Title

Characterization of a major QTL for manganese accumulation in rice grain

Authors

Chaolei Liu, Guang Chen, Yuanyuan Li, Youlin Peng, Anpeng Zhang, Kai Hong, Hongzhen Jiang, Banpu Ruan, Bin Zhang, Shenglong Yang, Zhenyu Gao* & Qian Qian*

	e	. ,				
Trait (mg/kg)		Parents		RIL population		
		93-11	PA64s			H^2 %
		$(Mean \pm SD)$	$(Mean \pm SD)$	Mean \pm SD	Range	
Mn	Hangzhou	43.20 ± 2.24	60.42 ± 3.34 **	46.88 ± 13.11	70.66	20.67
	Hainan	24.29 ± 1.94	$32.18 \pm 1.92 **$	28.37 ± 4.90	21.75	30.07

Table S1 Phenotypic variation of grain manganese (Mn) concentration in parents and RILs grown in Hangzhou and Hainan (2013).

Note: ** indicates a 1% significant level compared to 93-11 according to the *t* test (n = 6). Broad-sense heritability (H^2) was calculated as described in Materials and Methods.

				Llongsho			Llainan	
	Chr	Marker interval	Hangzhou				Hainan	
	Cin.		LOD ^b	R²(%)	Add. ^c	LOD^b	R ² (%)	Add. ^c
qGMN1	1	SNP1-238~1-247	2.57	5.8	1.189			
qGMN2	2	SNP2-329~2-367	2.86	10.2	1.594			
qGMN3	3	SNP3-31~3-32				4.13	3.4	-2.414
qGMN4	4	SNP4-220~4-243	2.78	3.1	-0.385	2.52	3.5	-1.564
qGMN5	5	SNP5-211~5-225	3.92	4.8	1.115			
qGMN6.1	6	SNP6-31~6-32	2.98	3.1	-0.170			
qGMN6.2	6	SNP6-149~6-180	2.68	9.4	-1.756	3.95	13.5	-5.708
qGMN7.1	7	SNP7-53~7-64	5.85	15.6	-1.547	6.37	22.8	-6.624
qGMN7.2	7	SNP7-152~7-199	2.67	6.0	-1.204	2.82	7.3	-5.320
qGMN8.1	8	SNP8-29~8-63	4.49	10.6	-1.576	3.16	7.9	-4.662
qGMN8.2	8	SNP8-103~8-116				3.92	4.8	-2.947
qGMN9	9	SNP9-9~9-28	2.93	6.6	1.239			

Table S2 Quantitative trait loci (QTLs) for grain Mn concentration in RIL population.

Note: ^{*a*} Detected QTLs are shown with the italic abbreviation of the trait and the chromosome number. ^{*b*} Threshold values of logarithm of odds (LOD)>2.50 are shown. ^{*c*} Additive effect (Add.) of the 93-11 allele.

Markor namo	Primer sequence $(5' \rightarrow 3')$			
	Forward	Reverse		
L6952	GGGAGCCAAAACAGTAGCAG	GCTGTGCCCACTAAGTTAGC		
L8286	AACTCATGTGCAAGAAGGAG	TGTTTATGCTATTATTAAGCAACCT		
L8397	GCCTAAAGTATAAGGCAAATTAGA	AAAGAGATGATGGTGGGAGT		
L8451	TCCCATAATCTAGACAAGGG	TAACATCACACGACAGTAC		
L8472	GGTCCATCTTATTCAGTTGG	TACTCCGTATGCGTGGAACC		
L8691	ACTAAGCATCACTTGTAGAG	TGTTTCAAGCTAAATGCCAC		
L8728	TCCCATAATCTAGACAAGGG	TAACATCACACGACAGTAC		
L8798	TCCGATGTTACAACCAAGAC	TCCTCATCTCGGTTGCTCAG		
L8857	TCCTCATCTCGGTTGCTCAG	CTTTTCGCTAATTTGAACTTGT		
L8906	CAAAATTTTCATGGCTTGAC	TGTAGTCTTTGATGGAAAGCTC		
L8918	CAATGTATATTTGACATAAACCAACA	CTTCCTTGCCCTGGAAGC		
L9020	TGAGATGAGTGAAAGGGGATA	TGAGTGATAAAACAACTGATAACAA		
L9205	GGAGCTTGTGGAGTATTACAT	GGGCTCTTTGACATCGTC		
L9312	AGGGTCCTCGTCTTCTTTTGA	AGTCCTATCCAGATTGCCCTG		
RT-OsNRAMP5	CAGCAGCAGTAAGAGCAAGATG	GTGCTCAGGAAGTACATGTTGAT		
RT-Actin1	GACTCTGGTGATGGTGTCAGC	GGCTGGAAGAGGACCTCAGG		
RT- <i>GFP</i>	CCTACGGCAAGCTGACCCTG	TGCTGCTTCATGTGGTCGGG		
RT-GUS	TCCTTCATTTTCTTGGTTAGGACCC	CGTCGGTTCTGTAACTATCATCATCA		

Table S3 Primers for Insertion/deletion (InDel) markers and qRT-PCR in this study.

Code	Cultivar name	Subspecies	OsNRAMP5 promoter
		Subspecies	haplotype
PA64s	PA64s	Indica	Ι
NPB	Nipponbare	Japonica	Ι
WYJ7	Wuyunjing7	Japonica	Ι
CCG	Changchungu	Indica	Ι
154	OPALE	Temperate Japonica	Ι
252	Qiuguang	Temperate Japonica	Ι
276	Qiutianxiaoding	Temperate Japonica	Ι
563	SAGC-7	Admix	Ι
736	GANIGI	Tropical Japonica	Ι
992	CNA-7BO11>33-13-6-1	Tropical Japonica	Ι
993	IR 63380-16	Tropical Japonica	Ι
995	RIZZOTTO 51-1	Temperate Japonica	Ι
1057	T757	Indica	Ι
1199	BOCAO	Tropical Japonica	Ι
93-11	93-11	Indica	II
71	MELEKE	Indica	II
140	IR 72967-12-2-3	Tropical Japonica	II
166	WAS 170-B-B-1-1	Indica	II
167	WAS 173-B-B-6-2-2	Indica	II
271	K24	Indica	II
447	Chorofa	Indica	II
491	Zhongyouzao81	Indica	II
493	IR77289-14-1-2	Indica	II
498	IR62266-42-6-2	Admix	II
502	829	Admix	II
767	NSIC RC9 (APO)	Indica	II
871	ORIONE	Temperate Japonica	II
875	UPL RI-7	Admix	II
1105	Padi Ladang Ase Polo Komek	Indica	II
TN1	Taizhong1	Indica	III
NJ6	Nanjing6	Indica	III
565	KCD1	Indica	III

Table S4 The code, name, subspecies and haplotypes of *OsNRAMP5* promoter of rice varieties used in the present study.

Note: Most of the varieties are from 3K rice germplasm resources (http://cgm.sjtu.edu.cn/3kricedb/).

Trait	93-11	CSSL-qGMN7.1	
Plant height (cm)	120.1 ± 2.6	121.6 ± 2.1	
Panicle length (cm)	24.8 ± 1.9	25.6 ± 1.5	
Primary branch number	10.8 ± 0.7	10.7 ± 0.9	
1000-seed weight (g)	30.02 ± 1.61	29.86 ± 1.41	
Yield per plant (g)	35.9 ± 2.7	34.6 ± 1.8	
Spikelets per panicle	220.3 ± 27.9	216.3 ± 18.5	
Seed set	89.6 ± 0.8	90.2 ± 1.2	
Productive tiller	8.3 ± 1.7	8.5 ± 2.1	
Heading date(d)	92 ± 2.6	91 ± 2.3	
Grain Mn conc. (mg/kg DW)	32.26 ± 2.37	$43.56 \pm 3.79 **$	
Grain Cd conc. (µg/kg DW)	204.24 ± 40.26	$115.24 \pm 12.06 **$	

Table S5 Comparison of eleven traits between 93-11 and CSSL-qGMN7.1 in Hangzhou (2015).

Phenotypes are presented as mean \pm standard deviation. ** indicates a 1% significant level compared to 93-11 according to the *t* test (*n* = 6).

Fig.S1 Frequency distributions for grain Mn concentration in RILs in Hangzhou (2013) and Hainan (2013). Arrowheads indicate the means of 93-11 and PA64s and horizontal bars represent standard deviation of each cultivar (n = 6).

Fig.S2 Chromosomal locations of QTLs for grain Mn concentration detected in RILs. The number on the left of each chromosome is the SNP marker interval. The blue star represents phenotype collected in Hangzhou (2013) and the red one that in Hainan (2013).

Fig.S3

Fig.S3 Breeding scheme for the development of CSSL-qGMN7.1 and its genetic background. (a) BC4, a line carrying segments of PA64s at qGMN7.1 locus from RILs, was continuously backcrossed with 93-11. The CSSL-qGMN7.1 was selected from BC₄F₂ population by phenotyping and genotyping; (b) The genetic background of CSSL-qGMN7.1. Black bars represented the subsitution segments from PA64s.

Fig.S4

Fig.S4 Green fluorescent signals of GFP driven by 93-11 (up) and PA64s (down) promoter.