Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode

Lea Hembach¹, Stefan Cord-Landwehr¹, Bruno M. Moerschbacher^{1,*}

¹Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany

* corresponding author

moersch@uni-muenster.de

A Based on full amino acid sequence | B Based on NodB homology domain

Supplementary Figure S1 Phylogram based on A) full amino acid sequence of CDAs and B) based on NodB homology domains generated using COBALT National center for biological information ⁴⁴. Branch length represents sequence similarity.

Supplementary Figure S2 Relative amounts of different chito-oligosaccharides after performing enzymatic deacetylation of the chitin tetramer (A4, [GlcNAc]₄,) using different CDAs [*Bc*CDA5, NodB, *Cv*CDA, *Vc*CDA, *Ve*CDA, *Cn*CDA4, *Pgt*CDA] for 98 h in $\underline{\mathbf{A}}$ 50mM triethanolamine buffer pH 7 and $\underline{\mathbf{B}}$ 50mM sodium bicarbonate buffer, pH 7. Data summarized in this figure have been generated by semi-quantitative HILIC-ESI-MS analysis.

Supplementary Figure S3 Base peak chromatogram of HILIC-ESI-MS analysis showing products after *N*-acetylation of the chitosan tetramer (D4, $[GlcN]_4$, open circles) by two bacterial CDAs (VcCDA, NodB) with either A) first *Vc*CDA and in a second *N*-acetylation step NodB or B) first NodB and then *Vc*CDA.

Supplementary Figure S4 Chromatographic purification up to analytical grade of different (pa)COS. Base peak chromatograms of HILIC-ESI-MS analysis showing purified A1D3 with different patterns of acetylation. Either produced by enzymatic deacetylation of the GlcNAc tetramer using *Vc*CDA in combination with *Pgt*CDA (ADDD), NodB in combination with *Pgt*CDA (DADD), NodB, *Vc*CDA and *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DDDA) and enzymatic *N*-acetylation of the GlcNAc tetramer using *Pes*CDA (DADD).