

to find a general relation between them. For a heuristic purpose, here we gave an example for the 

aberration maps assumed in Supplementary Figure 1. As a function of the standard deviation of 

the phase in the aberration, we plotted both   and   in Supplementary Figure 7. When the 

deviation of phase shift is not large enough, S and η have almost the same values. However, as the 

standard deviation of aberration phase increases, S decreases faster than η as mentioned above. 
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Supplementary Figure 7. Relation between the Strehl ratio S, and η as a function of the standard 

deviation of phase retardation by the aberration. a, Only the input aberration is accounted for. b, Both 

the input and output aberrations are taken into account. Red line: 1/S. Blue line: 1/η.  

 

Let us make a further discuss the physical meaning of S and  . S is a parameter used to describe 

the aberration-induced signal reduction in the confocal and two-photon microscopes. It is a 

directly relevant parameter to the general adaptive optics audience because it indicates the degree 

of aberrations of the samples used in our study.  

On the other hand,   describes the reduction of single-scattering intensity in the CLASS 

microscopy where images are acquired over wide area. Unlike confocal microscopy where signal 

is collected only at the confocal pinhole, the entire PSF contributes to the signal intensity in the 

wide-field detection. Therefore, the degradation of SNR in the CLASS microscope is determined 

by  , not by S. Likewise, the main role of CLASS algorithm is to increase single scattering 

intensity by 1  , not by 1/S. 

 

The effect of multiple light scattering to the convergence of CLASS algorithm 

As we discussed in section 1, the second condition that determines the convergence of iteration is 

the relative intensity of multiple light scattering with respect to that of single scattering. In 

assessing the cross-term of the single-scattered waves shown in Eq. (3), the cross-term of the 

multiple-scattered waves described in the second term in Eq. (1) serve as noise. If 𝛽  𝛾 is too 
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large, then the phase of this cross-term will not be finite in width, but uniformly distributed 

between –π and π. This can be seen in Supplementary Figures 8a-d in which the width of 

distribution was gradually increased as 𝛽  𝛾 was increased. But the convergence of the iteration 

was guaranteed even when 𝛽  𝛾~16,000. 

 

Supplementary Figure 8. Effect of multiple scattering on the phase correction error, Φ 

   
( ⃗ ). The 

histogram of Φ 

   
( ⃗ ) when the relative intensity of multiple- to single-scattered waves increases. a-d, 

Intensity ratio between multiple- to single-scattered waves, 𝛽 𝛾 are 0, 20, 40, and 45, respectively and 

  1 400⁄ . Therefore, the initial intensity ratio of the multiple- to single-scattered waves, 𝛽  𝛾, are 280, 

8000, 16,000, and 17,550, respectively. Up to 𝛽  𝛾  16,000, the histogram has a finite width such that 

we could successfully characterize the input and output aberration.  
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Supplementary Note 3. Detailed experimental setup and additional analysis of experimental 

data 

 

Experimental setup 

 

Supplementary Figure 9. Schematic diagram of the experimental setup. L: lens, BS: beam splitter, OL: 

objective lens, SLM: spatial light modulator, DG: diffraction grating. Inset on the left of SLM shows 

typical random phase pattern written on the SLM. Inset on the right of sCMOS camera shows the resulting 

raw data obtained by the camera. The layout of the sample geometry is shown in the upper right.  

 

Detailed experimental setup of CLASS microscopy is shown in Supplementary Figure 9. The 

basic layout of the setup is identical to the CASS microscopy that we previously reported1. 

However, light source, objective lens and camera were upgraded, and random phase patterns were 

used for the illumination. The backbone of the setup was a Mach-Zehnder interferometer, and low 

coherence light source and off-axis geometry were used for the time-resolved and wide-field 

complex-field imaging. 

A femtosecond laser pulse from mode-locked Ti-Sapphire laser (center wavelength 800 nm, 

bandwidth 30 nm, and pulse width 100 fs) was divided into incidence and reference waves at BS1. 

The transmitted light from BS1 was delivered to the spatial light modulator (SLM, Hamamatsu 

X10468-02). By writing random phase patterns on the SLM, we generated random speckle fields 
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and use them as incidence beams to the sample (inset on the left of the SLM). By two 4-f imaging 

systems formed by L3, L4, L5, and OL1 (objective lens, Nikon CFI-Apo-40X-W-NIR, 0.8 NA 

water dipping), we delivered the image of the speckled incidence beam into the sample plane. As 

shown in the upper right of the figure, we used water as an index matching medium to minimize 

the refractive index mismatch between the medium and the biological tissue. The reflection from 

the sample was collected by the same objective lens, and then delivered to the camera (pco.edge 

4.2 scientific CMOS camera) placed on the conjugate image plane of the sample plane.  

The reference wave reflected at BS1 traveled through similar optics as the sample wave. A 

scanning mirror was placed in the reference beam path to tune the path length of reference wave. 

To generate an off-axis interferogram, we selected the 1st order diffracted beam from a diffraction 

grating (Ronchi ruling, 72 lp/mm, Edmund optics) placed on the conjugate image plane of the 

camera. At BS6, the reference wave was combined with the reflected wave from the sample. Inset 

on the right of the camera in Supplementary Figure 9 shows the typical image of the interference 

pattern. Stripe patterns appearing on the speckled pattern of the sample wave were due to this off-

axis interference. By applying Hilbert transform on the measured interferogram, we could obtain 

the time-gated complex field map of the reflected wave from the sample.  

To construct a time-gated reflection matrix, typically 2,800 complex images were taken for the 

pre-determined set of random patterns of illumination written on the SLM. The number of images 

was determined in such a way to cover the maximum number of orthogonal channels for 

 0×  0     view field with the collection angle of 0.8 NA.  

 

 

Measurement of CLASS image using random basis. 

As discussed in the online Methods, we recorded a time-resolved complex field map     ⃗   ,  0  

for the jth random pattern written on the SLM by placing an ideal mirror at the sample plane for 

the arrival time  0  associated with the depth of the mirror. The representative complex-field 
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maps shown in Supplementary Figure 10a exhibited speckle patterns due to the use of random 

patterns of illumination. For the same set of illumination patterns, the complex-field map 

    ⃗   ,  0  of the reflected waves was recorded by placing the scattering and the aberrating 

medium on the test target as shown in Fig. 1b. 

 

Supplementary Figure 10. Recording of complex field maps for random basis  of illumination. a, 

Complex field maps of the incident waves generated by writing random phase patterns on the SLM. Images 

were acquired by placing a clean mirror at the sample stage. Only a few representative images from 2,800 

are shown. b, Complex field maps taken for the sample shown in Fig. 1b for the same set of illumination 

patterns used in a. Scale bar, 5μm. Images in a and b are normalized by their respective maximum 

amplitudes. The color map indicates both the amplitude and phase of the complex field. 

 

The use of random basis enabled us to distinguish the uncontrolled phase shifts of interferometric 

detection induced by the fluctuation of the relative beam path between sample and reference 

waves from the angle-dependent aberrations by the sample itself. In this case, we applied for an 

additional phase correction step to deal with the uncontrolled phase shifts among measurements 

for different speckled illuminations. To this end, we constructed the time-gated reflection matrix 

on the momentum difference domain,   ( ⃗
   ⃗   ⃗  ) as discussed in the method section. By 
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multiplying the input basis matrix,   ( ⃗
   ), the input plane wave basis was converted into the 

random speckled illumination basis,  

  ( ⃗
   ⃗    )    ( ⃗

   ⃗    ⃗  ) ×   ( ⃗
   )                 1   

The individual columns in   ( ⃗
   ⃗    ) correspond to the object spectrums in the momentum 

difference for the illumination of jth speckled pattern. Therefore, the summation of the matrix 

along row direction (i.e. summation of elements with the same Δ ⃗⃗   ⃗⃗
 
  ⃗⃗

 
) will lead to the 

coherent accumulation of single-scattered waves on the basis of speckled illumination. In order to 

deal with uncontrolled phase shifts, we added additional phase correction factor,   , for each 

illumination pattern. And the set of   ’s that maximize the total intensity of the coherent 

summation will correspond to the uncontrolled phase shifts.  

   
  

∑ |∑   (Δ ⃗  )    

 
|

 

 
Δ ⃗

                1   

For example, we present the obtained the uncontrolled phase shifts for the measurement in 

Supplementary Figure 11. Once this process is done, we multiply      to   ( ⃗
   ⃗    ) to 

which   ( ⃗
   )

  
 was multiplied to the time-gated reflection matrix   ( ⃗

   ⃗  )  free of 

uncontrolled phase shifts. The aberration correction method discussed in the main manuscript was 

performed afterwards.  
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Supplementary Figure 11. The uncontrolled phase shifts for the experimental measurement in Fig. 2.  

 

Detailed analysis of iteration process for the experimental data in Fig. 2 

For the experimental data in Fig. 2, CLASS images are shown in Supplementary Figure 12a for 

different iteration number. The image quality was greatly enhanced only after the 1st round of the 

iteration. As the number of iterations was further increased, the pattern boundary was sharpened. 

In addition, the intensity of CLASS image was increased up to 25 times compared with the initial 

image. The plot in Supplementary Figure 12b shows the quantified increase of total intensity of 

CLASS image. Due to the proper accumulation of single-scattered waves by means of aberration 

correction, the signal to background intensity ratio was also enhanced (Supplementary Figure 12c) 

by about 25 times. The line profiles of images before and after the correction shown in 

Supplementary Figure 12d confirmed that line spacing of 600 nm, which corresponds to the 

diffraction limit of the system, was clearly resolved and the contrast of line structures was greatly 

enhanced. 
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Supplementary Figure 12. Detailed analysis of experimental data in Fig.3. a, CLASS image after n
th
 

iteration (n=0, 1, 2, and 10). n=0 corresponds to the initial CLASS image. Color scales indicate normalized 

intensity by the maximum intensity for n=0. Scale bar, 4 μm. b, Total CLASS intensity integrated over the 

entire view field as a function of the number of iterations. Data was normalized by the initial intensity 

(n=0). c, Signal to background intensity ratio. Signal intensity was the average intensity at the patterned 

area, and background intensity was the average intensity for the rest. d, Line profiles of images before and 

after aberration correction (dashed lines in a for n=0, and n=10). For better comparison, the line profile for 

n=0 case (blue line) is multiplied by a factor of 10.  

 

 

Transfer function analysis of experimental data 

For the experimental data in Fig. 3, we could perform similar transfer function analysis performed 

for the simulation data in section 2. If we assume that the initial aberration maps of the target 

were identical to the obtained aberration maps in Fig. 3i-j, we can estimate the initial amplitude 

transfer function of single-scattered waves in CASS image by Eq. (14). As shown in 

Supplementary Figure 13a, the initial ATF is not uniform, and has less than 10% of amplitude 

compared to the aberration-free case. Also, the effective bandwidth at k-space is reduced about 

half of ideal case, which indicates the reduction in resolving power. By the application of CLASS 

algorithm, the ATF converged to the aberration-free case (Supplementary Figure 13b). Indeed, 
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both the amplitude and effective bandwidth of ATF have increased by the iteration in accordance 

with the theoretical expectation. 

 

 

Supplementary Figure 13. Transfer function analysis for the experimental result in Fig. 3. a, Initial 

amplitude transfer function obtained by the cross-correlation of input and output aberration maps in Figs. 

3i-j. Color scale is normalized by the maximum value of ideal transfer function. Scale bar,  0 . b, Line 

profiles of the amplitude transfer function at    0 for n=0, 1, 2, 3, and 10.  

 

Comparison with Zernike-based adaptive optics 

The major advancement that CLASS microscopy has made is the ability to characterize and 

eliminate steep variation of angle-dependent phase shifts induced by a thick scattering layer. The 

conventional adaptive optics experiments usually concern a few low-order Zernike modes, 

thereby confining their applicability to slowly varying angle-dependent phase shifts caused by 

mild aberrations of a thin scattering layer. To distinctively visualize the difference between 

CLASS microscopy and adaptive optics, we applied only the first 15 Zernike modes identified 

from the input and output aberration maps identified in Figs. 3i and 3j. As shown in 

Supplementary Figures 14a and 14b, fine details of aberration maps in Figs. 3i and 3j were 

missing for Zernike modes-based reconstruction. In addition, the coherent summation of single-

scattered waves is not as effective as the result shown in Fig. 3l as indicated by the color scale. 

This suggests that even 15 orders of Zernike modes were not enough to deal with the aberration 
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of the scattering layer that we used. Indeed, CLASS microscopy can address steep variation of 

specimen-induced aberrations that conventional adaptive optics cannot handle. 

 

Supplementary Figure 14. Reconstructed image up to 15 Zernike polynomials. a-b, Aberration maps 

for input and output, respectively, up to the first 15 Zernike modes identified from the data in Figs. 3i and 

3j. Color bar, phase angle in radian. Scale bar,  0 . c, Reconstructed CLASS image by the application of 

aberration correction maps in a and b. Scale bar, 4 μm. Color scale, intensity with the same unit as that in 

Fig. 3l.  

 

 

The estimation of   in Fig. 3  

There were about 20 times increase in signal intensity at the target in Fig. 3l in comparison with 

the initial intensity in Fig. 3d. But this doesn’t mean that η is 1/20. In fact, the real η  that we 

estimated by applying Eq. (16) to the measured aberration maps shown in Figs. 3i and 3j was 

  1  04. This discrepancy arises mainly because multiple-scattered waves as well as single-

scattered waves contributed to the signal intensity at the target in Fig. 3d. Before the application 

of CLASS algorithm, the intensity of CLASS image at the target is the sum of single-scattered 

waves and the multiple-scattered waves that survived the time-gating and spatial coherence gating, 

i.e.                +  m     with initial SNR given by         m    ⁄    𝛾 𝛽 𝑁m. After the 

aberration correction, the intensity at the target becomes,  a              +  m     with SNR 

increased to  𝛾 𝛽 𝑁m. Since the enhancement of the apparent signal intensity at the target was 

about 20 times, we can set up the following equation,  

 a    
       

 
         +  m    

       +  m    
  0        19  
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By inserting the estimated   from the measured aberration maps, we can obtain the initial single-

to-multiple scattering ratio in the position basis, 

       

      
   𝛾 𝛽 𝑁m  19 1 4⁄  0 1    0  

Therefore, multiple scattering was about 10 times stronger than the single scattering before the 

aberration correction, and this was responsible for the discrepancy mentioned above. Since the 

initial SNR of   𝛾 𝛽 𝑁m  0 1 was far less than unity, multiple scattering has strongly 

degraded the resolving power of imaging. By the aberration correction, this SNR was increased to 

 𝛾 𝛽 𝑁m   1 1 by selectively enhancing the intensity of single-scattered waves.  

 

The difference between input and output aberration maps 

In the ideal case, the aberrations for the input and output should be identical in the reflection 

geometry since waves travel back and forth through physically the same sample. In the real 

practice, however, the optical system in the illumination beam path from the light source to the 

beam splitter and that in the collection beam path from the beam splitter to the camera are not 

perfectly the same. Therefore, input and output paths have different system aberrations. In 

addition, the slight misalignment of the optical axis or image focus can make the difference even 

larger. In general, the specimen-induced aberrations are much stronger than these system 

aberrations such that aberration maps for the input and output looked largely the same. For 

example, the normalized cross-correlation of input and output pupil functions given by the 

aberration maps in Figs. 3i and 3j, respectively, was 0.64. But when we looked at the phase 

difference between the two (Supplementary Figure 15), their difference was clearly visible. We 

could observe slowly varying phase difference across the pupil due to the difference of the system 

aberrations between the input and the output. 
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Supplementary Figure 15. Phase difference between input and output aberrations obtained in Fig. 3. 

Scale bar,  0 . Color bar, phase in radians.   

 

Note that we also tried to correct aberration with the assumption that the input and output 

aberrations are identical. Supplementary Figure 16 below shows the identified aberration map and 

resulting CLASS image for the sample in Fig. 4. In comparison with Fig. 4c in the main text, the 

resolving power and signal intensity were significantly lower. This result shows both the merit 

and the importance of independently addressing the input and output aberrations. 

 

Supplementary Figure 16. Aberration correction of the data in Fig. 4 with the assumption that the 

input and output aberrations are identical. a, Acquired aberration map under the assumption of identical 

input-output aberration. Scale bar,  0 . Color bar, phase in radians. b, CLASS image after the aberration 

correction by a. Scale bar, 4 microns. Color bar, the intensity normalized by the maximum intensity in Fig. 

4b 
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The measurements of the scattering mean free paths of scattering media 

In order to determine the scattering mean free path of the scattering medium used in our study, we 

measured the intensity of ballistic photons as a function of the thickness of the scattering layer. 

We placed a stack of phantom scattering layers of known thickness on a flat mirror, and then 

measured the decay of the intensity of ballistic components depending on the number of phantom 

layers. Typical thickness of individual layer was 160 µm. Specifically, we illuminated a normally 

incident plane wave and recorded the complex field map of the backscattered waves. We then 

extracted the intensity of the normally reflecting plane wave component from the recorded map. 

By using the exponential curve fitting, we could obtain the decay constant of 51.2 µm for the 

roundtrip (Supplementary Figure 17). Therefore, the scattering mean free path of the scattering 

layer was 102.4 µm. 

 

Supplementary Figure 17. Measurement of the scattering mean free path of the scattering layers 

used in Fig. 1. 
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Here one can notice that the first four points up to the thickness of 500 µm (1 mm in travel 

distance including the returning path, which corresponds to about 10 ls) fit well to the exponential 

curve while the intensity taken at thicker depth was slightly larger than the fitted curve. In our 

measurement of the ballistic photons, we used both angular- and time-gating by the time-resolved 

complex field imaging. Like any other ballistic photon measurement methods, our method is 

effective up to a certain thickness of the sample. If the scattering medium becomes too thick, 

some of the multiple-scattered waves can pass through these gating operations, and this is source 

of discrepancy that we observed at the thicknesses larger than 500 µm. In fact, the conventional 

method mostly uses the angular gating in the transmission geometry (for instance, see Ref. 12 and 

the work by Emily J. McDowell et al.2), and its effectiveness was shown up to about 12 ls 

(supplementary material in Ref. 12), similar range to our method. However, this limitation is not a 

problem at all in estimating the scattering mean free path of the phantom scattering layer. In 

preparing the scattering layer of an arbitrary thickness, we stacked multiple 160 µm-thick 

scattering layers made of the mixture of polystyrene beads and PDMS solution at a uniform 

concentration. Therefore, the reasonable measurements of ballistic photons up to the thickness of 

the scattering layer where the contribution of multiple scattering is negligible, which is about 500 

µm in our case, will ensure the accurate estimation of the scattering mean free path of individual 

160 µm-thick scattering layers. And this estimation will reasonably be applied to the multiple 

stacked layers. 

 

In the case of rat brain tissues, scattering properties of the tissue slices vary with imaging 

position. Therefore, we estimated the scattering mean free path in situ from the total intensity of 

the CLASS image, which is close to the intensity of the ballistic photons, and the thickness of the 

tissue layer measured from the time delay. We took logarithm of this total intensity of the ballistic 

photons normalized by that measured with the mirror sample for the calculation of the scattering 

mean free path. 
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Supplementary Note 4. Additional experiments 

In the main text, we used a resolution target having spatial variation of reflectance for 

demonstrating the CLASS microscopy. In this section, we provided experimental data for other 

types of targets such as a resolution target with phase contrast and point particles. 

 

CLASS imaging of phase objects  

In this section, we present experimental study of applying CLASS microscopy for phase-contrast 

targets. As a test target, we fabricated a gold layer coated on a slide glass in such a way that the 

thickness of the coating varies in space (Supplementary Figure 18a). In particular, the part of gold 

layer exhibiting the pattern of the resolution target was thicker than the rest by about 100 nm. 

Since the gold layer were coated over entire area, reflectance was almost uniform across the field 

of view. On the other hand, the reflected waves experience less phase retardation at the pattern 

than that at the rest. The height difference of about 100 nm corresponds to the phase retardation 

of 2 radians. Therefore, this target acts as a phase-contrast object. 

  

Similar with Fig. 1b, we put both the aberrating layer and 5ls-thick scattering layer on the target 

as shown in Supplementary Figure 18a. Supplementary Figures 18b and 18c show the amplitude 

and phase maps, respectively, of CLASS image before aberration correction in which targets were 

invis ible due to the aberration and multiple scattering. After applying for the CLASS algorithm, 

we could clearly identify target structures both in amplitude and phase maps (Supplementary 

Figures 18d and 18e). In the amplitude image (Supplementary Figure 18d), mainly the edges of 

the pattern were visible as the phase gradient there caused diffraction. On the other hand, the 

phase retardation occurred inside the pattern in the phase image (Supplementary Figure 18e). In 

Supplementary Figure 18f, we calculated the height of the pattern along the dashed line in 

Supplementary Figure 18e from the measured phase and confirmed that the calculated value was 

indeed very close to 100 nm. The aberration maps identified by the CLASS microscopy were 
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shown in Supplementary Figure 18g and 18h. Similar to the results in the main text, the 

asymmetric shape of aberration caused by the cylindrical dent was well visible.  

 

 

Supplementary Figure 18. Demonstration of CLASS microscopy with phase object. a, Layout of 

sample geometry. A patterned gold layer was placed underneath a set of aberrating layer and scattering 

layer. The thickness of the scattering layer corresponds to 5ls. b-c, Amplitude and phase maps of CLASS 

image, respectively, before the aberration correction. d-e, Amplitude and phase maps of CLASS image 

after aberration correction. Scale bar, 4 μm. Color scales in b and d were normalized by the maximum 

amplitude in b. Color scales in c and e are phase in radians. f, Height of the target along the dashed line in e 

estimated by the phase retardation. g-h, Aberration maps for input and output, respectively, identified by 

the CLASS microscopy. Scale bar,  0 . Color scales, phase in radian.  

 

 

CLASS imaging of point particles  

In this section, we demonstrated the CLASS microscopy for point-like objects. Gold nano-

particles with the diameter of 400 nm were placed underneath the same set of aberrating and 

scattering layers used in section 4. In this particular experiment, the cylindrical groove in the 

aberrating layer was rotated by about 60 degrees with respect to horizontal axis. As shown in 

Supplementary Figure 19a, the image of particles were elongated along the orthogonal direction 



32 
 

to that of the groove because of the astigmatic aberration. After the aberration correction 

(Supplementary Figure 19b), individual particles were clearly visible. The input and output 

aberrations maps were shown in c and d, respectively. The average FWHM of individual particles 

in b was about 470±15 nm, which ensures the diffraction-limited spatial resolution of 600 nm. 

 

Supplementary Figure 19. Demonstration of CLASS microscopy for gold nanoparticles. a-b, CLASS 

images before and after the aberration correction. Scale bar, 4 μm, Color scale, normalized intensity. 

Cylindrical groove of aberrating layer was laid along x’ direction. c-d, Measured aberration maps for the 

input and output. Scale bar,  0 . Color scales, phase in radian.  
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