Supporting Information for

Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans

Ruixiang Blake Zheng[‡]*, Sabine A. F. Jégouzo[§]*, Maju Joe[‡]*, Yu Bai[‡], Huu-Anh Tran[‡], Ke Shen[‡], Jörn Saupe[‡], Li Xia[‡], Md. Faiaz Ahmed[‡], Yu-Hsuan Liu[‡], Pratap Subhashrao Patil[#], Ashish Tripathi[#], Shang-Cheng Hung[#], Maureen E. Taylor[§], Todd L. Lowary[‡], and Kurt Drickamer[§]

[‡]Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada [§]Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom [#]Genomics Research Centre, Academia Sinica, Nangang, Taipei, Taiwan

Table of Contents

Additional Experimental Methods	Pages S2–S4
Table S1. Linkage Modes of Different Glycan Classes to BSA	Page S5
Table S2. Summary of Glycan Synthesis	Page S6
Experimental Procedures and Data for Glycan Synthesis	Pages S7–S264
References	Pages S265–S269

Additional Experimental Methods

Materials

Fluorescein isothiocyanate, Alexa Fluor 555 *N*-hydroxysuccinimidyl ester, and streptavidin labelled with Alexa Fluor 488 or Alexa Fluor 555 were obtained from Life Technologies. DyLight 549 Anti-Streptavidin Antibody was purchased from Vector Laboratories and the CyTM3 IgG fraction monoclonal mouse anti-fluorescein from Jackson ImmunoResearch. All other reagents were purchased from Sigma.

Synthesis of Glycans

The synthesis of a subset of the glycans incorporated into the array has been reported previously: 21, $^{1}22$, $^{1}44$, 2 and 56-59. ³ The synthesis of the remaining glycans is described below.

Protein expression

The extracellular domains of DC-SIGN,⁴ DC-SIGNR,⁴ and the macrophage galactose receptor,⁵ as well as a fragment representing the CRDs plus roughly half of the coiled-coil neck domain of langerin⁶ and the isolated CRD of human dectin-2,⁷ were expressed in the T7-driven systems described previously and were purified by affinity chromatography on immobilized carbohydrate columns. Versions of the CRDs from mincle⁸ and BDCA-2⁹ with C-terminal biotinylation target sequences were expressed in the presence of biotin ligase so that they were conjugated with biotin in the bacteria. The biotin-tagged CRDs were purified by affinity chromatography before complexing with fluorescently labeled streptavidin.

Fragments of the mannose receptor representing the extracellular domain and CRDs 1–8 were expressed in Chinese hamster ovary cells grown in serum-free medium and purified by affinity chromatography on mannose-Sepharose.¹⁰⁻¹¹

Protein labeling

Proteins were labeled directly with fluorescein isothiocyanate in buffer containing 150 mM NaCl, 100 mM Bicine, pH 9.0, and 25 mM CaCl₂. Five aliquots of 10 μ l of 1 mg/ml fluorescein isothiocyanate dissolved in dimethylsulfoxide were added to 1 ml of protein solution and allowed to react overnight at 4 °C.

Direct labeling of proteins with Alexa Fluor 555 was performed on proteins dissolved in 150 mM NaCl, 100 mM Bicine, pH 9.0, and 25 mM CaCl₂, except for langerin, for which the CaCl₂

concentration was reduced to 5 mM. Alexa Fluor 555 *N*-hydroxysuccinimidyl ester, 100 μ g dissolved in 10 μ l of dimethylsulfoxide, was added and reacted for 1 h at room temperature.

Labelled proteins were re-purified by affinity chromatography on 1 ml affinity columns of mannose-Sepharose, except for the macrophage galactose receptor, for which 1 ml of galactose-Sepharose was used. Proteins were loaded in the reaction buffer, followed by washing of the column with 5 volumes of 150 mM NaCl, 25 mM Tris-Cl, pH 7.8, 25 mM CaCl₂. Columns were eluted with 6 x 0.5 ml of 150 mM NaCl, 25 mM Tris-Cl, pH 7.8, 2.5 mM EDTA and proteins were detected by SDS-polyacrylamide gel electrophoresis.

Complexes with Alexa Fluor 488- or 555-labeled streptavidin were formed by incubation of 100 µg of streptavidin with a 2- to 5-fold excess of biotin-tagged CRD in 150 mM NaCl, 25 mM Tris-Cl, pH 7.8, 25 mM CaCl₂ overnight at 4 °C. For repurification, the complexes were applied to 1 ml affinity columns that do not bind the CRDs alone. For mincle, mannose-Sepharose was used in place of trehalose-Sepharose. For BDCA-2, mannose-Sepharose was used in place of the glycopeptide resin used for initial purification. In each case, after washing with 5 column volumes of 150 mM NaCl, 25 mM Tris-Cl, pH 7.8, 25 mM CaCl₂, the CRD-streptavidin complex was eluted with 150 mM NaCl, 25 mM Tris-Cl, pH 7.8, 2.5 mM EDTA.

Molecular modeling

All modeling was undertaken using PyMOL. Conformations of glycans were not modified, but irrelevant regions were removed. Superpositions of individual monosaccharide residues were performed manually.

The crystal structure of trehalose monobutyrate bound to bovine mincle, Protein Data Bank entry 4ZRV, was used to model trehalose derivatives bound to mincle. The possible position of an additional glucose residue linked β 1-4 to the glucose residue in the secondary binding site was modeled by superimposing the reducing monosaccharide of the Glc β 1-4Glc disaccharide, cellobiose, Cambridge Structural Database entry CELLOB, on the glucose residue in trehalose. For modeling the Glc1-4Glc disaccharides, the glucose residue from trehalose that occupies the secondary binding site in the mincle-trehalose monobutyrate structure was omitted and the reducing end of either the Glc α 1-4Glc α 1-4Glc trisaccharide or the Glc β 1-4Glc disaccharide was superimposed on the glucose residue in the primary binding site. The α -linked trisaccharide was abstracted from the structure of cycloamylose, Protein Data Bank entry 1C58 and the cellobiose disaccharide was as above. The same procedure was employed for Glc1-6Glc disaccharides, with Glcα1-6Glc (isomaltose) and Glcβ1-6Glc (gentiobiose) from PubChem entry CID 439193 and Cambridge Structural Database entry GENTBS, respectively.

For modeling of rhamnose binding to a fucose-binding site, α -L-rhamnose, PubChem entry CID 25310 was superposed on a fucose residue in the primary binding site of langerin, which was obtained by removing all the other monosaccharide residues from the crystal structure of langerin with the blood group B trisaccharide, Protein Data Bank entry 3P5G. For modeling of rhamnose binding to a galactose-binding site, α -L-rhamnose was superposed on a galactose residue in the primary binding site of the scavenger receptor C-type lectin, which was obtained by removing all the other monosaccharide residues from the crystal structure of the scavenger receptor with the Lewis^x trisaccharide, Protein Data Bank entry 20X9. Methyl α -D-arabinofuranoside was obtained from Cambridge Structural Database entry ARAFLTD1 and was overlayed on the D-mannopyranose residue in the primary binding site of langerin in complex with the Mana1-2Man disaccharide, Protein Data Bank entry 3P5F.

Linker*	Class [‡]	Glycans with this linker
Glycan OH O(CH ₂) ₈ NH—Squaramide—BSA	LAM	1–12, 15, 16, 18–22, 25, ^ξ 44, 45, 49
$\begin{array}{c} \hline Glycan \rightarrow 0 & OH \\ HO & O \\ HO & O \\ HO & O(CH_2)_8 NH - Squaramide - BSA \end{array}$	LAM	17, 50, 56–59
$\begin{array}{c} Glycan \\ HO \\ O \\ $	LAM	23
$\begin{array}{c} HO \\ O \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\$	GLU	13, 14, 24, 46, 48, 52
HO O OH (CH ₂) ₈ NH—Squaramide—BSA	PGL	26–29, 33–37, 40–43, 51, 53
HO OH OH OH OH OH Glycan	PGL	30–32
Glycan O H (CH ₂) ₇ NH-SquaramideBSA BnO OBn O	LOS	38, 54, 55
HO HO HO HO HO HO HO HO HO HO HO HO HO H	ТММ	39
Glycopeptide H H H H H H H H H H H H H H H H H H H	GPL	47, 60, 61

Table S1. Linkage Modes of Different Glycan Classes to BSA

*In some glycans, the residue bearing the linker is further modified by additional glycosylation or methylation. See complete structures for complete details.

^{*}GPL = glycopeptidolipid; GLU = α -Glucan; LAM = Lipoarabinomannan; LOS = lipooligosaccharide; PGL = phenolic glycolipid; TMM = Trehalose Monomycolate ⁵Linker chain length is (CH₂)₅ not (CH₂)₈

Glycan	Class*	Section or Reference	Page	Glycan	Class*	Section or Reference	Page
1	LAM	Section 3	S9	32	PGL	Section 25	S166
2	LAM	Section 4	S16	33	PGL	Section 26	S169
3	LAM	Section 4	S16	34	PGL	Section 27	S175
4	LAM	Section 4	S16	35	PGL	Section 28	S178
5	LAM	Section 5	S27	36	PGL	Section 29	S179
6	LAM	Section 5	S27	37	PGL	Section 30	S184
7	LAM	Section 6	S40	38	LOS	Section 31	S185
8	LAM	Section 6	S40	39	TMM	Section 32	S189
9	LAM	Section 6	S40	40	PGL	Section 33	S196
10	LAM	Section 7	S54	41	PGL	Section 34	S201
11	LAM	Section 8	S63	42	PGL	Section 35	S205
12	LAM	Section 9	S73	43	PGL	Section 36	S209
13	GLU	Section 10	S82	44	LAM	Reference ²	_
14	GLU	Section 11	S90	45	LAM	Section 37	S212
15	LAM	Section 12	S97	46	GLU	Section 38	S214
16	LAM	Section 13	S104	47	GPL	Section 39	S219
17	LAM	Section 14	S106	48	GLU	Section 40	S231
18	LAM	Section 15	S111	49	LAM	Section 41	S238
19	LAM [‡]	Section 16	S125	50	LAM	Section 42	S240
20	LAM	Section 17	S129	51	PGL	Section 43	S247
21	LAM [‡]	Reference ¹	-	52	GLU	Section 44	S251
22	LAM [‡]	Reference ¹	_	53	PGL	Section 45	S255
23	LAM	Section 18	S143	54	LOS	Reference ¹²	_
24	GLU	Duplicate of 14	_	55	LOS	Reference ¹²	_
25	LAM	Reference ¹³	_	56	LAM	Reference ³	_
26	PGL	Section 19	S148	57	LAM	Reference ³	_
27	PGL	Section 20	S156	58	LAM	Reference ³	_
28	PGL	Section 21	S157	59	LAM	Reference ³	_
29	PGL	Section 22	S158	60	GPL	Section 46	S257
30	PGL	Section 23	S160	61	GPL	Section 46	S257
31	PGL	Section 24	S164				

 Table S2.
 Summary of Glycan Synthesis

* GPL = glycopeptidolipid; GLU = α -Glucan; LAM = Lipoarabinomannan; LOS = lipooligosaccharide; PGL = phenolic glycolipid; TMM = Trehalose Monomycolate * Nominally fragments of arabinogalactan, but related to LAM.

1. Synthetic General Methods

All reagents were purchased from commercial sources without further purification, while reaction solvents were purified using a PURESOLV-400 system (Innovative Technology Inc., Newburyport, MA). All reactions were carried out in oven-dried glassware under a positive pressure of argon and monitored by TLC Silica Gel 60 F254 (0.25 mm, E. Merck) unless otherwise indicated. Plates were visualized under UV light and/or stained with a solution of panisaldehyde or 5% H₂SO₄ in ethanol. Column chromatography was performed using Silicycle UltraPure silica gel (SiliaFlash[®] P60, 40–63 µm, Cat# R12030 B). The ratio between silica gel and crude product ranged from 100:1 to 20:1 (w/w). Optical rotations were measured in a microcell (10 cm, 1 mL) at 22 ± 2 °C and are in units of degree mL/(g·dm). Organic solutions were concentrated under vacuum at temperature below 50 °C on a rotary evaporator. ¹H NMR spectra were recorded at 400, 500, 600 or 700 MHz, and chemical shifts were referenced to $CDCl_3$ (7.26 ppm), CD_3OD (4.78 ppm) or D_2O (4.78 ppm). ¹H NMR data are reported as though they are first order and the peak assignments were made on the basis of 2D-NMR (¹H–¹H COSY and HMQC) experiments. ¹³C NMR spectra were recorded at 100, 125, 150, or 175 MHz, and ¹³C chemical shifts are referenced to CDCl₃ (77.23) or CD₃OD (48.90) or external acetone (31.07, D₂O). Electrospray mass spectra were recorded on samples suspended in mixtures of THF with CH₃OH and added NaCl. MALDI mass spectrometry was performed on a Voyager Elite time-of-flight spectrometer on samples suspended in 2, 5-dihydroxy benzoic acid or IAA using the delayed-extraction mode and positive-ion detection.

2. General Procedures

Depending on the glycan class, final compounds were stored either as the free amine, or the corresponding azide, trifluoroacetamide or squaramide derivative. For the trifluoroacetamide and azide derivatives, they were converted to the amine immediately before conjugation to the protein (via squaramide) using the general procedures outlined below. The procedure used to conjugate the amines to BSA via the squaramide linker is detailed in the main text of the manuscript.

2.1 Conversion of trifluoroacetamide derivatives to amines

To a solution of the oligosaccharide trifluoroacetamide (10 mg) in CH₃OH (0.5 mL) was added 1M sodium methoxide solution (10.0 equiv.) and the mixture was stirred at rt for 16–24 h. The pH of the reaction mixture was then adjusted to just below 8.0 (as determined by wet pH paper) by careful addition of Amberlite IR 120 H⁺ resin. After filtration of the solution, the filtrate was concentrated and the resulting residue was dried under vacuum to obtain the corresponding oligosaccharide amine, which was used in the squaramide coupling reactions.

2.2 Conversion of azide derivatives to amines

To a solution of the oligosaccharide azide (10 mg) in CH₃OH–H₂O (8–10 mL, 8:3) at rt was added 20% Pd(OH)₂–C or 10% Pd–C (10–12 mg), and the reaction mixture was stirred under H₂ (1 atm) for 4–16 h. The reaction mixture was diluted with CH₃OH (6 mL) and filtered through filter paper (medium porosity) to remove the catalyst. The filtrate was concentrated to give a syrup that was dissolved in distilled water (5 mL), filtered using a 13 mm Nylon 0.2 μ m syringe filter unit and then lyophilized to give the corresponding amine, which was used in the squaramide coupling reactions.

3. Synthesis of 1

Scheme S1. Synthesis of **1 Trifluoroacetamide**. a) NIS, AgOTf, CH₂Cl₂, 86%; b) NaOCH₃, CH₃OH, CH₂Cl₂, 93%; then BnBr, NaH, DMF, 90%; c) *n*-Bu₄NF, THF, 94%; d) **LAM-6**, NIS, AgOTf, CH₂Cl₂, 93%; e) NaOCH₃, CH₃OH, CH₂Cl₂, 94%; f) **LAM-9**, NIS, AgOTf, CH₂Cl₂, 87%; g) NaOCH₃, CH₃OH, CH₂Cl₂, 83%; h) H₂, Pd–C, pyridine; then trifluoroacetic anhydride, pyridine, 70%; i) H₂, Pd–C, THF, CH₃OH, 90%.

8-Azidooctyl 2,3-di-O-benzoyl-5-O-t-butyldiphenylsilyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-3). Thioglycoside LAM-1¹ (5.2 g, 7.4 mmol) and LAM-2¹ (3.0 g, 6.2 mmol) were dried over P₂O₅ under vacuum for 6 h and then dissolved in CH₂Cl₂ (100 mL), and the resulting solution was cooled to 0 °C. Powdered 4 Å molecular sieves (4.5 g) were added, and the suspension was stirred for 30 min at 0 °C before *N*-iodosuccinimide (1.7 g, 7.4 mmol) and silver triflate (0.48 g, 1.8 mmol) were added. The reaction mixture was stirred for 20 min. at that temperature, neutralized with Et₃N, diluted with CH₂Cl₂, and filtered through Celite. The filtrate was washed successively with a satd aq Na₂S₂O₃ soln (300 mL × 2) and water before being dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by chromatography (10:1 hexanes–EtOAc) to afford **LAM-3** (5.7 g, 86%) as a syrup. R_f 0.44 (4:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.11–8.07 (m, 2 H), 8.03–7.99 (m, 2 H), 7.78–7.74 (m, 4 H), 7.60–7.52 (m, 2 H), 7.43–7.30 (m, 15 H), 7.29–7.20 (m, 5 H), 5.66 (dd, 1 H, J = 4.8, 1.1 Hz), 5.59 (d, 1 H, J = 1.1 Hz, H-1), 5.35 (s, 1 H, H-1), 5.09 (s, 1 H), 4.63 (d, 1 H, J = 11.8 Hz), 4.62 (d, 1 H, J = 11.8 Hz), 4.54 (d, 2 H, J = 11.8 Hz), 4.39–4.35 (m, 1 H), 4.30–4.25 (m, 1 H), 4.11–4.07 (m, 2 H), 4.04–3.95 (m, 3 H), 3.80–3.72 (m, 2 H), 3.43 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.25 (dd, 2 H, J = 7.0, 7.0 Hz), 1.66–1.57 (m, 4 H), 1.43–1.30 (m, 8 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, δ_C) 165.5, 165.2, 137.9, 137.6, 135.7, 135.6, 133.3, 133.2, 133.1, 129.9, 129.6, 129.5, 129.3, 128.4, 128.3, 127.9, 127.8, 127.6, 106.0 (C-1), 105.8 (C-1), 88.5, 83.4, 83.3, 82.2, 79.8, 77.4, 72.1, 72.0, 67.6, 66.4, 63.5, 51.4, 29.5, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.3. HRMS (ESI) m/z calcd for (M+Na) C₆₂H₆₇N₃O₁₃SiNa: 1112.4335. Found: 1112.4332.

8-Azidooctyl 2,3-di-O-benzyl-5-O-t-butyldiphenylsilyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl-α-D-arabinofuranoside (LAM-4). To a solution of LAM-3 (32.0 g, 30 mmol) in CH₂Cl₂-CH₃OH (400 mL, 1:1) was added NaOCH₃ (0.8 g), and the resulting mixture was stirred for 12 h at rt. The reaction was neutralized by the addition of HOAc, concentrated, and the residue was purified by chromatography (2:1 hexanes-EtOAc) to give the corresponding debenzoylated compound (23.8 g, 93%). This compound was dissolved in DMF (200 mL) and the solution was cooled to 0 °C, followed by the addition NaH (2.43 g, 60.8 mmol) and BnBr (7.3 mL, 60.8 mmol) in succession. The reaction was warmed to rt and stirred over 16 h, followed by the dropwise addition of CH₃OH to quench the excess NaH. The mixture was diluted with CH₂Cl₂ and washed with a satd aq NaHCO₃ soln before being dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by chromatography (10:1 hexanes-EtOAc) to afford LAM-4 (25.7 g, 90%) as a syrup. $R_f 0.27$ (8:1 hexanes–EtOAc); $[\alpha]_D$ +37.6 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.72–7.65 (m, 4 H), 7.44–7.22 (m, 26 H), 5.18 (s, 1 H, H-1), 5.03 (s, 1 H, H-1), 4.62–4.44 (m, 8 H), 4.22–4.14 (m, 2 H), 4.12–4.06 (m, 3 H), 4.06–4.03 (m, 1 H), 3.91 (dd, 1 H, J = 11.5, 4.1 Hz), 3.84–3.78 (m, 2 H), 3.77–3.68 (m, 2 H), 3.42 (ddd, 1 H, J = 9.7, 6.7, 6.7 Hz), 3.25 (dd, 2 H, J = 7.0, 7.0 Hz), 1.63–1.55 (m, 4 H), 1.42–1.27 (m, 8 H), 1.09 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 138.1, 137.8, 137.7, 135.7, 135.6, 133.5, 133.4, 129.6, 129.5, 128.4, 128.3(4), 128.3, 128.2, 127.9, 127.8, 127.7(6), 127.7, 127.6(7), 127.6(4), 127.6, 106.4 (C-1), 106.1 (C-1), 88.7, 88.1, 83.3, 83.2, 82.4, 80.1, 72.3, 72.0, 71.9, 71.7, 67.6, 65.9, 63.7, 51.4, 29.5, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.3. HRMS (ESI) *m/z* calcd for (M+Na) C₆₂H₇₅N₃O₉SiNa: 1056.5170. Found: 1056.5172.

8-Azidooctyl 2,3-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-Darabinofuranoside (LAM-5). To a solution of LAM-4 (24.8 g, 24 mmol) in THF (270 mL) was added a 1M *n*-Bu₄NF solution in THF (29 mL) and the reaction mixture was stirred for 16 h at rt, followed by concentration. The residue was purified by chromatography (4:1 hexanes–EtOAc) to provide LAM-5 (17.9 g, 94%) as a colorless syrup. R_f 0.20 (4:1 hexanes–EtOAc); [α]_D +13.1 (c= 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.35–7.22 (m, 20 H), 5.18 (s, 1 H, H-1), 5.02 (d, 1 H, *J* = 1.2 Hz, H-1), 4.62–4.56 (m, 8 H), 4.20 (ddd, 1 H, *J* = 7.2, 4.0, 3.2 Hz), 4.15–4.08 (m, 3 H), 4.06 (dd, 1 H, *J* = 3.0, 1.2 Hz), 4.00 (dd, 1 H, *J* = 6.5, 3.0 Hz), 3.90 (dd, 1 H, *J* = 11.7, 4.0 Hz), 3.84 (dd, 1 H, *J* = 12.1, 2.8 Hz), 3.77–3.70 (m, 2 H), 3.66 (dd, 1 H, *J* = 12.1, 4.0 Hz), 3.42 (ddd, 1 H, *J* = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, *J* = 6.9, 6.9 Hz), 1.90 (br s, 1 H), 1.64–1.58 (m, 4 H), 1.42–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.0, 137.8, 137.6, 137.4, 128.4(6), 128.4(2), 128.4, 128.3, 127.8, 127.7(7), 127.7, 127.6, 106.5 (C-1), 106.1 (C-1), 88.6, 87.7, 83.2, 82.8, 82.0, 80.1, 72.3, 72.2, 72.0, 71.9, 67.6, 65.9, 62.1, 51.4, 29.5, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₄₆H₃₇N₃O₉Na: 818.3992. Found: 818.3992.

8-Azidooctyl 2-*O*-benzoyl-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-7). Alcohol LAM-5 (11.0 g, 13.8 mmol) was glycosylated with thioglycoside LAM-6¹⁴ (8.2 g, 15.1 mmol) using in *N*-iodosuccinimide (3.9 g, 16.5 mmol) and silver triflate (0.43 g, 1.65 mmol) in CH₂Cl₂ (220 mL) containing powdered 4 Å molecular sieves (4.5 g) as described for the preparation of LAM-3. Purification of the product by chromatography (8:1 hexanes–EtOAc) yielded LAM-7 (15.6 g, 93%) as an oil. *R_f* 0.36 (4:1 hexanes–EtOAc); [α]_D + 63.0 (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.05–8.01 (m, 2 H), 7.62–7.58 (m, 1 H), 7.46–7.42 (m, 2 H), 7.38–7.23 (m, 30 H), 5.51 (s, 1 H), 5.30 (s, 1 H, H-1), 5.22 (s, 1 H, H-1), 5.07 (s, 1 H, H-1), 4.86 (d, 1 H, *J* = 12.0 Hz), 4.63–4.48 (m, 11 H), 4.36 (ddd, 1 H, *J* = 8.9, 5.0, 5.0 Hz), 4.27 (ddd, 1 H, *J* = 6.7, 4.2, 4.0 Hz), 4.21 (ddd, 1 H, *J* = 7.2, 5.0, 3.5 Hz), 4.16–4.04 (m, 5 H), 3.98 (dd, 1 H, *J* = 11.3, 4.2 Hz), 3.94 (dd, 1 H, *J* = 11.5, 4.2 Hz), 3.78–3.72 (m, 3 H), 3.68 (dd, 1 H, *J* = 10.7, 3.5 Hz), 3.62 (dd, 1 H, J = 10.7, 5.0 Hz), 3.43 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 1.66–1.59 (m, 4 H), 1.44–1.34 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.3, 138.2, 138.1, 138.0, 137.9, 137.8, 137.7, 133.3, 129.8, 129.6, 128.4(6), 128.4(2), 128.3(9), 128.3(8), 128.3(3), 127.91, 127.9, 127.8, 127.7(8), 127.7(7), 127.7(1), 127.6(8), 127.6(6), 127.5(9), 127.5(7), 106.4 (C-1), 106.1 (C-1), 106.1 (C-1), 88.7, 88.2, 83.6, 83.3, 83.2, 82.4, 81.6, 80.4, 80.2, 73.4, 72.3(7), 72.3(3), 72.2, 72.0, 71.8, 69.4, 67.6, 66.0, 65.9, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₇₂H₈₁N₃O₁₄Na: 1234.5616. Found: 1234.5619.

8-Azidooctyl 3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranoside (LAM-8).

Trisaccharide LAM-7 (27.4 g, 22.6 mmol) dissolved in CH₂Cl₂ (200 mL) and CH₃OH (200 mL) was treated with NaOCH₃ (0.6 g) at rt. After stirring for 12 h, the reaction mixture was neutralized by the addition of HOAc and then concentrated. The crude product was purified by chromatography (3:1 hexanes–EtOAc) to yield LAM-8 (23.6 g, 94%) as an oil. R_f 0.20 (3:1 hexanes–EtOAc); [α]_D +62.9 (c = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ _H) 7.40–7.21 (m, 30 H), 5.18 (s, 1 H, H-1), 5.10 (s, 1 H, H-1), 5.03 (s, 1 H, H-1), 4.64–4.23 (m, 12 H), 4.22–4.00 (m, 8 H), 3.92–3.86 (m, 3 H), 3.75–3.69 (m, 3 H), 3.64 (dd, 1 H, J = 10.5, 2.7 Hz), 3.49 (dd, 1 H, J = 10.5, 2.1 Hz), 3.40 (ddd, 1 H, J = 9.7, 6.8, 6.8 Hz), 3.25 (dd, 2 H, J = 7.0, 7.0 Hz), 1.65 (br s, 1 H), 1.60–1.52 (m, 4 H), 1.38–1.23 (m, 8 H); ¹³C NMR (100 MHz, CDCl₃, δ _C) 138.2, 138.0, 137.9, 137.6(8), 137.6(2), 137.2, 128.5, 128.3(9), 128.3(7), 128.3(4), 128.2, 127.9(9), 127.9(8), 127.9(1), 127.8(3), 127.8(1), 127.8(0), 127.7(7), 127.7(5), 127.6(7), 127.6(2), 127.5, 109.2 (C-1), 106.3 (C-1), 106.0 (C-1), 88.6, 88.2, 84.8, 83.2, 83.0(6), 83.0(4), 80.6, 80.1, 78.0, 73.7, 72.3, 72.2, 71.9(9), 71.9(4), 71.9(1), 69.7, 67.6, 65.9, 65.8, 51.4, 29.5, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₆₅H₇₇N₃O₁₃Na: 1130.5354. Found: 1130.5352.

8-Azidooctyl 5-O-benzoyl-2,3-di-O-benzyl-β-D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-Obenzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl-α-D-arabinofuranoside (LAM-10). Alcohol LAM-8 (5.54 g, 5.0 mmol), and thioglycoside LAM-9¹⁵ (2.97 g, 5.5 mmol) were dried under vacuum in the presence of P₂O₅ for 4 h and then dissolved in CH₂Cl₂ (500 mL) and powdered 4 Å molecular sieves (3 g) were added. The reaction mixture was cooled to -60 °C and then *N*-iodosuccinimide (1.42 g, 6.0

mmol) and silver triflate (140 mg, 0.55 mmol) were added. The reaction temperature was increased to -40 °C and the mixture was stirred until the color changed. After another 15 min, Et_3N was added until the pH of the solution was slightly basic (pH < 8) as determined by wet pH paper. The reaction mixture was diluted with CH₂Cl₂ (200 mL) and filtered through Celite. The filtrate was washed with a satd aq soln of Na₂S₂O₃, water and brine. The organic layer was subsequently dried (Na₂SO₄), filtered, concentrated and the resulting crude residue was purified by chromatography (4:1 hexanes–EtOAc) to yield LAM-10 (6.63 g, 87%) as an oil. $R_f 0.38$ (3:1 hexanes-EtOAc); $[\alpha]_D$ +33.0 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.03-7.99 (m, 2 H), 7.56–7.52 (m, 1 H), 7.40–7.19 (m, 42 H), 5.22–5.19 (m, 3 H, H-1 × 3), 5.04 (s, 1 H, H-1), 4.75 (d, 1 H, J = 11.6 Hz), 4.68 (d, 1 H, J = 11.7 Hz), 4.64-4.34 (m, 17 H), 4.29-4.03 (m, 11 H), 3.93 (dd, 1 H, J = 11.7, 3.8 Hz), 3.89 (dd, 1 H, J = 11.5, 4.1 Hz), 3.77–3.68 (m, 3 H), 3.62–3.55 (m, 2 H), 3.40 (ddd, 1 H, J = 9.6, 6.5, 6.5 Hz), 3.27 (dd, 2 H, J = 7.0, 6.9 Hz), 1.66–1.57 (m, 4 H), 1.42–1.32 (m, 8 H); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 166.0, 138.1, 138.0, 137.9(6), 137.9(2), 137.7, 137.6(4), 137.6(0), 137.4, 132.9, 129.7, 129.6, 128.4, 128.3, 128.2(8), 128.2(2), 128.1, 127.9(5), 127.9(0), 127.8(7), 127.8(3), 127.7, 127.6(6), 127.6(1), 127.5, 127.4(8),127.4(4), 127.3, 106.4 (C-1), 106.3 (C-1), 106.0 (C-1), 100.8 (C-1), 88.6, 88.1, 86.3, 84.4, 83.7, 83.1, 83.0, 82.3, 81.7, 80.4, 80.0, 78.6, 73.2, 72.4, 72.3, 72.2(7), 72.2(3), 71.9, 71.7, 70.0, 67.5, 66.3, 65.8, 65.5, 51.3, 29.4, 29.1, 29.0, 28.7, 26.5, 25.9. HRMS (ESI) m/z calcd for (M+Na) C₉₁H₁₀₁N₃O₁₈Na: 1546.6978. Found: 1546.6975.

8-Azidooctyl 2,3-di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-Darabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-11). Tetrasaccharide LAM-10 (12.1 g, 7.9 mmol) in CH₂Cl₂ (250 mL) and CH₃OH (250 mL) was treated with 1M methanolic sodium methoxide until the pH of the solution was 9 (as determined with wet pH paper). The reaction mixture was stirred at rt for 3 h, neutralized with HOAc and concentrated. The crude product was purified by chromatography (4:1 hexanes–EtOAc) to yield LAM-11 (9.3 g, 83%) as an oil. R_f 0.17 (4:1 hexanes–EtOAc); [α]_D +35.0 (c = 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ _H) 7.38–7.23 (m, 40 H), 5.16 (s, 1 H, H-1), 5.13 (d, 1 H, J = 1.4 Hz, H-1), 5.12 (d, 1 H, J = 4.4 Hz, H-1), 5.04 (d, 1 H, J = 1.1 Hz, H-1), 4.74 (d, 1 H, J = 11.6 Hz), 4.65 (d, 1 H, J = 11.9 Hz), 4.62–4.46 (m, 14 H), 4.37–4.35 (m, 1 H), 4.26 (dd, 1 H, J = 7.0, 6.7 Hz), 4.23–4.16 (m, 3 H), 4.14–4.09 (m, 3 H), 4.08 (dd, 1 H, J = 1.5 6.9, 3.5 Hz), 4.06–4.04 (m, 1 H), 4.03 (dd, 1 H, J = 6.9, 4.4 Hz), 4.00–3.97 (m, 1 H), 3.91 (dd, 1 H, J = 11.6, 3.9 Hz), 3.88 (dd, 1 H, J = 11.6, 4.1 Hz), 3.75–3.68 (m, 3 H), 3.64 (dd, 1 H, J = 9.0, 3.2 Hz), 3.61 (dd, 1 H, J = 10.6, 3.7 Hz), 3.58–3.53 (m, 2 H), 3.40 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.1, 6.9 Hz), 2.25 (br s, 1 H), 1.65–1.53 (m, 4 H), 1.38–1.25 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.1, 138.0(8), 138.0(7), 138.0(1), 137.9, 137.7, 137.6, 128.5, 128.4(2), 128.4(1), 128.3(9), 128.3(7), 128.3(3), 128.0, 127.9(7), 127.9(4), 127.8(7), 127.8(4), 127.7(6), 127.7(0), 127.6(7), 127.6(2), 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 100.1 (C-1), 88.7, 88.2, 86.0, 84.1, 83.4, 83.2(8), 83.2(4), 81.9, 81.1, 80.7, 80.5, 80.1, 73.4, 72.6, 72.4, 72.3, 72.1, 72.0, 71.9, 69.6, 67.6, 65.9, 63.4, 51.4, 29.5, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₈₄H₉₇N₃O₁₇Na: 1442.6716. Found: 1442.6717.

8-Trifluoroacetamidooctyl 2,3-di-O-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-Obenzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-**O-benzyl-α-D-arabinofuranoside (LAM-12)**. A solution of LAM-11 (241 mg, 0.170 mmol) in pyridine (3 mL) was treated with 10% Pd–C (17.8 mg) and H₂ (1 atm) for 3 h. The reaction mixture was filtered through Celite, diluted with pyridine (5 mL), cooled to 0 °C, and treated with trifluoroacetic anhydride (0.8 mL). The reaction mixture was stirred at rt for 13 h, the excess acylating agent quenched by the addition of a few drops of CH₃OH, and then the solution was diluted with CH₂Cl₂. The resulting solution was washed with a satd aq NaHCO₃ soln, water, and brine. The organic layer was then dried (Na₂SO₄), filtered and concentrated. The crude product was purified by chromatography (2:1 hexanes-EtOAc) to yield LAM-12 (178 mg, 70% over two steps) as an oil. $R_f 0.29$ (2:1 hexanes–EtOAc); $[\alpha]_D + 27.7$ (c = 0.9, CH₂Cl₂); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3, \delta_H)$ 7.39–7.26 (m, 40 H), 6.49 (br s, 1 H), 5.18 (s, 1 H, H-1), 5.15 (d, 1 H, J =1.3 Hz, H-1), 5.13 (d, 1 H, J = 4.4 Hz, H-1), 5.05 (d, 1 H, J = 0.8 Hz, H-1), 4.75 (d, 1 H, J = 11.8Hz), 4.67 (d, 1 H, J = 11.9 Hz), 4.64–4.48 (m, 14 H), 4.38 (dd, 1 H, J = 3.4, 1.5 Hz), 4.28 (dd, 1 H, J = 7.0, 6.7 Hz), 4.25-4.18 (m, 3 H), 4.16-4.10 (m, 3 H), 4.09 (dd, 1 H, J = 6.9, 3.5 Hz), 4.07(dd, 1 H, J = 3.5, 2.2 Hz), 4.05 (dd, 1 H, J = 6.3, 4.6 Hz), 4.02-3.99 (m, 1 H), 3.93 (dd, 1 H, J = 3.5, 2.2 Hz)11.7, 3.9 Hz), 3.90 (dd, 1 H, J = 11.6, 4.3 Hz), 3.76–3.70 (m, 3 H), 3.66 (dd, 1 H, J = 12.2, 3.2 Hz), 3.63 (dd, 1 H, J = 10.8, 3.7 Hz), 3.59–3.55 (m, 2 H), 3.40 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.33 (ddd, 2 H, J = 6.9, 6.8, 6.8 Hz), 2.38 (br s, 1 H), 1.66–1.54 (m, 4 H), 1.41–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.2 (g, J = 36.2 Hz), 138.1, 138.0(8), 138.0(7), 138.0(5),

138.0(1), 137.9, 137.6(9), 137.6(4), 128.5, 128.4(4), 128.4(0), 128.3(9), 128.3(5), 128.0, 127.9(8), 127.8(8), 127.8(1), 127.7(9), 127.7(1), 127.6(9), 127.6(5), 115.9 (q, J = 287.5 Hz), 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 100.1 (C-1), 88.7, 88.3, 86.0, 84.1, 83.4, 83.3, 83.2, 81.9, 81.1, 80.7, 80.5, 80.2, 73.4, 72.6, 72.4, 72.3(7), 72.3(5), 72.1, 72.0, 71.9, 69.6, 67.6, 66.0, 63.5, 39.9, 29.5, 29.2, 29.1, 28.9, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₈₆H₉₈NO₁₈F₃Na: 1512.6628. Found: 1512.6624.

8-Trifluoroacetamidooctyl β -D-arabinofuranosyl- $(1 \rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (1 Trifluoroacetamide). Tetrasaccharide LAM-12 (146 mg, 0.098 mmol) in THF (0.6 mL) and CH₃OH (3 mL) was treated with 10% Pd-C (20 mg) and H₂ gas (1 atm) at rt for 16 h. The reaction mixture was filtered through Celite and concentrated. The crude product was purified by chromatography using latrobeads (3:1 CH₂Cl₂-CH₃OH) to yield 1 Trifluoroacetamide (68 mg, 90%) as a white solid. $R_f 0.30$ (3:1 CH₂Cl₂-CH₃OH); ¹H NMR (600 MHz, CD₃OD, δ_H) 5.06 (d, 1 H, J = 2.1 Hz, H-1), 5.02 (d, 1 H, J = 4.1 Hz, H-1), 4.94 (d, 1 H, J = 1.3 Hz, H-1), 4.84 (d, 1 H, J = 1.7 Hz, H-1), 4.13 (dd, 1 H, J = 4.8, 2.1 Hz), 4.08–3.92 (m, 8 H), 3.91–3.87 (m, 2 H), 3.86–3.76 (m, 4 H), 3.74-3.61 (m, 6 H), 3.41 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.2, 7.1 Hz), 1.61–1.52 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 158.9 (q, J = 36.5 Hz), 117.6 (q, J = 285.9 Hz), 109.6 (C-1), 109.5 (C-1), 107.5 (C-1), 102.4 (C-1), 89.2, 84.3, 84.0, 83.9, 83.6, 83.5, 83.2, 79.1, 78.9, 78.8, 76.4, 75.8, 68.9, 68.2(9), 68.2(1), 64.4, 62.4, 40.7, 30.6, 30.3, 30.2, 29.8, 27.7, 27.1. HRMS (ESI) *m/z* calcd for (M+Na) C₃₀H₅₀NF₃O₁₈Na: 792.2872. Found: 792.2872.

4. Synthesis of 2–4

Scheme S2. Synthesis of protected derivatives of Antigens 2–4. a) LAM-13, NIS, AgOTf, CH₂Cl₂, 81%; b) NaOCH₃, CH₃OH, CH₂Cl₂, 87%; c) LAM-13, NIS, AgOTf, CH₂Cl₂, 82%; d) NaOCH₃, CH₃OH, CH₂Cl₂, 95%; e) LAM-13, NIS, AgOTf, CH₂Cl₂, 83%; f) NaOCH₃, CH₃OH, CH₂Cl₂, 94%.

8-Azidooctyl 2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl-α-D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-14). Alcohol LAM-11 (4.00 g, 2.82 mmol) and thioglycoside LAM-13¹⁶ (2.21 g, 3.28 mmol) were dissolved in CH₂Cl₂ (160 mL) and powdered 4 Å molecular sieves (1 g) were added. The solution was cooled to -10 °C and then *N*-iodosuccinimide (899 mg, 4.05 mmol) and silver triflate (256 mg, 1.00 mmol) were added. After stirring for 30 min at -10 °C, Et₃N was added

until the pH of the solution was neutral as determined by wet pH paper. The reaction was diluted with CH₂Cl₂, filtered through Celite and the filtrate was washed with a satd ag Na₂S₂O₃ soln, water, and brine. The organic layer was subsequently dried (Na₂SO₄), filtered and concentrated and the resulting crude residue was purified by chromatography (4:1 hexanes-EtOAc) to yield **LAM-14** (4.46 g, 81%) as an oil. $R_f 0.39$ (3:1 hexanes–EtOAc); $[\alpha]_D$ +16.0 (c = 1.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.12–8.09 (m, 2 H), 7.60–7.56 (m, 1 H), 7.40–7.20 (m, 56 H), 7.17–7.13 (m, 1 H), 5.63 (dd, 1 H, J = 3.0, 2.0 Hz), 5.15 (s, 2 H, 2 × H-1), 5.13 (d, 1 H, J = 4.3Hz, H-1), 5.03 (d, 1 H, J = 1.1 Hz, H-1), 4.90 (d, 1 H, J = 2.0 Hz, H-1), 4.88 (d, 1 H, J = 10.9Hz), 4.73-4.45 (m, 20 H), 4.39 (dd, 1 H, J = 2.9, 1.1 Hz), 4.38 (dd, 1 H, J = 11.3 Hz), 4.27-4.01(m, 13 H), 3.94–3.83 (m, 5 H), 3.76–3.67 (m, 4 H), 3.65–3.57 (m, 3 H), 3.40 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 1.65–1.57 (m, 4 H), 1.43–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.5, 138.5, 138.2, 138.1, 138.0(8), 138.0(4), 138.0(3), 137.9, 137.7(5), 137.7(0), 130.1, 129.9(9), 129.9(4), 128.4(9), 128.4(2), 128.4(0), 128.3(7), 128.3(3), 128.2(6), 128.2(5), 128.0, 127.9(7), 127.9(6), 127.9(3), 127.9(1), 127.8, 127.7(6), 127.7(2), 127.5(8), 127.5(4), 127.4, 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 100.6 (C-1), 97.9 (C-1), 88.7, 88.3, 85.9, 84.2, 83.9, 83.8, 83.2(7), 83.2(2), 81.6, 80.5, 80.1, 79.3, 78.4, 75.2, 74.1, 73.4, 73.3, 72.4, 72.3(9), 72.3(6), 72.3(3), 72.2, 72.0(4), 72.0(2), 71.8, 71.5, 70.0, 69.8, 68.9, 68.8, 67.6, 65.9, 65.6, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₁₈H₁₂₉N₃O₂₃Na: 1978.8915. Found: 1978.8920.

8-Azidooctyl 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-αarabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-15). Pentasaccharide LAM-14 (5.33 g, 2.72 mmol) was dissolved in CH₂Cl₂ (120 mL) and CH₃OH (120 mL) and then treated with 1M methanolic sodium methoxide (5 mL). After stirring for 8 h, the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography (3:1 hexanes–EtOAc) to yield LAM-15 (4.37 g, 87%) as an oil. *R*_f 0.12 (3:1 hexanes–EtOAc); [α]_D +30.3 (*c* = 0.7, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41–7.18 (m, 55 H), 5.17 (s, 2 H, H-1 2 × H-1), 5.13 (d, 1 H, *J* = 4.4 Hz, H-1), 5.05 (s, 1 H, H-1 Ara), 4.92 (d, 1 H, *J* = 2.0 Hz, H-1), 4.84 (d, 1 H, *J* = 10.9 Hz), 4.72 (d, 1 H, *J* = 11.7 Hz), 4.68– 4.45 (m, 20 H), 4.39 (m, 1 H), 4.28–4.02 (m, 12 H), 3.96–3.88 (m, 3 H), 3.86–3.69 (m, 7 H), 3.67–3.58 (m, 4 H), 3.41 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.27 (dd, 2 H, J = 7.0, 6.9 Hz), 2.48 (d, 1 H, J = 2.6 Hz), 1.66–1.59 (m, 4 H), 1.44–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.5, 138.3, 138.1(9), 138.1(6), 138.1(0), 138.0(8), 137.9, 137.7(7), 137.7(2), 137.7(1), 128.5(2), 128.5(0), 128.4(3), 128.4(1), 128.3(8), 128.3(4), 128.3(2), 128.0, 127.9(5), 127.8(9), 127.8(4), 127.7(9), 127.7(7), 127.7(5), 127.7(3), 127.6(9), 127.6(5), 127.5(9), 127.5(3), 106.4(8) (C-1), 106.4(2) (C-1), 106.1 (C-1), 100.6 (C-1), 99.3 (C-1), 88.7, 88.3, 86.2, 84.2, 83.9, 83.4, 83.2(9), 83.2(2), 81.5, 80.5, 80.2, 80.1, 79.2, 75.0, 74.1, 73.4, 73.3, 72.4(7), 72.4(2), 72.3(9), 72.3(5), 72.3(1), 72.0, 71.9, 71.8, 71.5, 69.9, 69.0, 68.8, 68.2, 67.6, 65.9, 65.6, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₁₁H₁₂₅N₃O₂₂Na: 1874.8652. Found: 1874.8653.

8-Azidooctyl 2-O-benzoyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3di-O-benzyl-α-D-arabinofuranoside (LAM-16). To a solution of LAM-15 (2.37 g, 1.28 mmol), LAM-13¹⁶ (1.01 g, 1.53 mmol) in CH₂Cl₂ (100 mL) was added powdered 4 Å molecular sieves (0.9 g). The reaction mixture was cooled to -10 °C for 15 min and then N-iodosuccinimide (434 mg, 1.83 mmol) and silver triflate (118 mg, 0.46 mmol) were added. After stirring for 30 min, the reaction mixture turned dark red/brown and then Et₃N was added until the pH of the solution was neutral as determined by wet pH paper. The reaction was diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed with a satd ag Na₂S₂O₃ soln, water and brine. The organic layer was subsequently dried (Na₂SO₄), filtered and concentrated. The resulting crude residue was purified by chromatography (4:1 hexanes-EtOAc) to yield hexaccharide LAM-16 (2.49 g, 82%) as an oil. R_f 0.37 (3:1 hexanes–EtOAc); $[\alpha]_D$ +17.2 (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12–8.09 (m, 2 H), 7.61–7.57 (m, 1 H), 7.42–7.12 (m, 72 H), 5.80 (dd, 1 H, J = 2.2, 2.0 Hz), 5.21 (d, 1 H, J = 2.0 Hz, H-1), 5.16–5.14 (m, 2 H, 2 × H-1), 5.12 (d, 1 H, J =4.4 Hz, H-1), 5.04 (s, 1 H, H-1), 4.98 (d, 1 H, J = 1.6 Hz, H-1), 4.89 (d, 1 H, J = 10.9 Hz), 4.88 (d, 1 H, J = 11.0 Hz), 4.78 (d, 1 H, J = 11.2 Hz), 4.74-4.43 (m, 25 H), 4.38 (d, 1 H, J = 1.9 Hz),4.25 (ddd, 1 H, J = 6.0, 6.0, 3.9 Hz), 4.20-4.17 (m, 2 H), 4.16-3.83 (m, 18 H), 3.82-3.55 (m, 10 Hz)H), 3.40 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.27 (dd, 2 H, J = 7.0, 7.0 Hz), 1.65–1.58 (m, 4 H), 1.43–1.33 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.4, 138.6, 138.5(7), 138.5(2), 138.2(4), 138.2(1), 138.1(6), 138.1(3), 138.0(8), 138.0(7), 138.0, 137.7(5), 137.7(2), 137.6, 133.0, 130.1, 129.9, 128.4(9), 128.4(2), 128.4(0), 128.3(7), 128.3(4), 128.3(2), 128.2(9), 128.2(5), 128.2(2), 128.1, 128.0(5), 128.0(0), 127.9(8), 127.9(7), 127.9(4), 127.9(1), 127.8, 127.7(6), 127.7(3), 127.6(9), 127.6(6), 127.5(8), 127.5(4), 127.5(0), 127.4, 127.3(9), 127.3(2), 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 100.7 (C-1), 99.6 (C-1), 98.7 (C-1), 88.7, 88.3, 86.0, 84.3, 83.9(7), 83.9(4), 83.2(7), 83.2(0), 81.5, 80.5, 80.1, 79.9, 79.3, 78.2, 75.2, 75.1, 75.0, 74.4, 74.3, 73.3, 73.2, 72.4, 72.3(9), 72.3(4), 72.2(8), 72.2(2), 72.1, 72.0, 71.8, 71.6, 70.1, 69.5, 69.1, 67.6, 65.9, 65.5, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. LRMS (ESI) m/z calcd for (M+Na) C₁₄₅H₁₅₇N₃O₂₈Na: 2412.0885. Found: 2412.1.

8-Azidooctyl 3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzylα-D-arabinofuranoside (LAM-17). The hexasaccharide LAM-16 (2.39 g, 1.0 mmol) in CH₂Cl₂ (30 mL) and CH₃OH (30 mL) was treated with 1M methanolic sodium methoxide (1.2 mL) at rt. After stirring for 16 h the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography (7:3 hexanes-EtOAc) to yield LAM-17 (2.17 g, 95%) as an oil. $R_f 0.47$ (2:1 hexanes–EtOAc); $[\alpha]_D$ +28.3 (c = 0.8, CH₂Cl₂); ¹H NMR (600 MHz, $CDCl_3, \delta_H$) 7.38–7.14 (m, 70 H), 5.16 dd, 1 H, J = 0.9 Hz, H-1), 5.15 (s, 1 H, H-1), 5.14 (s, 1 H, H-1), 5.10 (d, 1 H, J = 2.0 Hz, H-1), 5.03 (s, 1 H, H-1), 4.99 (d, 1 H, J = 1.0 Hz, H-1), 4.84 (d, 1 H, J = 10.8 Hz), 4.83 (d, 1 H, J = 10.9 Hz), 4.71 (d, 1 H, J = 10.8 Hz), 4.67 (d, 1 H, J = 12.2 Hz), 4.64-4.42 (m, 24 H), 4.38 (d, 1 H, J = 1.7 Hz), 4.24 (ddd, 1 H, J = 5.8, 5.8, 3.7 Hz), 4.19-4.16(m, 2 H), 4.15–4.05 (m, 8 H), 4.01–3.86 (m, 9 H), 3.84–3.77 (m, 3 H), 3.74–3.68 (m, 4 H), 3.66– 3.55 (m, 5 H), 3.40 (ddd, 1 H, J = 9.7, 6.8, 6.8 Hz), 3.27 (dd, 2 H, J = 7.1, 6.9 Hz), 2.38 (d, 1 H, J = 2.4 Hz), 1.64–1.58 (m, 4 H), 1.41–1.33 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.6(7), 138.6(3), 138.4(9), 138.2(6), 138.2(1), 138.1(6), 138.0(8), 138.0(1), 137.7(5), 137.7(2), 137.6, 133.0, 130.1, 128.4(9), 128.4(7), 128.4(2), 128.4(1), 128.4(0), 128.3(7), 128.3(3), 128.3(0), 128.2, 127.9(8), 127.9(4), 127.9(2), 127.9(1), 127.8, 127.8(6), 127.8(3), 127.7(6), 127.7(3), 127.6(9), 127.6(5), 127.6(0), 127.5(7), 127.5(4), 127.5(2), 127.3(7), 127.3(4), 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 101.1 (C-1), 100.7 (C-1), 98.7 (C-1), 88.7, 88.3, 86.0, 84.3, 83.9, 83.8, 83.2(7), 83.2, 81.5, 80.5, 80.2, 80.0, 79.9, 79.3, 75.1, 75.0, 74.8, 74.5, 74.3, 73.3, 73.2, 72.4, 72.3(8), 72.3(3), 72.3(1), 72.2, 72.1, 72.0, 71.8, 71.7, 70.1, 69.5, 69.1, 68.8, 68.5, 67.6, 65.9, 65.5, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. LRMS (ESI) *m/z* calcd for (M+Na) C₁₃₈H₁₅₃N₃O₂₇Na: 2308.0623. Found: 2308.1.

8-Azidooctyl 2-O-benzoyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3di-O-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranoside (LAM-18). Alcohol LAM-17 (1.01 g, 0.438 mmol) was glycosylated with thioglycoside LAM-13¹⁶ (347 mg, 0.525 mmol) using N-iodosuccinimide (149 mg, 0.63 mmol) and silver triflate (48 mg, 0.19 mmol) in CH₂Cl₂ (50 mL) containing powdered 4 Å molecular sieves (0. 5 g) as described for the preparation of LAM-16. The product was purified by chromatography (3:1 hexanes-EtOAc) to yield LAM-18 (1.02 g, 83%) as an oil. $R_f 0.22$ (3:1 hexanes-EtOAc); $[\alpha]_D$ +19.2 (c = 0.4, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.12-8.10 (m, 2 H), 7.60-7.57 (m, 1 H), 7.42-7.12 (m, 86 H), 7.01–6.98 (m, 1 H), 5.77 (dd, 1 H, J = 2.2, 2.2 Hz), 5.25 (d, 1 H, J = 1.8 Hz, H-1), 5.12 (d, 1 H, J = 1.8 Hz, H-1), 5.12–5.10 (m, 2 H, 2 × H-1), 5.08 (d, 1 H, J = 4.4 Hz, H-1), 5.01 (d, 1 H, J = 1.0 Hz, H-1), 4.96 (d, 1 H, J = 1.7 Hz, H-1), 4.86 (d, 1 H, J = 10.9 Hz), 4.85 (d, 1 H, J = 11.0 Hz, 4.81 (d, 1 H, J = 10.9 Hz), 4.75 (d, 1 H, J = 11.2 Hz), 4.69-4.40 (m, 28 H), 4.36–4.31 (m, 3 H), 4.23–4.19 (m, 1 H), 4.16–4.08 (m, 6 H), 4.07–4.00 (m, 6 H), 3.97–3.51 (m, 24 H), 3.37 (ddd, 1 H, J = 9.7, 6.7, 6.7 Hz), 3.25 (dd, 2 H, J = 7.0, 6.9 Hz), 1.62–1.56 (m, 4 H), 1.40–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.4, 138.7, 138.6(7), 138.6(4), 138.6(2), 138.5, 138.4, 138.2(9), 138.2(6), 138.2(1), 138.1(3), 138.0, 137.8, 137.7, 133.0, 130.2, 130.0, 128.5, 128.4(7), 128.4(4), 128.4(1), 128.3(8), 128.3(6), 128.3(5), 128.3(3), 128.2(7), 128.1(6), 128.1(0), 128.1, 128.0(0), 127.9(8), 127.9(4), 127.8(8), 127.8(0), 127.7(7), 127.7(3), 127.7(0), 127.6(3), 127.5(8), 127.5(6), 127.5(3), 127.5(0), 127.4(4), 127.4(2), 127.3(9), 106.5 (C-1), 106.3 (C-1), 106.1 (C-1), 100.7 (C-1), 100.6 (C-1), 99.4 (C-1), 98.9 (C-1), 88.7, 88.3, 86.0, 84.3, 84.0, 83.9, 83.3, 83.2, 81.6, 80.6, 80.2, 79.9, 79.4, 78.2, 75.5, 75.2, 75.1(8), 75.1(3), 74.7(9), 74.7(2), 74.3, 73.4, 73.3(6), 73.3(2), 73.2, 72.5, 72.4, 72.3(7), 72.3(5), 72.2(9) (2), 72.2(0), 72.0, 71.9, 71.6, 70.2, 69.7, 69.2, 69.1(8), 69.1(5), 69.0, 67.6, 66.0, 65.5, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1. LRMS (ESI) *m/z* calcd for (M+Na) C₁₇₂H₁₈₅N₃O₃₃Na: 2845.2994. Found: 2845.3.

8-Azidooctyl 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3-di-*O*-benzyl-

 β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-O-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-19). The heptasaccharide LAM-18 (308 mg, 0.109 mmol) in CH₂Cl₂ (3 mL) and CH₃OH (1 mL) was treated with 1M methanolic sodium methoxide (0.2 mL) solution at rt. After stirring for 6 h, the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography (2:1 hexanes–EtOAc) to yield LAM-19 (278 mg, 94%) as an oil. $R_f 0.50$ (2:1 hexanes-EtOAc); $[\alpha]_{D}$ +30.7 (c 0.48, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.42–7.12 (m, 85 H), 5.30 (d, 1 H, J = 1.6 Hz, H-1), 5.21 (d, 1 H, J = 1.4 Hz, H-1), 5.18 (s, 1 H, H-1), 5.16 (s, 1 H, H-1), 5.13 (d, 1 H, J = 4.3 Hz, H-1), 5.06 (s, 1 H, H-1), 5.04 (d, 1 H, J = 1.4 Hz, H-1), 4.90– 4.84 (m, 3 H), 4.74 (d, 1 H, J = 11.7 Hz), 4.70 (d, 1 H, J = 3.6 Hz), 4.68 (d, 1 H, J = 3.5 Hz), 4.66–4.44 (m, 27 H), 4.41–4.32 (m, 3 H), 4.30–4.25 (m, 1 H), 4.23–4.04 (m, 11 H), 4.03–3.56 (m, 25 H), 3.43 (ddd, 1 H, J = 9.7, 6.7, 6.7 Hz), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 2.36 (br. s. 1 H), 1.65-1.58 (m, 4 H), 1.42-1.30 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 138.6(6), 138.6(3), 138.6(1), 138.4, 138.3, 138.2(8), 138.2(4), 138.1(9), 138.1(7), 138.1(1), 138.0, 137.7(8), 137.7(4), 128.5, 128.4(9), 128.4(5), 128.4(2), 128.4(0), 128.3(6), 128.3(4), 128.3(2), 128.2(8), 128.0, 127.9(7), 127.9(2), 127.9(1), 127.8(6), 127.8(2), 127.7(9), 127.7(6), 127.7(4), 127.6(9), 127.6(6), 127.6(0), 127.5(6), 127.5(5), 127.5(0), 127.4, 127.3, 106.5 (C-1), 106.3 (C-1), 106.1 (C-1), 100.9 (C-1), 100.7 (C-1), 98.8 (C-1), 88.7, 88.3, 86.0, 84.3, 84.0, 83.9, 83.2(9), 83.2(3), 81.6, 80.6, 80.2, 80.0, 79.8, 79.6, 79.4(3), 77.4, 77.1, 76.8, 75.1, 75.0(8), 75.0(0), 74.8(3), 74.8(1), 74.6, 74.2, 73.3(8), 73.3(6), 73.3(1), 73.2, 72.5, 72.4, 72.3(6), 72.3(3), 72.3, 72.1, 72.0, 71.9(8), 71.9(1), 71.7, 70.2, 69.7, 69.2, 69.1, 68.8, 68.6, 67.6, 66.0, 65.5, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₆₅H₁₈₁N₃O₃₂Na: 2739.2520. Found: 2739.2487.

Scheme S3. Synthesis of Antigens **2–4** trifluoroacetamide derivatives. a) H_2 , Pd–C, pyridine; then trifluoroacetic anhydride, pyridine, 76%; b) H_2 , Pd–C, EtOAc, CH₃OH, 91%; c) H_2 , Pd–C, pyridine; then trifluoroacetic anhydride, pyridine, 72%; d) H_2 , Pd–C, THF, CH₃OH, 89%; e) Ph₃P, H₂O, THF; then trifluoroacetic anhydride, pyridine, 70%; f) H_2 , Pd–C, THF, CH₃OH, quantitative.

 $\label{eq:a-D-mannopyranosyl-(1 \rightarrow 5)-2, 3-di-O-benzyl-α-D-mannopyranosyl-(1 \rightarrow 5)-2, 3-di-O-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2, 3-di-O-benzyl-α-D$

benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-20). Pentasaccharide LAM-14 (242 mg, 0.13 mmol) in pyridine (3.5 mL) was treated with 10% Pd-C (15 mg) and H₂ gas (1 atm), then more pyridine (3.5 mL) and trifluoroacetic anhydride (1.5 mL) as described for the synthesis of LAM-12. The crude product was purified by chromatography (2:1 hexanes-EtOAc) to yield LAM-20 (192 mg, 76% over two steps) as an oil. R_f 0.16 (2:1 hexanesEtOAc); $[\alpha]_{D}$ +31.0 (c = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.40–7.20 (m, 55 H), 6.40 (br s, 1 H), 5.17 (s, 2 H, $2 \times$ H-1), 5.14 (d, 1 H, J = 4.4 Hz, H-1), 5.05 (s, 1 H, H-1), 4.93 (s, 1 H, H-1), 4.85 (d, 1 H, J = 10.9 Hz), 4.73 (d, 1 H, J = 11.8 Hz), 4.69–4.45 (m, 20 H), 4.41-4.24 (m, 1 H), 4.22-4.17 (m, 2 H), 4.16-4.03 (m, 9 H), 3.96-3.70 (m, 10 H), 3.67-3.59 (m, 4 H), 3.42 (ddd, 1 H, J = 9.6, 6.7, 6.7 Hz), 3.34 (ddd, 2 H, J = 6.9, 6.8 Hz), 2.51 (br s, 1 H), 1.65-1.54 (m, 4 H), 1.42-1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.1 (q, J = 36.6 Hz), 138.5, 138.3, 138.1(8), 138.1(4), 138.1(0), 138.0(7), 137.9, 137.7(5), 137.7(1), 128.5(2), 128.5(0), 128.4(4), 128.4(2), 128.3(9), 128.3(5), 128.3(3), 128.0, 127.9(9), 127.9(5), 127.9(0), 127.9(1), 128.4(1127.8, 127.7(9), 127.7(7), 127.7(5), 127.7(4), 127.7(0), 127.6(6), 127.6(0), 127.5, 115.9 (g, J =287.3 Hz), 106.4(8) (C-1), 106.4(2) (C-1), 106.1 (C-1), 100.6 (C-1), 99.3 (C-1), 88.7, 88.3, 86.2, 84.2, 83.9, 83.3(9), 83.3(3), 83.2, 81.5, 80.5, 80.2, 80.1, 79.2, 75.0, 74.1, 73.4, 73.3, 72.4(7), 72.4(2), 72.4(0), 72.3(6), 72.3(2), 72.0, 71.9, 71.8, 71.5, 69.9, 69.0, 68.8, 68.2, 67.6, 66.0, 65.6, 40.0, 29.5, 29.2, 29.1, 28.9, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₁₁₃H₁₂₆F₃NO₂₃Na: 1944.8570. Found: 1944.8565.

8-Trifluoroacetamidooctyl α-D-mannopyranosyl-(1→5)-β-D-arabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(2 Trifluoroacetamide). Pentasaccharide LAM-20 (170 mg, 0.088 mmol) in EtOAc (0.5 mL) and CH₃OH (4 mL) was treated with 10% Pd–C (34 mg) and H₂ gas (1 atm) at rt for 18 h. The reaction mixture was filtered through Celite and concentrated. The crude product was purified by chromatography using Iatrobeads (2:1 CH₂Cl₂–CH₃OH) to yield 2 Trifluoroacetamide (75 mg, 91%) as a white solid; ¹H NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) 5.08 (d, 1 H, *J* = 1.7 Hz, H-1), 5.02 (d, 1 H, *J* = 4.4 Hz, H-1), 4.94 (d, 1 H, *J* = 1.4 Hz, H-1), 4.85–4.83 (m, 2 H, 2 × H-1), 4.12 (dd, 1 H, *J* = 4.2, 1.7 Hz), 4.08–3.93 (m, 8 H), 3.92–3.79 (m, 8 H), 3.78–3.58 (m, 9 H), 3.41 (ddd, 1 H, *J* = 9.6, 6.5, 6.5 Hz), 3.26 (dd, 2 H, *J* = 7.2, 7.1 Hz), 1.62–1.52 (m, 4 H), 1.41–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 158.9 (q, *J* = 36.6 Hz), 117.6 (q, *J* = 285.9 Hz), 109.6 (C-1), 109.5

(C-1), 107.4 (C-1), 102.3 (C-1), 101.7 (C-1), 89.5, 84.4, 84.0, 83.6, 83.5, 83.2, 82.2, 79.1, 79.0, 78.4, 76.7, 76.0, 74.7, 72.5, 72.0, 69.6, 68.9, 68.7, 68.2, 68.1, 63.0, 62.4, 40.7, 30.6, 30.3, 30.2, 29.8, 27.7, 27.1. HRMS (ESI) *m/z* calcd for (M+Na) C₃₆H₆₀NO₂₃F₃Na: 954.3400. Found: 954.3409.

8-Trifluoroacetamidooctyl 3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3di-O-benzyl-a-D-arabinofuranoside (LAM-21). Hexasaccharide LAM-16 (255 mg, 0.112 mmol) in pyridine (4 mL) was treated with 10% Pd-C (15 mg) and H₂ gas (1 atm) for 16 h at rt, then more pyridine (3 mL) and trifluoroacetic anhydride (1.5 mL) as described for the synthesis of LAM-12. The crude product was purified by chromatography (2:1 hexanes-EtOAc) to yield LAM-21 (189 mg, 72% over two steps) as an oil. $R_f 0.29$ (2:1 hexanes–EtOAc); $[\alpha]_D$ +30.9 (c =0.5, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.37–7.13 (m, 70 H), 6.33 (br s, 1 H, NH), 5.15 (dd, 1 H, J = 1.3 Hz, H-1), 5.14 (s, 1 H, H-1), 5.13 (s, 1 H, H-1), 5.11 (d, 1 H, J = 4.3 Hz, H-1), 5.03 (s, 1 H, H-1), 4.99 (d, 1 H, J = 1.4 Hz, H-1), 4.84 (d, 1 H, J = 10.9 Hz), 4.83 (d, 1 H, J =10.9 Hz), 4.71 (d, 1 H, J = 10.7 Hz,), 4.66 (d, 1 H, J = 12.2 Hz,), 4.64–4.41 (m, 24 H,), 4.37 (d, 1 H, J = 1.7 Hz, 4.24 (ddd, 1 H, J = 6.0, 6.0, 3.8 Hz), 4.19–4.15 (m, 2 H), 4.14–4.04 (m, 8 H), 4.01-3.86 (m, 9 H), 3.84-3.77 (m, 3 H), 3.74-3.67 (m, 4 H), 3.66-3.54 (m, 5 H), 3.40 (ddd, 1 H, J = 9.6, 6.7, 6.7 Hz), 3.34 (ddd, 2 H, J = 6.7, 6.7, 6.7 Hz, CH₂N), 2.38 (br s, 1 H), 1.63–1.54 (m, 4 H), 1.40–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.1 (q, J = 36.5 Hz), 138.6(8), 138.6(4), 138.5, 138.2(7), 138.2(1), 138.1, 138.0(9), 138.0(7), 138.0(1), 137.7(5)(, 137.7(0), 128.5, 128.4(8), 128.4(2), 128.4(1), 128.3(8), 128.3(5), 128.3(1), 128.2, 128.0, 127.9(5), 127.9(2), 127.8, 127.7(8), 127.7(4), 127.7(2), 127.6(7), 127.6(0), 127.5(6), 127.5(2), 127.3(9), 127.3(5), 115.9 (q, J = 287.3 Hz), 106.4 (C-1), 106.3 (C-1), 106.1 (C-1), 101.1 (C-1), 100.7 (C-1), 98.7 (C-1), 88.7, 88.3, 86.0, 84.3, 83.9, 83.8, 83.3, 83.2, 81.5, 80.5, 80.2, 80.0, 79.9, 79.3, 75.1, 75.0, 74.8, 74.5, 74.3, 73.3(4), 73.3(0), 72.4, 72.3(5), 72.3(2), 72.2, 72.1, 72.0, 71.9, 71.7, 70.1, 69.5, 69.1, 68.9, 68.5, 67.6, 66.0, 65.5, 40.0, 29.5, 29.2, 29.1, 28.9, 26.6, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₁₄₀H₁₅₄F₃NO₂₈Na: 2377.0507. Found: 2377.0501.

8-Trifluoroacetamidooctyl α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→5)-β-D-arabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→5)- α-D-arabinofuranoside (3 Trifluoroacetamide).

Hexasaccharide **LAM-21** (145 mg, 0.062 mmol) in THF (0.5 mL) and CH₃OH (3 mL) was treated with 10% Pd–C (29 mg) and H₂ gas (1 atm) at rt for 18 h. The reaction mixture was filtered through Celite and concentrated. The crude product was purified by chromatography using Iatrobeads (7:3 CH₂Cl₂–CH₃OH) to yield **3 Trifluoroacetamide** (60 mg, 89%) as a white solid. R_f 0.30 (7:3, CH₂Cl₂–CH₃OH); $[\alpha]_D$ +62.6 (c = 0.7, CH₃OH); ¹H NMR (600 MHz, CD₃OD, δ_H) 5.11 (d, 1 H, J =1.4 Hz, H-1), 5.08 (d, 1 H, J = 1.8 Hz, H-1), 5.02 (d, 1 H, J = 4.3 Hz, H-1), 4.98 (d, 1 H, J = 1.4 Hz, H-1), 4.94 (d, 1 H, J = 1.3 Hz, H-1), 4.84 (d, 1 H, J = 1.6 Hz, H-1), 4.12 (dd, 1 H, J = 4.3, 1.8 Hz), 4.08–4.03 (m, 2 H), 4.01–3.93 (m, 7 H), 3.92–3.77 (m, 11 H), 3.74–3.53 (m, 12 H), 3.41 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.3, 7.1 Hz), 1.61–1.52 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₃OD, δ_C) 158.9 (q, J = 36.6 Hz), 117.6 (q, J = 285.9 Hz), 109.6 (C-1), 109.5 (C-1), 107.3 (C-1), 104.1 (C-1), 102.3 (C-1), 100.1 (C-1), 89.2, 84.5, 83.9, 83.6, 83.5, 83.3, 82.2, 80.4, 79.1, 79.0, 78.5, 76.7, 76.3, 75.0, 74.7, 72.4, 72.0, 71.9, 70.2, 69.1, 68.9(3), 68.9(0), 68.1(9), 68.1(5), 63.2, 63.1, 62.4, 40.7, 30.6, 30.3, 30.2, 29.8, 27.7, 27.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₂H₇₀NO₂₈F₃Na: 1116.3928. Found: 1116.3921.

8-Trifluoroacetamidooctyl 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-22). Heptasaccharide LAM-18 (225 mg, 0.083 mmol) in THF (6 mL) and water (3 drops) was treated with triphenylphosphine (28 mg, 0.099 mmol) for 2 days at rt and then concentrated. The concentrate was redissolved in pyridine (2 mL) and CH₂Cl₂ (2 mL) followed by the addition of trifluoroacetic anhydride (0.2 mL). The reaction mixture was stirred at rt for 18 h and worked up as described for the synthesis of LAM-21. The crude product was purified by chromatography (2:1 hexanes–EtOAc) to yield LAM-22 (162 mg, 70% over two steps) as an oil. R_f 0.21 (2:1 hexanes–EtOAc); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.36–7.09 (m, 85 H), 6.28 (br s, 1 H), 5.24 (d, 1 H, J = 1.8 Hz, H-1), 5.15 (d, 1 H, J = 1.5 Hz, H-1), 5.12 (s, 1 H, H-1), 5.10 (s, 1 H, H-1), 5.07 (d, 1 H, J = 4.4 Hz, H-1), 5.01 (s, 1 H, H-1), 4.97 (d, 1 H, J = 1.5 Hz, H-1), 4.84–4.79 (m, 3 H), 4.69–4.40 (m, 29 H), 4.34–4.33 (m, 1 H), 4.31 (d, 1 H, J = 11.7 Hz), 4.28 (d, 1 H, J = 12.2 Hz), 4.21 (ddd, 1 H, J = 6.0, 3.8, 3.8 Hz), 4.19–4.11 (m, 3 H), 4.10–3.99 (m, 7 H), 3.97–3.83 (m, 11 H), 3.82–3.47 (m, 14 H), 3.38 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.33 (ddd, 2 H, J = 6.8, 6.8, 6.8 Hz), 2.04 (br s, 1 H), 1.61–1.57 (m, 4 H), 1.38–1.28 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 157.4 (q, J = 36.6 Hz), 138.5(7), 138.5(4), 138.3, 138.2(2), 138.2(0), 138.1(7), 138.1(0), 138.0, 137.9, 137.7, 137.6, 129.7, 129.0, 128.4(5), 128.4(4), 128.4(0), 128.3(5), 128.3(1), 128.2(7), 128.2(3), 127.9(5), 127.9(1), 127.8(6), 127.8(5), 127.8(1), 127.7(7), 127.7(4), 127.7(0), 127.6(8), 127.6(3), 127.5(9), 127.5(6), 127.5(1), 127.4, 127.3(8), 127.3(3), 116.1 (q, J = 288.0 Hz), 106.4 (C-1), 106.1 (C-1), 100.9 (C-1), 100.7(5) (C-1), 100.7(0) (C-1), 98.8 (C-1), 88.6, 88.2, 86.0, 84.3, 83.9, 83.8, 83.2, 83.1, 81.5, 80.5, 80.1, 80.0, 79.7, 79.5, 79.3, 75.1, 75.0, 74.9, 74.7(6), 74.7(1), 74.5, 74.2, 73.3(3), 73.3(0), 73.2(5), 73.2(0), 72.4, 72.3(7), 72.3(2), 72.2(6), 72.0(9), 72.0(0), 71.9, 71.8, 71.6, 70.1, 69.6, 69.2, 69.0, 68.7, 68.5, 67.5, 65.9, 65.5, 39.9, 29.4, 29.1, 29.0, 28.9, 26.6, 26.0.

8-Trifluoroacetamidooctyl α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl-

 $(1\rightarrow 5)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside Trifluoroacetamide). (4 Heptasaccharide LAM-22 (79 mg, 0.028 mmol) in THF (0.5 mL) and CH₃OH (2 mL) was treated with 10% Pd-C (10 mg) and H₂ gas (1 atm) at rt for 24 h. The reaction mixture was filtered through Celite and concentrated. The crude product was purified by chromatography using Iatrobeads (3:2 CH₂Cl₂–CH₃OH) to yield 4 Trifluoroacetamide (38 mg, quantitative) as a white solid. $R_f 0.30$ (7:3 CH₂Cl₂-CH₃OH); ¹H NMR (600 MHz, CD₃OD, δ_H) 5.28 (s, 1 H, H-1), 5.11 (s, 1 H, H-1), 5.08 (d, 1 H, J = 1.4 Hz, H-1), 5.01 (d, 1 H, J = 4.3 Hz, H-1), 4.98 (s, 1 H, H-1), 4.94 (s, 1 H, H-1), 4.84 (d, 1 H, J = 1.4 Hz, H-1), 4.12 (dd, 1 H, J = 4.1, 1.4 Hz), 4.08–3.77 (m, 24 H), 3.74-3.50 (m, 16 H), 3.41 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.2, 7.1Hz), 1.62–1.53 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₃OD, δ_C) 158.9 (C=O, q, J = 36.6 Hz, 117.6 (CF₃, q, J = 285.9 Hz), 109.6 (C-1), 109.5 (C-1), 107.3 (C-1), 104.0 (C-1), 102.4 (C-1), 102.3 (C-1), 100.1 (C-1), 89.2, 84.5, 84.0, 83.6, 83.5, 83.2, 82.2(9), 82.2(1), 80.5, 80.2, 79.1, 79.0, 78.5, 76.7, 76.3, 75.0, 74.9, 74.7, 72.4, 72.0, 71.9(8), 71.9(2), 70.2, 69.2, 69.1, 68.9, 68.8, 68.2, 68.1, 63.3, 63.2, 63.1, 62.4, 40.7, 30.6, 30.3, 30.2, 29.8, 27.7, 27.1.

5. Synthesis of 5 and 6

Scheme S4. Synthesis of protected core precursor to Antigens **5** and **6**. a) **LAM-24**, NIS, AgOTf, CH₂Cl₂, 72%; b) HF·pyridine, THF, pyridine, 82%; c) TBDPSCI, imidazole, pyridine, 86%; d) BnBr, NaH, THF, DMF, 87%; e) HF·pyridine, THF, pyridine, 85%

8-Azidooctyl 3,5-O-(di-*t*-butylsilanediyl)-2-O-benzyl-β-D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-O-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 3)-[3,5-O-(di-*t*-butylsilanediyl)-2-O-benzyl-β-Darabinofuranosyl-(1 \rightarrow 2)-3,5-di-O-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)]-2-O-benzyl-α-Darabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl-α-D-arabinofuranoside (LAM-25). Diol LAM-23² (0.51 g, 0.38 mmol) and thioglycoside LAM-24¹ (0.52 g, 1.1 mmol) were dried under vacuum in the presence of P₂O₅ for 6 h. After drying, CH₂Cl₂ (30 mL) was added followed by powdered 4

Å molecular sieves (0.25 g) and the solution was stirred for 20 min. The reaction mixture was then cooled to -40 °C and N-iodosuccinimide (0.24 g, 1.1 mmol) and silver triflate (27 mg, 0.11 mmol) were added. After stirring for 20 min at -40 °C, Et₃N was added until the pH of the solution was slightly basic as determined by wet pH paper. The reaction mixture was diluted with CH_2Cl_2 and filtered through Celite. The filtrate was washed with a satd soln of $Na_2S_2O_3$, water and brine. The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (85:15 hexanes-EtOAc) to yield LAM-25 (0.56 g, 72%) as a thick syrup. R_f 0.46 (4:1 hexanes-EtOAc), $[\alpha]_D$ +5.9 (c = 0.8, CHCl₃); ¹H NMR (500 MHz, $CDCl_3, \delta_H$) 7.40–7.20 (m, 45 H), 5.14 (d, 1 H, J = 1.0 Hz, H-1), 5.13 (d, 1 H, J = 1.1 Hz, H-1), 5.09 (d, 1 H, J = 1.2 Hz, H-1), 5.04–5.01 (m, 3 H), 4.98 (s, 1 H, H-1), 4.95 (d, 1 H, J = 5.1 Hz, H-1), 4.81 (d, 1 H, J = 12.3 Hz), 4.70–4.42 (m, 16 H), 4.35–4.27 (m, 5 H), 4.27–4.10 (m, 7 H), 4.06-4.00 (m, 4 H), 3.96 (dd, 1 H, J = 3.9, 11.9 Hz), 3.86-3.62 (m, 7 H), 3.60-3.50 (m, 6 H),3.35 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 1.62–1.50 (m, 4 H), 1.40– 1.23 (m, 8 H), 1.06 (s, 9 H), 1.03 (s, 9 H), 1.0 (1) (s, 9 H, (CH₃)₃C), 1.0 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.3, 138.1(4), 138.1, 138.0(1), 138.0, 137.9, 137.7(8), 137.7(5), 137.7, 128.4(0), 128.3(5), 128.3, 128.2(8), 128.2(5), 128.2, 127.9(9), 127.9(9), 127.9(6), 127.8(9), 127.8(5), 127.8(2), 127.8, 127.7(0), 127.6(7), 127.6(5), 127.6(2), 127.5(8), 127.5(5), 127.4(9), 127.4(7), 127.4, 106.8 (C-1), 106.1(4) (C-1), 106.1(0) (C-1), 105.7 (C-1), 99.8 (C-1), 99.7 (C-1), 88.7, 88.6, 86.9, 86.8, 83.2(2), 83.1(9), 83.1(6), 81.0, 80.9, 80.7, 80.6, 80.5, 80.2, 80.0, 79.2, 78.7, 78.4, 78.2, 74.4, 73.7, 73.6, 73.2(8), 72.3, 72.0, 71.9, 71.8, 71.7, 71.7, 69.8, 69.6, 68.5(2), 68.4(6), 67.6, 67.2, 65.9, 65.6, 51.5, 29.5, 29.3, 29.1, 28.8, 28.0, 27.6, 27.5(3), 27.5(2), 27.2(0), 27.1(8), 27.1, 26.7, 26.1, 22.6(2), 22.6(1), 20.0(5), 20.0(7). HRMS (ESI) m/z calcd for (M+Na) C₁₁₇H₁₅₁N₃O₂₅Si₂Na: 2077.0073. Found: 2077.0067.

8-Azidooctyl 2-*O*-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl-α-Darabinofuranosyl- $(1\rightarrow 3)$ -[2-*O*-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl-α-Darabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl-α-D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl-α-Darabinofuranoside (LAM-26). To a solution of the hexasaccharide LAM-25 (0.5 g, 0.24 mmol) in THF–pyridine (13 mL, 12:1) at 0 °C was added 70% HF·pyridine (0.3 mL) dropwise. The solution was then stirred overnight while warming to rt. The reaction mixture was then poured into satd aq NaHCO₃ soln and extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated to a residue that was purified by chromatography (2:3 hexanes–EtOAc) to yield LAM–26 (0.35 g, 82%) as a thick syrup. R_f 0.2 (1:1 hexanes–EtOAc); [α]_D +19.8 (c = 0.36, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.35–7.20 (m, 45 H), 5.15 (d, 1 H, J = 1.2 Hz, H-1), 5.12 (d, 1 H, J = 1.1 Hz, H-1), 5.09 (s, 1 H, H-1), 5.06 (d, 1 H, J = 4.4 Hz, H-1), 4.99 (d, 1 H, J = 4.4 Hz, H-1), 4.97 (s, 1 H, H-1), 4.62–4.40 (m, 18 H), 4.35–4.27 (m, 5 H), 4.22 (ddd, 1 H, J = 3.9, 4.4, 10.4 Hz), 4.19–4.04 (m, 6 H), 4.03–3.99 (m, 2 H), 3.96 (dd, 1 H, J = 3.9, 11.9 Hz), 3.85–3.70 (m, 6 H), 3.70–3.46 (m, 10 H), 3.32 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 2.30 (br. s, 4 H), 1.62–1.50 (m, 4 H), 1.40–1.23 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 138.0(4), 138.0(3), 138.0(1), 138.0, 137.9, 137.6(9), 137.6(8), 137.6, 128.6, 128.5, 128.4(4), 128.4, 128.3(1), 128.3(0), 128.0(2), 128.0, 127.9, 127.8(3), 127.7(7), 127.7(5), 127.6(9), 127.6(7), 127.6, 106.4 (C-1), 106.1(2) (C-1), 106.0(9) (C-1), 105.3 (C-1), 99.5 (2 × C-1), 88.6, 88.5, 86.0, 85.8, 84.3, 84.2, 83.3, 83.1, 83.0, 81.9(3), 81.9(1), 81.3, 80.8, 80.6, 80.1, 79.9, 73.3(7), 73.3(6), 73.3, 72.5(2), 72.5, 72.4, 72.1, 72.0, 71.8, 69.5, 69.4, 67.7, 66.0, 65.6, 62.8, 62.7, 51.5, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₁H₁₁₉N₃O₂₅Na: 1796.8030. Found: 1796.8024.

8-Azidooctyl 5-O-(t-butyldiphenylsilyl)-2-O-benzyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5di-O-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 3)$ -[5-O-(t-butyldiphenylsilyl)-2-O-benzyl- β -Darabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -Darabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-27). To a solution of LAM-26 (0.5 mg, 0.28 mmol) in pyridine (8 mL) at 0 °C was added imidazole (0.1 g, 1.4 mmol) followed by t-butyldiphenylsilyl chloride (0.22 mL, 0.85 mmol). The solution was then stirred overnight with warming to rt before CH₃OH (1 mL) was added. After stirring for 30 min, the solution was poured into a satd aq NaHCO₃ soln and then extracted with CH₂Cl₂. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated to a residue that was purified by chromatography (3:1 hexanes-EtOAc) to yield LAM-27 (0.55 g, 86%) as a thick syrup. $R_f 0.23$ (7:3 hexanes–EtOAc); $[\alpha]_D$ +13.4 (c = 0.58, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.64–7.57 (m, 8 H), 7.41–7.00 (m, 57 H), 5.11 (s, 1 H, H-1), 5.10 (s, 1 H, H-1), 5.09 (d, 1 H, J = 1.0 Hz, H-1), 5.04 (d, 1 H, J = 4.4 Hz, H-1), 4.96 (s, 1 H, H-1), 4.90 (d, 1 H, J = 4.4 Hz, H-1), 4.62–4.36 (m, 16 H), 4.36–4.26 (m, 4 H), 4.26–4.08 (m, 7 H), 4.05–3.99 (m, 3 H), 3.95 (dd, 1 H, J = 4.1, 12.0 Hz), 3.90–3.78 (m, 9 H), 3.78–3.61 (m, 5 H), 3.54–3.44 (m, 4 H), 3.33 (ddd, 1 H, J = 6.4, 9.4, 13.2 Hz), 3.25 (dd, 2 H, J = 7.0, 7.0 Hz), 2.15 (br. s, 2 H), 1.62–1.50 (m, 4 H), 1.40–1.23 (m, 8 H), 1.04 (s, 18 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.3, 138.0(3), 138.0(1),

137.9, 137.8, 137.7, 137.6, 135.5, 132.9(9), 132.9(5), 132.9, 129.9(1), 129.8(9), 129.8(6), 128.5, 128.4, 128.3(4), 128.3(3), 128.3, 128.1(3), 128.1(2), 128.1, 128.0(1), 128.0, 127.8(7), 127.8(6), 127.8(4), 127.8(3), 127.8, 127.7, 127.6(4), 127.6(0), 127.5(3), 127.5(1), 127.4(4), 127.4(2), 127.4, 127.3, 106.6 (C-1), 106.1 (C-1), 106.1 (C-1), 105.3 (C-1), 100.0 (C-1), 99.7 (C-1), 88.6(0), 88.6, 85.9, 85.6, 84.1(2), 84.0(5), 83.4, 83.3, 83.2, 81.6, 81.0(4), 81.0, 80.9, 80.6, 80.0(4), 80.0(1), 77.2, 73.2(2), 73.1(9), 72.3, 72.0(2), 72.0, 71.8, 70.0, 69.8, 67.6(2), 66.6, 66.5, 66.0, 65.4, 51.5, 29.5, 29.3, 29.1, 28.8, 26.9, 26.7, 26.1, 19.2. HRMS (ESI) *m/z* calcd for (M+Na) $C_{133}H_{155}N_3O_{25}Si_2Na: 2273.0386$. Found: 2273.0380.

8-Azidooctvl 5-O-(t-butyldiphenylsilyl)-2,3-di-O-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[5-*O*-(*t*-butyldiphenylsilyl)-2,3-di-*O*benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-Obenzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-28). To a solution of LAM-27 (0.54 g, 0.24 mmol) in THF-DMF (10 mL, 4:1) at 0 °C under argon was added NaH (60% dispersion in mineral oil, 30 mg, 0.72 mmol). The mixture was stirred for 2-3 min before BnBr (0.14 mL, 1.2 mmol) was added dropwise. The solution was stirred for 6 h while warming to rt before CH₃OH (0.2 mL) was added. After stirring for 10 min, chilled water was added and the mixture extracted with CH_2Cl_2 . The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (85:15 hexanes-EtOAc) to yield LAM-28 (0.51 g, 87%) as a thick syrup. $R_f 0.22$ (4:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.64–7.60 (m, 8 H), 7.40–7.00 (m, 67 H), 5.14–5.09 (m, 4 H, 4 × H-1), 4.98–4.96 (m, 2 H, 2 × H-1), 4.66–4.62 (m, 4 H), 4.62–4.24 (m, 20 H), 4.22–3.94 (m, 15 H), 3.89–3.64 (m, 10 H), 3.54–3.45 (m, 4 H), 3.34 (ddd, 1 H, J = 6.4, 9.4, 13.2 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 1.62–1.50 (m, 4 H), 1.40–1.23 (m, 8 H), 1.05 (s, 18 H); ¹³C NMR (125 MHz, $CDCl_3, \delta_C$) 138.3(6), 138.3, 138.1, 138.0, 137.8(2), 137.8, 137.7, 135.7, 135.5(8), 135.5(7), 135.5(5), 133.3, 133.2(4), 133.2, 129.7(9), 129.7(7), 129.7(4), 129.7, 128.4(4), 128.4(1), 128.3(4), 128.3(2), 128.2(9), 128.2(7), 128.2(0), 128.2, 128.1(1), 128.1(0), 128.0(1), 128.0, 127.9, 127.8(2), 127.8, 127.7, 127.7, 127.5(9), 127.5(8), 127.5(5), 127.5(2), 127.5, 127.4(2), 127.4(0), 127.4, 127.3, 106.5 (C-1), 106.2 (C-1), 106.1 (C-1), 105.2 (C-1), 100.6 (C-1), 100.3 (C-1), 88.6(3), 88.6, 85.8, 85.5, 84.7, 84.6, 84.3, 84.2, 84.1, 83.2, 82.0, 81.9, 81.4, 80.5, 80.1, 80.0, 73.1(9), 73.1(6), 72.3(4), 72.3(3), 72.3, 72.2, 72.1, 72.0(4), 72.0(2), 71.8, 70.2, 70.0, 67.6, 66.3, 66.2, 66.0, 65.4, 51.5, 29.5, 29.3, 29.1, 28.9, 26.9, 26.7, 26.1, 19.2.

8-Azidooctyl 2,3-di-O-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl- α -Darabinofuranosyl- $(1 \rightarrow 3)$ - $[2,3-di-O-benzyl-\beta-D-arabinofuranosyl-<math>(1 \rightarrow 2)$ - $3,5-di-O-benzyl-\alpha$ -D-arabinofuranosyl- $(1 \rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- α -Darabinofuranoside (LAM-29). Prepared from LAM-28 (0.35 g, 0.14 mmol) and 70% HF pyridine (0.3 mL) in THF-pyridine (7 mL, 5:2) as described for the synthesis of LAM-26 to afford LAM-29 (0.24 g, 85%) as a thick syrup. R_f 0.23 (7:3 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.34–7.18 (m, 55 H), 5.17 (d, 1 H, J = 1.2 Hz, H-1), 5.16 (d, 1 H, J = 1.1 Hz, H-1), 5.14–5.08 (m, 2 H, 2 × H-1), 5.05 (d, 1 H, J = 4.4 Hz, H-1), 4.98 (s, 1 H, H-1), 4.72 (d, 1 H, J = 11.7 Hz), 4.71 (d, 1 H, J = 11.7 Hz), 4.65–4.32 (m, 23 H), 4.28–3.92 (m, 16 H), 3.85 (dd, 1 H, J = 4.4, 11.7 Hz), 3.78 (dd, 1 H, J = 2.4, 11.7 Hz) 3.70–3.48 (m, 10 H), 3.35 (ddd, 1 H, J =6.5, 9.5, 13.2 Hz), 3.24 (dd, 2 H, J = 7.0, 7.0 Hz), 2.34 (br. s, 2 H), 1.62–1.50 (m, 4 H), 1.40– 1.23 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.2, 138.1(2), 138.1, 138.0, 137.9, 137.7, 137.6(4), 137.6(2), 128.5, 128.4(4), 128.4(3), 128.4(0), 128.3(9), 128.3(8), 128.3(2), 128.3(1), 128.0, 127.9(3), 127.8(8), 127.8(5), 127.7(9), 127.7(7), 127.7(0), 127.6(8), 127.6(6), 127.6(3), 127.6(3), 127.6(3), 127.8(6127.6(1), 106.4 (C-1), 106.2 (C-1), 106.1 (C-1), 105.2 (C-1), 99.9(9) (C-1), 99.9(6) (C-1), 88.6, 88.5, 86.2, 86.0, 84.1(2), 84.1(0), 83.3, 83.2, 83.1(5), 82.0, 81.9, 81.3, 80.8, 80.7(6), 80.7, 80.1, 79.9, 73.3(9), 73.3(7), 72.5(9), 72.5(5), 72.3(7), 72.3(5), 72.2, 72.0(9), 72.0(7), 71.8, 69.6, 69.5, 67.7, 65.9, 65.7, 63.9 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1. HRMS (ESI) calcd for (M+Na) C₁₁₅H₁₃₁N₃O₂₅Na: 1976.8969. Found: 1976.8961.

Scheme S5. Synthesis of protected derivatives of Antigens 5 and 6. a) LAM-13, NIS, AgOTf, CH_2CI_2 , 86%; b) NaOCH₃, CH_3OH , CH_2CI_2 , 91%; c) LAM-13, NIS, AgOTf, CH_2CI_2 , 77%; d) NaOCH₃, CH_3OH , CH_2CI_2 , 79%;

8-Azidooctyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-benzyl- α -D-benzyl-

(0.85 g, 0.43 mmol) and thioglycoside LAM-13¹⁶ (0.78 g, 1.18 mmol) were dried under vacuum in the presence of P₂O₅ for 6 h. After drying, CH₂Cl₂ (35 mL) was added followed by powdered 4 Å molecular sieves (0.4 g) and the solution was stirred for 20 min at rt. The mixture was then cooled to 0 °C and N-iodosuccinimide (0.28 g, 1.24 mmol) and silver triflate (30 mg, 0.11 mmol) were added. After stirring the mixture for 30 min at 0 °C, Et₃N was added until the pH of the solution was slightly basic as determined by wet pH paper. The reaction mixture was diluted with CH_2Cl_2 and filtered through Celite. The filtrate was washed with a satd aq soln of $Na_2S_2O_3$, water and brine, and then the organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:1 hexanes-EtOAc) to yield LAM-30 (1.13 g, 86%) as a thick syrup. $R_f 0.32$ (3:1 hexanes–EtOAc); $[\alpha]_D$ +4.2 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12–8.05 (m, 4 H), 7.60–7.50 (m, 2 H), 7.40–7.05 (m, 89 H), 5.62–5.58 (m, 2 H), 5.16–5.10 (m, 4 H), 5.00 (d, 1 H, J = 4.3 Hz, H-1), 4.97 (s, 1 H, H-1), 4.88–4.84 (m, 4 H), 4.72-4.26 (m, 36 H), 4.22-3.95 (m, 19 H), 3.85-3.74 (m, 8 H), 3.70-3.62 (m, 4 H), 3.62-3.52 (m, 6 H), 3.34 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz), 3.24 (dd, 2 H, J = 7.0, 7.0 Hz), 1.62–1.53 (m, 4 H), 1.40–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.5(8), 165.5(5), 138.6(2), 138.6(1), 138.6(0), 138.3, 138.2, 138.1(3), 138.0(8), 138.0(7), 138.0(5), 138.0(3), 138.0(2), 137.7(8), 137.7(6), 137.7(4), 137.6(8), 133.2, 133.1, 130.0(3), 129.9(9), 129.9(7), 128.4(9), 128.4(7), 128.4(4), 128.4(2), 128.3(7), 128.3(5), 128.3(1), 128.3, 128.1(2), 128.0(6), 128.0(1), 127.9(9), 127.9(5), 127.9(3), 127.9(0), 127.9, 127.8(2), 127.7(5), 127.7(4), 127.6(9), 127.6(0), 127.5(5), 127.5(1), 127.5, 106.6 (C-1), 106.1(8) (C-1), 106.1(5) (C-1), 105.3 (C-1), 100.8 (C-1), 100.5 (C-1), 98.0 (2 × C-1), 88.7, 88.6, 86.2, 86.0, 84.2, 84.0(7), 84.0(6), 84.0(4), 84.0(2), 83.3, 81.7, 81.3, 80.7, 80.2, 80.1, 79.5, 79.3, 78.5, 75.3(1), 75.3, 74.2, 73.5, 73.3(3), 73.3(1), 72.4, 72.3, 72.2, 72.0(8), 72.0(5), 71.9, 71.6(1), 71.5(7), 70.0, 69.9, 68.9(2), 68.8(6), 67.7, 66.0, 65.5, 51.5, 29.6, 29.3, 29.2, 28.9, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₈₃H₁₉₅N₃O₃₇Na: 3049.3367. Found: 3049.3362.

8-Azidooctyl 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -Darabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arab

was 8–9 (as determined by wet pH paper) and the mixture was stirred overnight. The reaction mixture was then neutralized by the addition of Amberlite IR 120 H+ resin, filtered and concentrated to give a crude residue that was purified by chromatography (1:1 EtOAc-hexanes) to yield LAM-31 (0.51 g, 91%) as a thick syrup. $R_f 0.11$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +26.0 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.40–7.15 (m, 85 H), 5.18 (d, 2 H, J = 4.3 Hz, H-1), 5.14–5.11 (m, 2 H, $2 \times$ H-1), 5.01 (d, 1 H, J = 4.4 Hz, H-1), 4.99 (s, 1 H, H-1), 4.91–4.88 (m, $2 H, 2 \times H-1$, 4.84 (d, 1 H, J = 1.1 Hz, H-1), 4.82 (d, 1 H, J = 1.0 Hz H-1), 4.72-4.42 (m, 31 H), 4.72 (m, 34.42–4.28 (m, 5 H), 4.24–3.53 (m, 39 H), 3.35 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 2.40 (br. s, 2 H), 1.63–1.53 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, $CDCl_3, \delta_C$ 138.6, 138.5, 138.3(3), 138.2(8), 138.2(2), 138.2, 138.1, 138.0, 137.9, 137.7(6), 137.7(5), 137.7(3), 137.7, 128.6, 128.5, 128.4(3), 128.4(0), 128.3(8), 128.3(5), 128.3(4), 128.3(1), 128.0, 127.9(0), 127.9, 127.8(3), 127.7(9), 127.7(7), 127.7(3), 127.7(1), 127.6(8), 127.6(6), 127.6(3), 127.5(9), 127.5(7), 127.5, 106.6 (C-1), 106.2 (C-1), 106.1 (C-1), 105.4 (C-1), 100.7 (C-1), 100.4 (C-1), 99.4 (C-1), 99.3 (C-1), 88.7, 88.6, 86.5, 86.2, 84.2, 84.1, 84.0, 83.9(5), 83.6, 83.5, 83.3, 81.7, 81.2, 80.6, 80.2, 80.1, 80.0, 79.3, 79.2, 75.0(7), 75.0(6), 74.2, 73.5, 73.3(1), 73.2(8), 72.4, 72.2(0), 72.2, 72.0, 71.8(8), 71.8(6), 71.5, 69.9, 69.7, 69.1(1), 69.0(6), 68.8, 68.2(2), 68.1(9), 67.6, 66.0, 65.4, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₆₉H₁₈₇N₃O₃₅Na: 2841.2843. Found: 2841.2837.

8-Azidooctyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-

mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3-di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzyl-α-Darabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-32). Prepared from diol LAM-31 (0.28 g, 0.1 mmol), thioglycoside LAM-13¹⁶ (0.3 g, 0.45 mmol), powdered 4 Å molecular sieves (0.2 g), *N*-iodosuccinimide (0.1 g, 0.45 mmol) and silver triflate (12 mg, 0.05 mmol) in CH₂Cl₂ (12 mL) as described for the synthesis of LAM-30 to afford LAM-32 (0.29 g, 77%) as a thick syrup. R_f 0.23 (3:1 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.16–8.06 (m, 4 H), 7.60–7.50 (m, 2 H), 7.40–7.04 (m, 119 H), 5.82 (br. s, 2 H), 5.23–5.10 (m, 6 H), 5.00– 4.96 (m, 4 H), 4.90 (d, 2 H, *J* = 1.0 Hz, H-1), 4.88 (d, 2 H, *J* = 1.0 Hz, H-1), 4.80–4.28 (m, 46 H), 4.25-3.94 (m, 25 H), 3.94–3.74 (m, 12 H), 3.74–3.50 (m, 12 H), 3.36 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 1.63–1.54 (m, 4 H), 1.40–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 165.4, 138.6(1), 138.6, 138.5(4), 138.5(1), 138.3, 138.2, 138.1(4), 138.1, 138.0, 137.8, 137.7(2), 137.6(9), 137.6(6), 133.9, 133.0, 130.4, 130.1, 130.0, 129.6, 128.4(8), 128.4(6), 128.4(4), 128.3(8), 128.3(6), 128.3(3), 128.3, 128.2, 128.1(4), 128.0(8), 128.0(6), 128.0(4), 128.0, 127.9(1), 127.8(8), 127.8(5), 127.8, 127.7(2), 127.7(1), 127.6(8), 127.6(5), 127.6, 127.5(0), 127.5, 127.4, 127.3, 106.6 (C-1), 106.2 (C-1), 106.1 (C-1), 105.3 (C-1), 100.8 (C-1), 100.4 (C-1), 99.7 (C-1), 99.6 (C-1), 98.7(2) (C-1), 98.7(0) (C-1), 88.6, 86.3, 86.0, 84.2(3), 84.2(0), 84.1, 84.0(4), 84.0, 83.3, 81.7, 81.3, 80.6, 80.2, 80.1(2), 80.1(1), 80.1, 80.0, 79.4, 79.3, 78.2, 75.2(4), 75.1(9), 75.1(7), 75.1(1), 75.0(6), 74.6, 74.4, 74.3, 73.4(2), 73.4, 73.3, 73.2, 72.4, 72.3(2), 72.3, 72.2(3), 72.2, 72.1, 71.9, 71.7, 70.0, 69.8, 69.5(2), 69.4(7), 69.4(5), 69.0(8), 69.0(5), 69.0, 67.6, 65.9, 65.4(1), 60.4(3), 51.5, 36.7, 29.5, 29.3, 29.1, 28.9, 28.6, 26.7, 26.1, 24.8, 23.4.

8-Azidooctyl 3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -Darabinofuranosyl- $(1\rightarrow 3)$ -[3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-Obenzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-Obenzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-Obenzyl-α-D-arabinofuranoside (LAM-33). Prepared from LAM-32 (0.29 g, 0.074 mmol) and 1M methanolic sodium methoxide solution in CH₂Cl₂-CH₃OH (7:3, 20 mL) as described for the synthesis of LAM-31 to afford LAM-33 (0.21 g, 79%) as a thick syrup. $R_f 0.17$ (7:3 hexanes-EtOAc); $[\alpha]_{D}$ +24.5 (c = 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.40–7.10 (m, 115 H), 5.20–5.12 (m, 6 H, 6 × H-1), 5.03–4.98 (m, 4 H, 4 × H-1), 4.87 (d, 2 H, J = 4.9 Hz), 4.85 (d, 2 H, J = 4.9 Hz), 4.74–4.28 (m, 33 H), 4.25–3.51 (m, 36 H), 4.24–3.53 (m, 28 H), 3.37 (ddd, 1 H, J = 6.5, 9.5, 13.2 Hz, 3.27 (dd, 2 H, J = 7.0, 7.0 Hz), 2.40 (br. s, 2 H), 1.64–1.54 (m, 4 H), 1.40– 1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.6(9), 138.6(5), 138.5(4), 138.5(2), 138.3(1), 138.2(9), 138.2(7), 138.2(5), 138.2, 138.1(2), 138.1(0), 138.0(8), 138.0(5), 138.0, 137.8, 137.7(4), 137.7(1), 137.6(7), 128.4(9), 128.4(6), 128.4(2), 128.4(1), 128.4, 128.3(4), 128.3(2), 128.4(1128.1(9), 128.1(5), 128.1, 128.0(4), 128.0, 127.9(3), 127.9(0), 127.9, 127.8, 127.7(4), 127.6(9), 127.6(6), 127.6(3), 127.5(8), 127.5(4), 127.5(1), 127.4(0), 127.4, 106.6 (C-1), 106.2 (C-1), 106.1

(C-1), 105.3 (C-1), 101.1(9) (C-1), 101.1(8) (C-1), 100.8 (C-1), 100.4 (C-1), 98.8(0) (C-1), 98.7(8) (C-1), 88.6(7), 88.6(5), 86.3, 86.0, 84.3, 84.2, 84.1, 84.0, 83.3, 81.7, 81.2, 80.6, 80.2, 80.1, 80.0, 79.4, 79.3, 75.2, 75.1(4), 75.0(9), 74.9(1), 74.8(6), 74.6, 74.3, 73.4, 73.3, 73.2, 72.4, 72.3(0), 72.3, 72.2(1), 72.2, 72.1, 72.0(7), 71.9, 71.7, 70.0, 69.8, 69.6, 69.1, 68.9, 68.6, 67.6, 66.0, 65.4, 51.5, 29.5, 29.3, 29.2, 28.9, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₂₃H₂₄₃N₃O₄₅Na: 3705.6716. Found: 3705.6711.

Scheme S6. Synthesis of **5 Trifluoroacetamide** and **6 Trifluoroacetamide**. a) H₂, Pd–C, pyridine; then trifluoroacetic anhydride, pyridine, 73%; b) H₂, Pd(OH)₂–C, EtOAc, CH₃OH, THF, 84%; c) H₂, Pd–C, pyridine; then trifluoroacetic anhydride, pyridine, 73%; d) H₂, Pd(OH)₂–C, EtOAc, CH₃OH, THF, 83%.
8-Trifluoroacetamidooctyl 3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 5)-2,3-di-Obenzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[3,4,6tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5di-O-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$]-2-O-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl-α-D-arabinofuranoside (LAM-34). Prepared from LAM-31 (0.25 g, 0.09 mmol), 20% Pd(OH)₂-C (50 mg), hydrogen (1 atm) and then trifluoroacetic anhydride (0.5 mL, 3.6 mmol) as described for the synthesis of LAM-12 to afford LAM-34 (0.19 g, 73%) as a thick syrup. $R_f 0.31$ (3:2 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H); 7.38–7.17 (m, 85 H), 5.14 (s, 1 H, H-1), 5.13 (s, 1 H, H-1) 5.12–5.08 (m, 2 H, $2 \times$ H-1), 4.97 (d, 1 H, J = 4.4 Hz, H-1), 4.95 (s, 1 H, H-1), 4.88–4.84 (m, 2 H), 4.81 (d, 1 H, J = 1.0 Hz, H-1), 4.79 (d, 1 H, J = 1.1 Hz, H-1), 4.68-4.38 (m, 33 H), 4.38-4.24 (m, 6 H), 4.20-3.92 (m, 18 H), 3.88 (dd, 1 H, J = 6.5, 6.5 Hz), 3.84–3.50 (m, 20 H), 3.35–3.28 (m, 3H) 1.60–1.48 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD_2Cl_2 , δ_C) 157.3 (q, J = 36.1 Hz), 150.0, 144.2, 144.1(9), 139.2(4), 139.2(1), 138.8(3), 138.8(2), 138.8, 138.7(2), 138.7(1), 138.6(1), 138.6(0), 138.6, 138.3(3), 138.3(0), 138.2, 128.8(4), 128.8(0), 128.7(4), 128.7(3), 128.6, 128.5, 128.2(8), 128.2(5), 128.2(3), 128.2(1), 128.1(8), 128.1(6), 128.1(3), 128.1, 128.0(3), 127.9(9), 127.9(6), 127.9(2), 127.9(0), 122.8, 116.4 (q, J = 288.0 Hz), 107.0 (C-1), 106.6(2) (C-1), 106.5(7) (C-1), 105.8 (C-1), 101.0 (C-1), 100.8 (C-1), 99.8 (2 × C-1), 89.1, 88.9, 86.6, 86.4, 84.8, 84.7, 84.5(1), 84.4(8), 84.1(1), 84.0(9), 82.3, 81.8, 81.2, 80.7(4), 80.6(5), 79.9, 79.8, 75.3(4), 75.3(3), 74.5, 73.8, 73.6(8), 73.6(6), 72.8, 72.7(4), 72.7(1), 72.4, 72.3, 72.2(0), 72.1(9), 71.8(4), 71.8(3), 71.4, 71.2, 70.4, 70.3, 69.6, 69.4, 68.6(3), 68.6(1), 68.0, 66.7, 66.0, 40.4, 37.0, 30.1, 30.0, 29.7, 29.5, 29.3, 27.1, 26.5, 25.1, 23.7. HRMS (ESI) *m/z* calcd for (M+Na) C₁₇₁H₁₈₈F₃N₁O₃₆Na: 2911.2761. Found: 2911.2755.

8-Trifluoroacetamidooctyl α-D-mannopyranosyl-(1 \rightarrow 5)-β-D-arabinofuranosyl-(1 \rightarrow 2)-α-D-arabinofuranosyl-(1 \rightarrow 3)-[α-D-mannopyranosyl-(1 \rightarrow 5)-β-D-arabinofuranosyl-(1 \rightarrow 2)-α-D-arabinofuranosyl-(1 \rightarrow 5)]-α-D-arabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranoside (5 Trifluoroacetamide). Prepared from LAM-34 (0.13 g, 0.045 mmol) and 20% Pd(OH)₂–C (63 mg) in EtOAc–CH₃OH–THF (10 mL, 3:5:2) as described for the synthesis of **1** Trifluoroacetamide to afford **5** Trifluoroacetamide (0.051 mg, 84%) as a foam. R_f 0.14 (6.5:3.5:0.5, CH₂Cl₂–CH₃OH–H₂O); [α]_D +56.0 (c = 0.1, H₂O); ¹H NMR (600 MHz, D₂O, $\delta_{\rm H}$) 5.25 (s, 1 H, H-1), 5.18 (s, 1 H, H-1), 5.14 (d, 2 H, J = 4.2 Hz, 2 × H-1), 5.10 (s, 1 H, H-1), 5.00 (d, 1 H, J = 2.0 Hz, H-1), 4.91 (s, 2 H, 2 × H-1), 4.32–4.27 (m, 2 H), 4.19–4.06 (m, 11 H), 4.06– 3.96 (m, 7 H), 3.96–3.80 (m, 11 H), 3.80–3.60 (m, 12 H), 3.57 (ddd, 1 H, J = 6.6, 9.6, 13.2 Hz), 3.30 (dd, 2 H, J = 7.0, 7.0 Hz, CH₂N), 1.63–1.54 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_{C}) 159.8 (q, J = 37.1 Hz), 120.3, 116.8 (q, J = 285.9 Hz), 108.3 (C-1), 108.1 (C-1), 106.5 (C-1), 106.3 (C-1), 101.6 (C-1), 101.4 (C-1), 100.7 (2 × C-1), 88.4, 88.0, 84.1, 83.9, 83.3, 82.6, 82.4, 81.8, 80.6(8), 80.6(6), 80.6, 80.0, 77.2(1), 77.1(7), 77, 1, 76.9(3), 76.9(1), 76.0, 75.9(4), 75.8(5), 74.9, 73.8, 71.4, 70.9, 69.5, 68.9, 67.7, 67.6(1), 67.5(9), 67.3, 67.2, 61.8, 61.6, 61.5, 40.7, 29.5, 29.1(1), 29.0(5), 29.0, 28.6, 26.7, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₅₂H₈₆N₁O₃₆F₃Na: 1403.4666. Found: 701.7334 (M+2Na).

8-Trifluoroacetamidooctyl 3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 3)$ -[3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-35). Prepared from LAM-33 (0.2 g, 0.054 mmol), 20% Pd(OH)₂-C (50 mg) in pyridine (8 mL), hydrogen (1 atm.) and then trifluoroacetic anhydride (0.5 mL, 3.6 mmol) as described for the synthesis of LAM-12 to afford LAM-35 (0.15 mg, 73%) as a thick syrup. R_f 0.30 (7:3 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.35–7.08 (m, 115 H), 5.14–5.07 (m, 5 H, 5 × H-1), 4.98–4.94 (m, 3 H, 3 × H-1), 4.83 (d, 1 H, J = 1.2 Hz, H-1), 4.81 (d, 1 H, J = 1.1 Hz, H-1), 4.70–4.24 (m, 50 H), 4.20–3.48 (m, 53 H), 3.35–3.28 (m, 3H), 1.60–1.50 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, $CDCl_3, \delta_C$) 157.1 (q, J = 36.6 Hz), 138.6(3), 138.6(0), 138.4(9), 138.4(8), 138.3, 138.2(4), 138.2(2), 138.1(1), 138.0(6), 138.0(5), 138.0(3), 138.0(0), 138.0, 137.7(2), 137.6(9), 137.6(6), 138.0(1137.6, 130.9, 128.8, 128.4(4), 128.4(1), 128.3(8), 128.3(6), 128.3(1), 128.3(0), 128.3, 128.1, 128.0, 127.9(2), 127.9(0), 127.8(8), 127.8(6), 127.8(1), 127.8, 127.7, 127.6(4), 127.6(1), 127.5(4), 127.5, 127.4, 127.3, 116.0 (q, J = 288.0 Hz), 106.6 (C-1), 106.1 (2 × C-1), 105.3 (C-1), 101.1 (2 × C-1), 100.8 (C-1), 100.4 (C-1), 98.8 (C-1), 98.7 (C-1), 88.6(3) (2), 88.6(0), 86.3, 85.9, 84.3, 84.1(4), 84.1, 83.9, 83.3, 81.6, 81.2, 80.5, 80.2, 80.1, 80.0, 79.4, 79.2, 75.1(2), 75.1, 75.0, 74.9, 74.8, 74.5, 74.3, 73.4, 73.3, 73.2(4), 73.2(1), 72.3(3), 72.3, 72.2(4), 72.2, 72.1, 72.0, 71.8, 71.7, 70.0, 69.8, 69.5, 69.1, 68.8, 68.5, 68.2, 67.6, 66.0, 65.4, 40.0, 30.4, 29.7(2), 29.7, 29.5,

29.2, 29.1, 29.0, 28.9, 26.6, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₂₅H₂₄₄F₃N₁O₄₆Na: 3775.6634. Found: 3775.6628.

 α -D-mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-8-Trifluoroacetamidooctyl $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 3)$ - $[\alpha$ -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (6 Trifluoroacetamide). Prepared from LAM-35 (0.11 g, 0.03 mmol) and 20% Pd(OH)₂-C (40 mg) in EtOAc-CH₃OH-THF (12 mL, 3:5:2) as described for the synthesis of 1 Trifluoroacetamide to afford 6 **Trifluoroacetamide** (0.042 g, 83%) as a foam. ¹H NMR (600 MHz, D₂O, $\delta_{\rm H}$) 5.25 (s, 1 H, H-1), 5.18 (s, 1 H, H-1), 5.16–5.12 (m, 4 H, 4 × H-1), 5.10 (s, 1 H, H-1), 5.03–4.97 (m, 3 H, 3 × H-1), 4.33-4.27 (m, 2 H), 4.20-3.98 (m, 20 H), 3.98-3.67 (m, 29 H), 3.65-3.54 (m, 5 H), 3.32 (dd, 2 H, J = 7.0, 7.0 Hz, CH₂N), 1.63–1.54 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 159.6 (q, J = 36.6 Hz), 116.8 (q, J = 285.9 Hz), 108.3 (C-1), 108.1 (C-1), 106.5 (C-1), 106.3 (C-1), 103.2 (2 × C-1), 101.6 (C-1), 101.4 (C-1), 99.5 (C-1), 99.1 (C-1), 88.3, 87.9(4), 87.9, 84.1, 83.9, 83.28, 82.6, 82.5, 82.4, 81.8, 80.6(3), 80.6(2), 80.0, 79.7, 79.6, 77.2, 77.0, 76.9, 76.0, 75.9, 75.0(4), 75.0(1), 74.2, 73.9, 73.8, 71.2, 71.1, 70.9, 69.5, 69.2(3), 69.2, 67.9, 67.8, 67.3, 67.2(2), 67.1(8), 62.1, 61.9, 61.8, 61.6, 61.5, 40.7, 29.5, 29.1, 29.0, 28.5, 26.7, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₆₄H₁₀₆F₃N₁O₄₆: 1704.5836. Found: 1704.5830.

6. Synthesis of 7–9

Scheme S7. Synthesis of disaccharide needed for the synthesis of 7–9. a) NIS, AgOTf, CH_2CI_2 , 87%, 3.5:1 α : β ; b) NaOCH₃, CH₃OH, CH₂Cl₂, 90%, c) BzCl, pyridine, 97%, d); CAN, CH₃CN, H₂O, 88%; e). CI₃CCN, DBU, CH₂CI₂.

p-Methoxyphenyl 5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl-α/β-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-2-*O*-benzoyl-α-D-mannopyranoside (LAM-38). Prepared from thioglycoside LAM-36¹⁷ (3.1 g, 5.3 mmol), alcohol LAM-37¹⁸ (1.86 g, 3.2 mmol), *N*iodosuccinimide (1.2 g, 5.3 mmol), and silver triflate (84 mg, 0.33 mmol) in CH₂Cl₂ (100 mL) as described for the synthesis of LAM-3, to afford LAM-38 (2.94 g, 87%, inseparable 3.5:1 α :β mixture) as a syrup. To facilitate the separation of the products, the benzoyl group was removed (next step).

p-Methoxyphenyl 5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl- α -D-mannopyranoside (LAM-39). Prepared from LAM-38 (1.0 g, 0.96 mmol, 3.5:1 mixture) and 1 M methanolic sodium methoxide solution in CH₂Cl₂–CH₃OH (7:3, 30 mL) as described for the synthesis LAM-31 to afford LAM-39 (0.63 g, 90%, calculated based on percentage of α -glycoside in the starting diastereomeric mixture) as a thick syrup. R_f 0.24 (7:3 hexanes–EtOAc); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.72–7.65 (m, 2 H), 7.40–7.15 (m, 22 H), 7.08–7.03 (m, 2 H), 6.84–6.80 (m, 2 H), 5.50 (d, 1 H, J = 1.8 Hz), 5.47 (d, 1 H, J = 4.4 Hz, H-1), 4.76 (d, 1 H, J = 11.5 Hz), 4.64 (d, 1 H, J = 11.8 Hz), 4.58–4.50 (m, 3 H), 4.45–4.40 (m, 3 H), 4.34 (d, 1 H, J = 11.9 Hz), 4.24 (br. s, 1 H), 4.20–4.02 (m, 5 H), 3.96 (dd, 1 H, J = 5.9, 10.6 Hz), 3.89 (dd, 1 H, J = 4.4, 6.5 Hz), 3.77 (s, 3 H), 3.69 (dd, 1 H, J = 1.7, 10.9 Hz), 3.64 (dd, 1 H, J = 5.6, 1.9 Hz), 2.39 (s, 3 H); HRMS (ESI) *m*/*z* calcd for (M+Na) C₅₃H₅₆O₁₃SNa: 955.3333. Found: 955.3337.

p-Methoxyphenyl 5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-O-benzoyl-a-D-mannopyranoside (LAM-40). A solution of LAM-39 (0.5 g, 0.54 mmol) in dichloromethane-pyridine (10:1, 11 mL) was cooled to 0 °C and benzoyl chloride (0.1 mL, 0.8 mmol) was added to it dropwise. The reaction mass was then allowed to warm to r.t. and stirred for 16 h. Methanol (0.2 mL) was added and after stirring for 30 min, the reaction mixture was diluted with CH₂Cl₂ and poured into a satd aq NaHCO₃ soln. The organic layer was washed with water, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (4:1 hexanes–EtOAc) to afford LAM-40 (0.54 g, 97%) as a foam. R_f 0.22 (4:1 hexanes-EtOAc); $[\alpha]_{D}$ +72.9 c = 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 8.08-8.03 (m, 2 H), 7.66–7.55 (m, 3 H), 7.40–7.06 (m, 26 H), 6.86–6.80 (m, 2 H), 5.81 (dd, 1 H, J = 2.5, 2.5 Hz), 5.58 (d, 1 H, J = 2.0 Hz), 5.48 (d, 1 H, J = 4.3 Hz, H-1), 4.92 (d, 1 H, J = 11.0 Hz), 4.63 (dd, 2 H, J = 11.7, 11.7 Hz), 4.56–4.49 (m, 2 H), 4.46–4.14 (m, 9 H), 3.92 (ddd, 1 H, J =4.5, 7.0, 1.7 Hz), 3.82 (dd, 1 H, J = 4.5, 5.6 Hz), 3.80–3.76 (m, 5 H), 2.33 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.7, 155.3, 150.1, 144.6, 138.7, 137.7, 137.6, 137.4, 133.3, 132.9, 130.0, 129.6, 129.5, 128.5(2), 128.5, 128.4(4), 128.4, 128.3, 127.9(2), 127.8(9), 127.8(6), 127.8(3), 127.7(7), 127.7, 127.6, 127.3(3), 127.2(6), 118.3, 114.7, 101.0 (C-1), 97.0 (C-1), 82.3, 80.7, 78.2, 74.6, 73.2, 72.6, 72.0, 71.9, 71.3, 70.9, 69.3, 69.0, 67.9, 55.6, 21.6. HRMS (ESI) m/z calcd for (M+Na) C₆₀H₆₀O₁₄SNa: 1059.3596. Found: 1059.3593.

5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranose (LAM–41). To a solution of LAM-40 (0.56 g, 0.54 mmol) in CH₃CN–H₂O (30 mL 4:1) at 0 °C was added CAN (1.48 g, 2.7 mmol) and the solution was stirred for 40 min. The reaction mixture was diluted with EtOAc (75 mL) and brine (50 mL), and stirred well. The EtOAc layer was separated and the aqueous phase was extracted with EtOAc. The the combined organic layer was washed with water, aq NaHCO₃ soln and water, before being dried (Na₂SO₄), and concentrated to give a syrup that was purified by chromatography (3:2 hexanes–EtOAc) to afford LAM-41 (0.44 g, 6:1 diastereomeric mixture, 88%) as a syrup. Data for major isomer: R_f 0.14 (7:3 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.08–8.03 (m, 2 H), 7.69–7.65 (m, 2 H), 7.60–7.54 (m, 1 H), 7.45–7.06 (m, 24 H), 5.65 (dd, 1 H, J = 2.2, 2.2 Hz), 5.39 (d, 1 H, J = 4.3 Hz), 5.37 (s, 1 H), 4.86 (d, 1 H, J = 11.2 Hz), 4.72 (d, 1 H, J = 12.2 Hz), 4.59 (d, 2 H, J = 11.9 Hz), 4.55–4.50 (m, 2 H), 4.40–4.30 (m, 2 H), 4.40–4.15 (m, 3 H), 4.15–4.08 (m, 2 H), 4.03 (dd, 1 H, J = 9.5, 9.5 Hz), 3.98 (br. s, 1 H), 3.93–3.86 (m, 2 H), 3.78–3.62 (m, 2 H), 2.34 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.7, 144.6, 138.1, 137.8, 137.7, 137.3, 133.3, 132.9, 129.9, 129.7, 128.5, 128.4(4), 128.3(8), 128.3(6), 128.3, 128.1, 127.9(3), 127.8(6), 127.8(3), 127.8, 127.7, 127.6, 127.5, 127.2, 100.7 (C-1), 92.4 (C-1), 82.2, 80.6, 77.9, 74.4, 73.3, 72.6, 72.2, 72.0, 70.7, 70.4, 69.6, 69.0, 68.4, 21.6. HRMS (ESI) *m/z* calcd for (M+Na) C₅₃H₅₄O₁₃SNa: 953.3177. Found: 953.3180.

5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-2-*O*-benzoyl-α-D-mannopyranosyl trichloroacetimidate (LAM-42). To a solution of LAM-41 (0.3 g, 0.3 mmol) in CH₂Cl₂ (7 mL) at 0 °C was added trichloroacetonitrile (0.15 mL,1.5 mmol) followed by DBU (10 μ L, 0.07 mmol). The reaction mixture was stirred at 0 °C for 30 min and then warmed to rt over 30 min. The solvent was then removed and a solution of dry hexane– toluene (8 mL, 2:3) was added. After stirring for 5 min, this solution was quickly filtered through a short column of silica gel and Na₂SO₄ (ca. 1:1). The resulting solution was then concentrated and dried under vacuum to yield the trichloroacetimidate derivative LAM-42, which was used without any further purification. Alternatively, the syrup obtained after the initial solvent evaporation following the reaction could be quickly filtered through silica gel (4:1 hexanes– EtOAc). The fractions containing the trichloroacetimidate derivative were concentrated, dried under vacuum for 1 h and used immediately for the glycosylation without any further purification.

Scheme S8. Synthesis of protected derivatives of **7**–**9**. a) **LAM-42**, TMSOTf, 76%, b) NaOCH₃, CH₃OH, CH₂Cl₂, 92%; c) NaSCH₃, CH₃CN, 72%; d) **LAM-42**, TMSOTf, 88%; e) NaOCH₃, CH₃OH, CH₂Cl₂, 90%; f) NaSCH₃, CH₃CN, 74%; g) **LAM-42**, TMSOTf, 79%; h) NaOCH₃, CH₃OH, CH₂Cl₂, 94%; i) NaSCH₃, CH₃CN, 70%.

8-Azidooctyl 5-O-p-toluenesulfonyl-2,3-di-O-benzyl- α -D-xylofuranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-43). Trichloroacetimidate LAM-42 (prepared from 0.42 g of hemiacetal LAM-41 (Scheme S7), 0.6 mL of CCl₃CN and 10 µL of DBU) in CH₂Cl₂ (10 mL) was added to a solution of alcohol LAM-11 (0.49 g, 0.35 mmol) in CH₂Cl₂ (10 mL) containing 4 Å molecular sieves (0.28 g; stirred already for about 20 min.) at – 30 °C. A solution of TMSOTf (8 µL, 0.044 mmol) was added dropwise over a period of 5 min. The reaction mixture was warmed to -5 °C over 25 min, and the Et₃N (0.03 mL) was added. The solution was diluted with CH₂Cl₂ and filtered through Celite. The filtrate was concentrated to a syrup that was purified by chromatography (4:1 hexanes-EtOAc) to afford LAM-43 (0.61 g, 76%) as a syrup. $R_f 0.35$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +34.2 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.05–8.02 (m, 2 H), 7.64–7.56 (m, 3 H), 7.40–7.05 (m, 60 H), 7.05–7.02 (m, 4 H), 5.60 (dd, 1 H, J = 2.2, 2.2 Hz), 5.38 (d, 1 H, J = 4.3 Hz, H-1), 5.16–5.10 (m, 3 H, 3 × H-1), 5.01 (d, 1 H, J = 1.0 Hz, H-1), 4.90 (d, 1 H, J = 2.1 Hz, H-1), 4.75–4.66 (m, 4 H), 4.63–4.42 (m, 18 H), 4.38–4.32 (m, 2 H), 4.26–3.82 (m, 23 H), 3.76–3.64 (m, 6 H), 3.64–3.54 (m, 3 H), 3.37 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, J = 7.0, 7.0 Hz), 2.32 (s, 3 H), 1.63–1.55 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.4, 144.5, 138.7, 138.2, 138.1(4), 138.1(2), 138.1, 138.0, 137.7(2), 137.6(9), 137.3, 133.2, 132.8, 129.9, 129.6(1), 129.6, 128.5(0), 128.5, 128.4(1), 128.4(0), 128.3(8), 128.3(5), 128.3(3), 128.3(0), 128.3, 128.0, 127.9(2), 127.8(7), 127.8(0), 127.8, 127.7(4), 127.7(2), 127.6(9), 127.6(8), 127.5(9), 127.5(6), 127.5(4), 127.5(2), 127.5, 127.4, 127.3, 127.1, 106.4(3) (C-1), 106.4 (C-1), 106.1 (C-1), 100.8 (C-1), 100.7 (C-1), 97.5 (C-1), 88.7, 88.3, 86.0, 84.1, 83.9, 83.2(1), 83.1(7), 82.1, 81.7, 80.6, 80.2, 79.1, 78.6, 74.4, 73.3, 73.2, 72.6, 72.3(9), 72.3(6), 72.3(3), 72.3, 72.2, 72.0, 71.9, 71.8, 71.7, 71.2, 70.6, 70.1, 69.7, 69.1, 69.0, 67.7, 67.6, 65.9, 65.5, 51.5, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1, 21.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₃₇H₁₄₉N₃O₂₉SNa: 2354.9895. Found: 2354.9889.

8-Azidooctyl 5-*O-p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranoside (LAM-44). To a solution of LAM-43 (0.6 g, 0.26 mmol) in

CH₂Cl₂–CH₃OH (7:3, 30 mL) was added 1M methanolic sodium methoxide solution until the pH of the mixture was 8–9 (as determined wet pH paper). The reaction mixture was stirred for 12 h, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was purified by chromatography (7:3 hexanes-EtOAc) to yield LAM-44 (0.53 g, 92%) as a thick syrup. $R_f 0.30$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +49.3 (c = 0.65, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.70–7.65 (m, 2 H), 7.35–7.10 (m, 60 H), 7.10–7.06 (m, 2 H), 5.39 (d, 1 H, J = 4.3 Hz, H-1), 5.13 (s, 1 H, H-1), 5.12 (s, 1 H, H-1), 5.10 (d, 1 H, J = 4.5 Hz, H-1), 5.01 (s, 1 H, H-1), 4.91 (s, 1 H, H-1), 4.71-4.34 (m, 24 H), 4.28-4.18 (m, 3 H), 4.18-3.98 (m, 13 H), 3.98–3.80 (m, 9 H), 3.73–3.51 (m, 8 H), 3.38 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, J = 7.0, 7.0 Hz), 2.06 (s, 3 H), 1.63–1.55 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 144.6, 138.5, 138.2, 138.1(3), 138.1(2), 138.1, 137.7(2), 137.7, 137.4, 133.0, 129.7, 128.6, 128.5, 128.4(0), 128.3(8), 128.3(5), 128.3(1), 128.3, 127.9(9), 127.9(6), 127.9(4), 127.9, 127.7(9), 127.7(7), 127.7(2), 127.7, 127.6(1), 127.6, 127.4, 127.0, 106.5 (C-1), 106.4 (C-1), 106.1 (C-1), 100.7 (C-1), 100.6 (C-1), 99.0 (C-1), 88.7, 88.3, 86.4, 84.2, 83.9, 83.4, 83.3, 83.2, 82.3, 81.5, 80.7, 80.5, 80.3, 80.2, 79.1, 74.3, 73.3, 73.2, 72.7, 72.5, 72.4(0), 72.3(5), 72.3, 72.2, 72.0(1), 72.0, 71.9, 71.3, 70.7, 70.5, 69.9, 69.3, 68.9, 68.7, 67.6, 67.0, 66.0, 65.6, 51.5, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1, 21.6. HRMS (ESI) m/z calcd for (M+Na) C₁₃₀H₁₄₅N₃O₂₈SNa: 2250.9633. Found: 2250.9627.

8-Azidooctyl 5-deoxy-5-thiomethyl-2,3-di-*O*-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3-di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-45). To a solution of LAM-44 (0.54 g, 0.24 mmol) in CH₃CN (9 mL) was added sodium thiomethoxide (0.07 g, 1.0 mmol). The reaction mixture was then heated at 80 °C for 2 h, cooled to rt and then filtered to remove undissolved solids and the filter cake was washed with CH₃CN. The filtrate was then concentrated to a crude residue that was purified by chromatography (72:28 hexanes–EtOAc) to yield LAM-45 (0.36 g, 72%) as a thick syrup. R_f 0.27 (7:3 hexanes–EtOAc); $[\alpha]_D$ +43.5 (*c* = 0.4, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, δ_H) 7.40–7.15 (m, 60 H), 5.52 (d, 1 H, *J* = 4.2 Hz, H-1), 5.15–5.12 (m, 2 H, 2 × H-1), 5.10 (s, 1 H, H-1), 5.02 (s, 1 H, H-1), 4.91 (s, 1 H, H-1), 4.74–4.45 (m, 21 H), 4.35–4.30 (m, 4 H), 4.25–3.99 (m, 14 H), 3.95 (dd, 1 H, *J* = 4.4, 5.5 Hz), 3.93–3.82 (m, 6 H), 3.75–3.55 (m, 7 H), 3.40 (dd, 1 H, *J* = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, *J* = 7.0, 7.0 Hz), 2.71 (dd, 1 H, *J* = 5.4, 13.8 Hz), 2.55 (dd, 1 H, J = 7.2, 13.8 Hz), 2.39 (s, 1 H), 2.07 (s, 3 H), 1.63–1.55 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₂Cl₂, δ_{C}) 139.2, 138.8, 138.7, 138.6(1), 138.5(9), 138.4, 138.3, 138.2, 128.9, 128.8, 128.7(4), 128.7(2), 128.6(9), 128.6(7), 128.6, 128.4(1), 128.4(0), 128.4, 128.2(3), 128.1(4), 128.1(1), 128.1, 128.0(3), 127.9(8), 127.9(5), 127.9(1), 127.8(5), 127.8(3), 127.8, 127.5, 106.9 (C-1), 106.8 (C-1), 106.5 (C-1), 101.2 (C-1), 101.0 (C-1), 99.4 (C-1), 88.9, 88.6(3), 86.5(5), 84.8, 84.4, 84.1, 83.9(4), 83.9(0), 83.3, 82.2, 82.0, 81.1, 81.0, 80.8, 79.7, 77.9, 73.6(4), 73.6(1), 72.8, 72.7(1), 72.6(7), 72.5, 72.4, 72.3(0), 72.2(5), 71.4, 71.3, 71.0, 70.5, 69.9, 69.2, 68.0, 67.5, 66.7, 66.3, 51.9, 34.9, 29.9, 29.7, 29.5, 29.2, 27.1, 26.5, 16.8. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₄H₁₄₁N₃O₂₅SNa: 2126.9467. Found: 2126.9462.

8-Azidooctyl 5-*O-p*-toluenesulfonyl-2,3-di-*O*-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-2-*O*-benzoyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-

mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-46). Prepared from trichloroacetimidate LAM-42 (prepared from 0.26 g (0.28 mmol) of hemiacetal LAM-41 (Scheme S7), 0.6 mL of CCl₃CN and 10 µL of DBU) in CH₂Cl₂ (10 mL), alcohol LAM-19 (0.5 g, 0.22 mmol) in CH₂Cl₂ (10 mL), 4 Å molecular sieves (0.46 g) and TMSOTf (10 µL, 0.06 mmol) at -30 °C as described for the synthesis of LAM-43 to afford LAM-46 (0.62 g, 88%) as a thick syrup. $R_f 0.50$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +31.8 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, $CDCl_3$, δ_H) 8.08–8.02 (m, 2 H), 7.64–7.56 (m, 3 H), 7.40–7.00 (m, 94 H), 5.80 (dd, 1 H, J = 2.5, 2.5 Hz), 5.40 (d, 1 H, J = 4.3 Hz, H-1), 5.33 (s, 1 H, H-1), 5.16 (s, 1 H, H-1), 5.13 (s, 2 H, 2 × H-1), 5.10 (d, 1 H, J = 4.3 Hz, H-1), 5.04–5.00 (m, 2 H, 2 × H-1), 4.93–4.82 (m, 3 H), 4.72–4.62 (m, 3 H), 4.61-4.41 (m, 27 H), 4.40-4.22 (m, 6 H), 4.20-3.52 (m, 41 H), 3.40 (dd, 1 H, <math>J = 6.6, 9.5, 13.2 Hz), 3.26 (dd, 1 H, J = 7.0, 7.0 Hz), 2.32 (s, 3 H), 1.64–1.56 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.3, 144.5, 138.8, 138.6(4), 138.6(0), 138.6, 138.4, 138.3, 138.2(2), 138.2, 138.1, 138.0, 137.9, 137.7(7), 137.7(5), 137.7, 137.6, 133.1, 132.9, 130.0, 129.9, 129.6(0), 128.5(5), 128.5, 128.4(2), 128.3(9), 128.3(6), 128.3(3), 128.3(1), 128.3, 128.1, 128.0(1), 128.0, 127.9(3), 127.8(9), 127.8(6), 127.8(2), 127.8, 127.7(2), 127.6(9), 127.6(8), 127.6(6), 127.6(2), 127.6, 127.5(4), 127.5(1), 127.5, 127.4(4), 127.4(1), 127.4, 127.3, 106.5 (C-1), 106.3 (C-1), 106.1 (C-1), 100.9 (C-1), 100.8 (C-1), 100.7(6) (C-1), 99.3 (C-1), 98.9 (C-1),

88.7, 88.3, 86.1, 84.4, 84.0, 83.9, 83.3, 83.2(1), 82.2(3), 81.6, 80.7, 80.6, 80.2, 79.6, 79.5, 78.2, 75.6, 75.3, 75.1, 74.7(4), 74.7, 74.4, 73.3(4), 73.3, 73.2(0), 73.2, 72.6, 72.4, 72.3(2), 72.3, 72.0(2), 72.0, 71.9, 71.4, 70.6, 70.2, 69.8, 69.2(1), 69.2, 69.1(0), 69.1, 69.0(3), 68.0, 67.6, 66.0, 65.5, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1, 21.5. HRMS (ESI) *m/z* calcd for (M+Na) C₁₉₁H₂₀₅N₃O₃₉SNa: 3219.3769. Found: 3219.3763.

8-Azidooctyl 5-*O-p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2.3-di-O-benzvl- α -D-arabinofuranoside (LAM-47). Prepared from LAM-46 (0.62 g. 0.19 mmol) and 1M methanolic sodium methoxide solution in CH_2Cl_2 -CH₃OH (4:1, 30 mL) as described for the synthesis of LAM-44 to afford LAM-47 (0.54 g, 90%) as a thick syrup. $R_f 0.26$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +44.5 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, δ_H) 7.72-7.64 (m, 2 H), 7.41–7.14 (m, 92 H), 5.48 (d, 1 H, J = 4.3 Hz, H-1), 5.30 (d, 1 H, J = 1.7 Hz, H-1), $5.18-5.10 \text{ (m, 5 H, 5 \times H-1)}, 5.06 \text{ (s, 1 H, H-1)}, 4.88 \text{ (dd, 1 H, } J = 11.1, 13.6 \text{ Hz}), 4.76-4.30 \text{ (m, 1)}$ 36 H), 4.26-3.80 (m, 33 H), 3.80-3.54 (m, 11 H), 3.43 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.38(dd, 1 H, J = 7.0, 7.0 Hz), 2.40 (s, 3 H), 1.63–1.54 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125) MHz, CD₂Cl₂, δ_C) 145.3, 139.3(2), 139.2(8), 139.3, 139.2, 138.9(7), 138.9(5), 138.8, 138.6(9), 138.6(5), 138.6(3), 138.6, 138.4, 138.3(3), 138.2(8), 138.2(6), 133.3, 130.2, 128.9, 128.8(2), 128.8(0), 128.7(6), 128.7(3), 128.7(2), 128.7(1), 128.6(8), 128.6(4), 128.6(0), 128.6, 128.4(1), 128.4, 128.3(3), 128.2(8), 128.2(5), 128.2(3), 128.2(1), 128.1(9), 128.1(6), 128.1(2), 128.0(5), 127.9(9), 127.9(6), 127.9(5), 127.9(1), 127.9, 127.8(4), 127.8(3), 127.8, 127.6(7), 127.6(5), 106.9 (C-1), 106.7 (C-1), 106.6 (C-1), 101.3 (2 × C-1), 101.0(5) (C-1), 101.0(7) (C-1), 99.3 (C-1), 89.0, 88.7, 86.4, 85.0, 84.4, 84.3, 84.1, 83.9, 83.0, 82.0, 81.3, 81.2, 80.8, 80.6, 80.3, 80.0, 79.9, 75.7, 75.5, 75.3(9), 75.3(7), 75.1, 74.7, 73.7, 73.6(3), 73.6, 73.5, 73.1, 72.9, 72.7(7), 72.7(5), 72.7(0), 72.7, 72.4, 72.3(4), 72.3, 72.0, 71.6, 71.4, 71.1, 70.7, 70.3, 69.7, 69.5, 68.0, 67.8(0), 66.8, 66.3, 51.9, 30.0, 29.7, 29.5, 29.2, 27.1, 26.5, 21.8. HRMS (ESI) m/z calcd for (M+Na) C₁₈₄H₂₀₁N₃O₃₈SNa: 3115.3506. Found: 3115.3501.

8-Azidooctyl 5-deoxy-5-thiomethyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ - 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3-di-*O*-benzyl-β-D-arabinofuranosyl-

 $(1\rightarrow 2)$ -3,5-di-*O*-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-48). Prepared from LAM-47 (0.27 g, 0.09 mmol), and sodium thiomethoxide (0.03 g, 0.4 mmol) in CH₃CN (6 mL) as described for the synthesis of LAM-45 to afford LAM-48 (0.19 g, 74%) as a syrup. R_f 0.36 (7:3 hexanes-EtOAc); $[\alpha]_D$ +45.2 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, δ_H) 7.40–7.10 (m, 90 H), 5.51 (d, 1 H, J = 4.3 Hz, H-1), 5.30 (d, 1 H, J = 1.5 Hz, H-1), 5.15–5.05 (m, 5 H, 5 × H-1), 5.05 (s, 1 H, H-1), 4.84 (dd, 2 H, J = 11.0, 11.0 Hz), 4.72–4.40 (m, 34 H), 4.36–4.28 (m, 3 H), 4.22– 3.50 (m, 42 H), 3.39 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, J = 7.0, 7.0 Hz), 2.68 (dd, 1 H, J = 5.4, 13.8 Hz), 2.52 (dd, 1 H, J = 7.1, 13.8 Hz), 2.03 (s, 1 H), 2.06 (s, 3 H), 1.63–1.54 (m, 4 H), 1.41–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD_2Cl_2 , δ_C) 139.3(4), 139.2(9), 139.2(7), 139.2, 139.1, 139.0, 138.8, 138.6(9), 138.6(6), 138.6(4), 138.6, 138.4(9), 138.4(7), 138.3(4), 138.2(8), 138.2(6), 128.9, 128.8(2), 128.7(9), 128.7(7), 128.7(1), 128.6(9), 128.6(4), 128.6(1), 128.6, 128.4(1), 128.4, 128.3(3), 128.2(9), 128.2(7), 128.2(1), 128.1(9), 128.1(7), 128.1(5), 128.1(2), 128.1(2), 128.1(2), 128.1(3128.0(8), 128.0(5), 128.0(2), 128.0(0), 128.0, 127.9(4), 127.9, 127.8(2), 127.8(0), 127.7(7), 128.0(8), 128.0(7),127.7, 127.6, 106.9 (C-1), 106.7 (C-1), 106.6 (C-1), 101.3(7) (C-1), 101.3(5) (C-1), 101.3 (C-1), 101.1 (C-1), 99.2 (C-1), 89.0, 88.7, 86.4, 85.0, 84.4, 84.3, 84.1, 83.9, 83.4, 82.3, 82.1, 81.2, 80.8, 80.7, 80.3, 80.0, 79.9, 77.8(3), 75.8, 75.5, 75.1, 73.7, 73.6, 73.5, 72.9, 72.7(7), 72.7(5), 72.7(0), 72.6(8), 72.6(6), 72.5, 72.3(4), 72.3, 72.0, 71.6(4), 71.6, 71.2, 70.7, 70.3, 69.9, 69.7, 68.0, 67.9, 66.8, 66.3, 51.9, 35.0, 30.0, 29.7, 29.5, 29.2, 27.1, 26.5, 16.9. HRMS (ESI) *m/z* calcd for (M+Na) C₁₇₈H₁₉₇N₃O₃₅SNa: 3014.3232. Found: 1507.1624 (M+2Na).

8-Azidooctyl 5-*O-p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzyl- α -Dmannopyranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzyl α -Darabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl- α -D-arabinofuranoside (LAM-49). Trichloroacetimidate LAM-42 (prepared from 0.39 g of hemiacetal LAM-41 (Scheme S7), 0.6 mL of CCl₃CN and 15 μ L of DBU) in CH₂Cl₂ (10 mL), alcohol LAM-17 (0.5 g, 0.27 mmol) in CH₂Cl₂ (10 mL), 4 Å molecular sieves (0.4 g) and TMSOTf (8 μ L, 0.044 mmol) at -30 °C as described for the synthesis of LAM-43 to afford LAM-49 (0.59 g, 79%) as a thick syrup. R_f 0.39 (7:3 hexanes–EtOAc); [α]_D +39.0 (c = 0.3,

CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.05–8.02 (m, 2 H), 7.64–7.56 (m, 3 H), 7.41–7.0 (m, 79 H), 5.82 (dd, 1 H, J = 2.3, 2.3 Hz), 5.36 (d, 1 H, J = 4.2 Hz, H-1), 5.23 (d, 1 H, J = 1.8 Hz, H-1), 5.16–5.10 (m, 3 H, $3 \times$ H-1), 5.09 (s, 1 H, H-1), 5.03 (s, 1 H, H-1), 4.88 (dd, 2 H, J = 3.6, 11.2 Hz), 4.76–4.43 (m, 25 H), 4.40–4.30 (m, 2 H), 4.28–4.22 (m, 2 H), 4.20–4.03 (m, 15 H), 4.03–3.94 (m, 4 H), 3.94–3.54 (m, 18 H), 3.39 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.26 (dd, 1 H, J = 7.0, 7.0 Hz), 2.33 (s, 3 H), 1.64–1.56 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125 MHz. $CDCl_3, \delta_C$) 165.3, 144.5, 138.7, 138.6, 138.2(4), 138.1(7), 138.1(5), 138.1(0), 138.1, 137.9, 137.8, 137.7(1), 137.7, 137.4, 133.2, 132.9, 129.9, 129.8, 129.6, 128.6, 128.5, 128.4(2), 128.3(9), 128.3(7), 128.3(3), 128.3(2), 128.2(9), 128.2, 128.0, 127.9(4)(Ar), 127.8(9), 127.8(5)(Ar), 127.8(3), 127.7(8), 127.7(6), 127.7(3), 127.7(0), 127.6(8), 127.6(4), 127.6, 127.5(4), 127.5(2), 127.5, 127.4(1), 127.4, 127.3(4), 127.3, 106.5 (C-1), 106.4 (C-1), 106.1 (C-1), 100.9 (C-1), 100.8 (C-1), 99.4 (C-1), 98.6 (C-1), 88.7, 88.3, 86.2, 84.5, 83.9, 83.7, 83.3, 83.2, 82.0, 81.6(0), 80.6(3), 80.6, 80.2, 80.0, 79.2, 78.2, 75.1, 74.7, 74.5, 74.3, 73.3(5), 73.3, 73.2, 72.7, 72.4(0), 72.3(8), 72.3(7), 72.3, 72.2(1), 72.1(6), 72.0, 71.9(3), 71.8(8), 71.8(5), 71.4, 70.7, 70.2, 69.6, 69.2, 69.1, 68.0, 67.6, 66.0, 65.6, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1, 21.6. HRMS (ESI) m/z calcd for (M+Na) C₁₆₄H₁₇₇N₃O₃₄SNa: 2787.1832. Found: 2787.1826.

8-Azidooctyl 5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-50). Prepared from LAM-49 (0.35 g, 0.13 mmol) and 1M methanolic sodium methoxide solution in CH₂Cl₂–CH₃OH (7:3, 10 mL) as described for the synthesis of LAM-44 to afford LAM-50 (0.32 mg, 94%) as a thick syrup. R_f 0.24 (7:3 hexanes–EtOAc); [α]_D + 42.1 (c = 0.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.70–7.63 (m, 2 H), 7.35–7.10 (m, 77 H), 5.32 (d, 1 H, J = 4.3 Hz, H-1), 5.13 (d, 2 H, J = 1.5 Hz, H-1), 5.10 (d, 1 H, J = 0.8 Hz, H-1), 5.09 (s, 1 H, H-1), 5.07 (d, 1 H, J = 4.4 Hz, H-1), 5.06 (d, 1 H, J = 1.7 Hz, H-1), 4.99 (d, 1 H, J = 1.1 Hz, H-1), 4.81 (d, 1 H, J= 10.9 Hz), 4.70 (d, 1 H, J = 11.6 Hz), 4.66–4.30 (m, 28 H), 4.26–4.18 (m, 2 H), 4.16–3.98 (m, 13 H), 3.98–3.94 (m, 2 H), 3.94–3.74 (m, 12 H), 3.71–3.46 (m, 9 H), 3.38 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.24 (dd, 1 H, J = 7.0, 7.0 Hz), 2.38 (s, 3 H), 1.63–1.54 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 144.6, 138.6(9), 138.6(5), 138.6, 138.3, 138.2(2), 138.2, 138.1(2), 138.1(0), 137.8, 137.7(3), 137.7(1), 137.5, 133.1, 129.6(9), 128.6(8), 128.6(4), 128.6, 128.5, 128.4(0), 128.3(7), 128.3(3), 128.3(2), 128.3, 128.1, 127.9(8), 127.9(6), 127.9(4), 127.9, 127.8(3), 127.7(7), 127.7(6), 127.7(4), 127.7(0), 127.7, 127.5(9), 127.5(6), 127.5(2), 127.5, 127.2, 106.5 (C-1), 106.4(C-1), 106.1 (C-1), 100.8(8) (C-1), 100.8(6) (C-1), 100.6(0) (C-1), 98.7 (C-1), 88.7, 88.3, 86.2, 84.5, 83.9, 83.6, 83.3, 83.2(1), 82.2, 81.6, 80.7, 80.6, 80.2, 80.1, 79.1(3), 75.1, 74.7, 74.4, 74.2, 73.3(3), 73.3, 73.1, 72.8, 72.3(8), 72.3(6), 72.3(5), 72.3, 72.2(3), 72.2, 72.0, 71.9, 71.7, 70.9, 70.9, 70.3, 69.6, 69.3, 69.1, 69.0, 67.6, 67.5, 66.0, 65.6, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1, 21.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₅₇H₁₇₃N₃O₃₃SNa: 2683.1570. Found: 2683.1564.

8-Azidooctyl 5-deoxy-5-thiomethyl-2,3-di-O-benzyl- α -D-xylofuranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3di-O-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzyl α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3di-O-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-51). Prepared from LAM-50 (0.31 g, 0.12 mmol), and sodium thiomethoxide (0.04 g, 0.6 mmol) in CH₃CN (6 mL) as described for the synthesis of LAM-45 to afford LAM-51 (0.21 g, 70%) as a syrup. $R_f 0.42$ (7:3 hexanes-EtOAc, two runs); $[\alpha]_D + 54.3$ (c = 0.2, CHCl₃); ¹H NMR (500) MHz, CD_2Cl_2 , δ_H) 7.40–7.15 (m, 75 H), 5.49 (d, 1 H, J = 4.3 Hz, H-1), 5.16 (d, 1 H, J = 1.0 Hz, H-1), 5.14–5.10 (m, 3 H, $3 \times$ H-1), 5.09 (s, 1 H, H-1), 5.03 (s, 1 H, H-1), 4.86 (d, 1 H, J = 11.0Hz), 4.74 (d, 1 H, J = 11.6 Hz), 4.70-4.40 (m, 28 H), 4.37-4.32 (m, 2 H), 4.24-3.54 (m, 35 H), 3.40 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.26 (dd, 1 H, J = 7.0, 7.0 Hz), 2.71 (dd, 1 H, J = 5.1, 13.8 Hz), 2.52 (dd, 1 H, J = 7.2, 13.8 Hz), 2.39 (s, 1 H), 2.06 (s, 3 H), 1.63–1.55 (m, 4 H), 1.40–1.30 (m, 8 H); 13 C NMR (125 MHz, CD₂Cl₂, $\delta_{\rm C}$) 139.3, 139.2, 139.1, 138.8(2), 138.8, 138.7(0), 138.7, 138.6(2), 138.6, 138.4, 138.3, 138.2(4), 138.2(3), 128.9, 128.8(0), 128.8, 128.7(1), 128.6(9), 128.6(6), 128.6, 128.4(1), 128.3(7), 128.2(3), 128.2(1), 128.2, 128.1(3), 128.0(9), 128.0(6), 128.0(4), 127.9(9), 127.9(7), 127.9(2), 127.8(9), 127.8(7), 127.8(2), 127.8(1), 127.8, 127.6, 106.9 (C-1), 106.8 (C-1), 106.5 (C-1), 101.3 (C-1), 101.2 (C-1), 101.1 (C-1), 99.0 (C-1), 89.0, 88.6, 86.4, 85.0, 84.4, 84.1, 84.0, 83.9(0), 83.9, 82.2, 82.0, 81.1, 80.8(1), 80.8, 80.6, 79.6, 77.8, 75.3, 75.1, 74.7, 73.6(4), 73.6(0), 73.5, 72.9, 72.7(7), 72.7(5), 72.7(2), 72.7(0), 72.7, 72.4(8), 72.4(6), 72.3(1), 72.3, 71.6(0), 71.6, 71.3, 70.8, 69.9, 69.8, 69.6, 68.0, 67.8, 66.7, 66.3, 51.9, 35.0, 30.0, 29.7, 29.5, 29.2, 27.1, 26.5, 16.9. HRMS (ESI) m/z calcd for (M+Na) C₁₅₁H₁₆₉N₃O₃₀SNa: 2559.1409. Found: 2559.1403.

Scheme S9. Synthesis of **7**–**9**. a) Na, NH₃ (I), THF; then CH₃OH, H₂O, 67%, b) Na, NH₃ (I), THF; then CH₃OH, H₂O, 59%; c) Na, NH₃ (I), THF; then CH₃OH, H₂O, 63%.

8-Aminooctyl 5-deoxy-5-thiomethyl- α -D-xylofuranosyl-(1 \rightarrow 4)- α -D-mannopyranosyl-(1 \rightarrow 5)- β -D-arabinofuranosyl-(1 \rightarrow 2)- α -D-arabinofuranosyl-(1 \rightarrow 5)- α -D-arabinofuranosyl-(1 \rightarrow 5)- α -D-arabinofuranoside (7). To a solution of liquid NH₃ (25 mL) at -78 °C was added sodium metal (0.1 g) until a deep blue solution was produced. A solution of LAM-45 (83 mg, 0.04 mmol) in THF (2 mL) was then added over a period of 3–4 min, making sure that the deep blue color persisted and the reaction mixture was stirred at -78 °C for 45 min. Methanol was then added until the dark blue color disappeared and the solution appeared clear. The solution was then warmed to rt by blowing air gently over the solution, which also helped evaporate the NH₃. When the reaction mixture reached rt, a 1:1 solution of CH₃OH–H₂O (6 mL) was added and the pH of the solution was brought to ~8 by the careful addition of Amberlite IR 120 H+ resin. The solution was filtered to remove the resin and the filtrate was concentrated. The residue was purified by C-18 chromatography (1:1 CH₃OH–H₂O) to give **7** (26 mg, 67%) as a thick syrup that was later lyophilized from water to give a fluffy solid. $[\alpha]_D$ + 73.3 (*c* = 0.1, CH₃OH); ¹H NMR (600 MHz, D₂O, δ_H) 5.41 (d, 1 H, *J* = 4.4 Hz, H-1), 5.17 (s, 1 H, H-1), 5.14 (d, 1 H, *J* = 4.2 Hz, H-1), 5.08 (s, 1 H, H-1), 5.01 (s, 1 H, H-1), 4.92 (s, 1 H, H-1), 4.40–4.35 (m, 1 H), 4.27–4.22 (m, 1 H), 4.22–3.95 (m, 14 H), 3.95–3.62 (m, 14 H), 3.57 (ddd, 2 H, *J* = 6.6, 10.0, 13.2 Hz), 2.89 (dd, 2 H, *J* = 7.5, 7.5 Hz), 2.79 (dd, 1 H, *J* = 4.9, 10.3 Hz), 2.68 (dd, 1 H, *J* = 8.4, 13.8 Hz), 2.17 (s, 3 H), 1.65–1.55 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_C) 108.4 (C-1), 108.2 (C-1), 106.6(2) (C-1), 103.4 (C-1), 101.5 (C-1), 100.8 (C-1), 88.0, 84.1, 83.2, 82.6, 82.6, 81.8(3), 81.7(9), 80.7(5), 80.7(2), 78.6(7), 77.7, 77.6, 77.5, 77.4(4), 77.4(0), 76.9, 76.5, 76.0, 75.0, 74.9, 73.8, 72.4, 71.5(3), 71.5, 71.1, 70.9, 69.5, 69.2, 67.8, 67.7, 61.9(2), 61.9, 61.7, 40.5, 33.9, 29.5, 29.0(4), 29.0, 27.7, 26.4, 26.0, 15.9. HRMS (ESI) *m/z* calcd for (M+Na) C₄₀H_{72N}I_{O25}SNa: 998.4108. Found: 998.4110.

8-Aminooctyl 5-deoxy-5-thiomethyl- α -D-xylofuranosyl- $(1 \rightarrow 4)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (8). Prepared from LAM-48 (0.13 g, 0.044 mmol), liquid NH₃ (25 mL) and sodium metal (0.1 g) in THF (2 mL) as described for the preparation of 7 to give the 8 (34 mg, 59%) as a thick syrup that was later lyophilized from water to give a foam. $[\alpha]_D$ +69.8 (c = 0.1, CH₃OH); ¹H NMR $(500 \text{ MHz}, D_2O, \delta_H) 5.40 \text{ (d, 1 H, } J = 4.4 \text{ Hz}, \text{H-1}), 5.28 \text{ (d, 1 H, } J = 1.2 \text{ Hz}, \text{H-1}), 5.18 \text{ (d, 1 H, } J$ = 1.7 Hz, H-1), 5.16–5.12 (m, 2 H, $2 \times$ H-1), 5.08 (d, 1 H, J = 1.4 Hz, H-1), 5.05 (d, 1 H, J = 1.7 Hz, H-1), 5.01 (d, 1 H, J = 1.9 Hz, H-1), 4.42–4.36 (m, 1 H), 4.28–4.24 (m, 1 H), 4.24–3.50 (m, 41 H), 2.90 (dd, 2 H, J = 7.5, 7.5 Hz), 2.80 (dd, 1 H, J = 4.8, 13.8 Hz), 2.70 (dd, 1 H, J = 8.4, 13.8 Hz), 2.18 (s, 3 H), 1.65–1.55 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_{C}) 108.42 (C-1), 108.1 (C-1), 106.6 (C-1), 103.4 (C-1), 103.1 (C-1), 101.6 (C-1), 101.4 (C-1), 99.1 (C-1), 87.8, 84.1, 83.2, 82.6(2), 82.6, 81.8(1), 81.8, 80.6, 79.7, 79.3, 78.6, 77.6, 77.5, 77.4(0), 77.4, 77.0, 76.5, 76.0, 75.0, 75.0, 74.2, 73.8, 72.7, 71.3, 71.1(0), 71.0(8), 70.9, 69.5, 69.2, 68.0, 67.8, 67.7, 63.5, 62.0(4), 62.0(2), 62.0, 61.8, 61.6, 40.4, 33.9, 29.5, 29.0, 28.95, 27.6, 26.3, 26.0, 15.9. HRMS (ESI) *m/z* calcd for (M+Na) C₅₂H₉₂N₁O₃₅SNa: 1345.5057. Found: 672.7531 (M+H+2Na).

7. Synthesis of 10

Scheme S10. Synthesis of 10. a) BnBr, NaH, THF, DMF, 97%, b) *n*-Bu₄NF, THF, 95%; c) LAM-6, NIS, AgOTf, 91%; d) NaOCH₃, CH₃OH, CH₂Cl₂, 94%; e) LAM-9, NIS, AgOTf, 83%; f) NaOCH₃, CH₃OH, CH₂Cl₂, 89%; g) LAM-42, TMSOTf, CH₂Cl₂, 68%; h) NaOCH₃, CH₃OH, CH₂Cl₂, 90%; i) NaSCH₃, CH₃CN, 70%; j) Na, NH₃ (I), THF; then CH₃OH, H₂O, 60%.

8-Azidooctyl 2,3,5-tri-O-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-O-benzyl- α -Darabinofuranosyl- $(1 \rightarrow 3)$ -2-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -**2.3-di-***O***-benzyl-** α **-D-arabinofuranoside (LAM-53)**. To a solution of LAM-52¹⁹ (1.10 g, 0.70 mmol) in a mixture of DMF (5 mL) and THF (5 mL) at 0 °C was added NaH (0.056 g, 1.40 mmol, 60% dispersion in oil) and the solution was stirred for 10 min before benzyl bromide (0.1 mL, 0.84 mmol) was added dropwise. After stirring for 14 h at rt, a few drops of CH₃OH were added, the solution was diluted with CH₂Cl₂ (100 mL), and then washed with a satd aq NaHCO₃ soln and water. The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting residue was purified by chromatography (6:1 hexanes-EtOAc) to provide LAM-53 (1.13 g, 97%) as a colorless oil. $R_f 0.23$ (6:1 hexanes-EtOAc); $[\alpha]_D + 22.2$ (c = 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.76–7.72 (m, 4 H), 7.40–7.21 (m, 46 H), 5.20 (s, 1 H, H-1), 5.19 (s, 1 H, H-1), 5.08 (d, 1 H, J = 4.4 Hz, H-1), 5.02 (s, 1 H, H-1), 4.70 (d, 1 H, J = 11.8 Hz), 4.66–4.35 (m, 17 H), 4.24–4.20 (m, 1 H), 4.19–4.02 (m, 9 H), 3.94–3.89 (m, 3 H), 3.77–3.50 (m, 2 H), 3.60-3.47 (m, 4 H), 3.39 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.25 (dd, 2 H, J = 7.0, 6.9 Hz), 1.65–1.57 (m, 4 H), 1.42–1.30 (m, 8 H), 1.08 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.2(8), 138.2(6), 138.2(2), 138.1, 138.0(8), 137.7(4), 137.9, 137.7, 137.6, 135.7, 135.6, 133.7, 133.6, 129.5(2), 129.5(0), 128.4, 128.3(5), 128.3(3), 128.3(0), 128.2(4), 128.0, 127.8(7), 127.8(4), 127.8(1), 127.7(8), 127.7(2), 127.6(7), 127.6(3), 127.5(8), 127.5(6), 127.5(1), 127.4, 106.1 (C-1 × 2), 105.4 (C-1), 100.2 (C-1), 88.6, 88.3, 86.0, 84.0, 83.9, 83.3, 83.1, 81.8, 81.4, 80.1, 80.0, 79.7, 73.3, 73.1, 72.3(8), 72.3(0), 72.1, 72.0, 71.8, 69.6, 67.6, 66.2, 63.3, 51.4, 29.5, 29.3, 29.1, 28.5, 26.8, 26.7, 26.1, 19.4. HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₀H₁₁₅N₃O₁₇SiNa: 1680.7888. Found: 1680.7888.

8-Azidooctyl 2,3,5-tri-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-Darabinofuranosyl-(1→3)-2-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-Darabinofuranoside (LAM-54). Tetrasaccharide LAM-53 (1.08 g, 0.65 mmol) in THF (10 mL) was treated with 1M *n*-Bu₄NF in THF solution (0.78 mL) and the reaction mixture was stirred at rt for 3 h. The mixture was concentrated and the resulting residue was purified by chromatography (2:1 hexanes–EtOAc) to yield LAM-54 (0.881 g, 95%) as an oil. R_f 0.21 (3:1 hexanes–EtOAc); [α]_D +25.4 (c = 0.4, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ _H) 7.38–7.24 (m, 40 H), 5.17 (d, 1 H, J = 1.6 Hz, H-1), 5.16 (s, 1 H, H-1), 5.06 (d, 1 H, J = 4.4 Hz, H-1), 5.04 (s, 1 H, H-1), 4.72 (d, 1 H, J = 11.9 Hz), 4.68–4.40 (m, 14 H), 4.41–4.38 (m, 2 H), 4.27–4.20 (m, 3 H), 4.18–4.03 (m, 8 H), 3.92–3.80 (m, 3 H), 3.78–3.72 (m, 2 H), 3.62–3.55 (m, 4 H), 3.41 (ddd, 1 H, J = 9.7, 6.6, 6.6 Hz), 3.28 (dd, 2 H, J = 7.0, 6.9 Hz), 2.21 (dd, 1 H, J = 7.7, 5.2 Hz), 1.66–1.60 (m, 4 H), 1.43–1.34 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.2, 138.1, 138.0(7), 138.0(5), 137.7, 137.6, 128.5, 128.4(6), 128.4(3), 128.3(9), 128.3(2), 128.0, 127.9, 127.8(9), 127.8(0), 127.7(7), 127.7(5), 127.7(2), 127.6(9), 127.6(5), 127.6(2), 127.5, 106.1 (C-1), 106.0(3) (C-1), 106.0(1) (C-1), 100.1 (C-1), 88.6, 88.4, 85.7, 84.1, 83.9, 83.3, 82.9, 81.5, 81.2, 80.5, 80.1, 80.0, 73.3, 73.1, 72.4, 72.3, 72.2, 72.1(6), 72.1(0), 72.0, 69.9, 67.6, 66.1, 61.8, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m*/*z* calcd for (M+Na) C₈₄H₉₇N₃O₁₇Na: 1442.6710. Found: 1442.6708.

8-Azidooctyl 2,3,4-tri-O-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-O-benzyl-α-Darabinofuranosyl- $(1\rightarrow 3)$ - $[3,5-di-O-benzyl-2-O-benzoyl-\alpha-D-arabinofuranosyl-<math>(1\rightarrow 5)$]-2-Obenzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-55). Alcohol LAM-54 (875 mg, 0.616 mmol) and thioglycoside LAM-6¹⁴ (400 mg, 0.739 mmol) were dried under vacuum in the presence of P₂O₅ for 2 h before being dissolved in CH₂Cl₂ (15 mL). The solution was cooled to 0 °C, powdered 4 Å molecular sieves (0.3 g) were added and the reaction mixture was stirred at 0 °C for 15 min before N-iodosuccinimide (210 mg, 0.887 mmol) and silver triflate (23 mg, 0.089 mmol) were added. After stirring for 20 min at 0 °C, Et₃N was added until the pH of the solution was neutral as determined by wet pH paper. The reaction was diluted with CH₂Cl₂, filtered through Celite and the filtrate was washed with a saturated a solution of Na₂S₂O₃, water and brine. The organic layer was subsequently dried (Na₂SO₄), filtered and concentrated, and the resulting crude residue was purified by chromatography (6:1 hexanes-EtOAc) to yield LAM-55 (1.031 g, 91%) as an oil. R_f 0.41 (3:1 hexanes-EtOAc); $[\alpha]_D$ +30.9 (c = 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.02-7.98 (m, 2 H), 7.60–7.56 (m, 1 H), 7.43–7.39 (m, 2 H), 7.37–7.17 (m, 50 H), 5.51 (d, 1 H, J = 1.2 Hz), 5.33 (s, 1 H, H-1), 5.21–5.18 (m, 2 H, 2 × H-1), 5.02 (d, 1 H, J = 4.0 Hz, H-1), 5.01 (d, 1 H, J =1.1 Hz, H-1), 4.83 (d, 1 H, J = 12.1 Hz), 4.70–4.33 (m, 22 H), 4.27–4.21 (m, 2 H), 4.21–3.98 (m, 10 H), 3.91 (dd, 1 H, J = 11.8, 4.3 Hz), 3.82 (dd, 1 H, J = 11.5, 2.4 Hz), 3.77–3.69 (m, 2 H), 3.65-3.52 (m, 6 H), 3.38 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.0, 6.9 Hz), 1.65–1.56 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.2, 138.3,

138.2(8), 138.2(3), 138.1(4), 138.1(0), 138.0, 137.8(8), 137.8(1), 137.7, 133.1, 129.8, 129.7, 128.4(2), 128.4(0), 128.3(5), 128.3(1), 128.2(9), 128.2(6), 128.2(4), 128.0, 127.8(9), 127.8(1), 127.7(7), 127.7(2), 127.6(7), 127.6(3), 127.5(9), 127.5(6), 127.4, 106.2 (C-1), 106.1 (C-1), 106.0 (C-1), 105.5 (C-1), 100.0 (C-1), 88.7, 88.5, 85.6, 84.1, 83.5, 83.2, 83.1, 82.2, 81.7, 81.6, 80.5, 80.1, 80.0(6), 80.0(3), 73.3, 73.2, 73.1, 72.3(9), 72.3(0), 72.0(8), 72.0(4), 71.9, 69.8, 69.2, 67.6, 66.2, 65.8, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₁₀H₁₂₁N₃O₂₂Na: 1858.8334. Found: 1858.8330.

8-Azidooctyl 2,3,4-tri-O-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-O-benzyl-α-Darabinofuranosyl-(1→3)-[3,5-di-O-benzyl-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-Darabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-56). Pentasaccharide LAM-55 (1.02 g, 0.56 mmol) was dissolved in CH₂Cl₂ (10 mL) and CH₃OH (5 mL) and then treated with 1M methanolic sodium methoxide (0.1 mL). After stirring for 12 h, the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography (3:1 hexanes-EtOAc) to yield LAM-56 (906 mg, 94%) as an oil. R_f 0.31 (7:3) hexanes-EtOAc); $[\alpha]_D$ +43.4 (c = 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.38-7.22 (m, 50 H), 5.21 (d, 1 H, J = 1.4 Hz, H-1), 5.18 (s, 1 H, H-1), 5.12 (s, 1 H, H-1), 5.03 (d, 1 H, J = 1.1Hz, H-1), 4.99 (d, 1 H, J = 4.4 Hz, H-1), 4.70 (d, 1 H, J = 11.9 Hz), 4.67–4.38 (m, 19 H), 4.36 (d, 1 H, J = 11.7 Hz), $4.32 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 4 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 1 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H, } J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 1 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H)}, J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 1 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H)}, J = 6.5, 1.28 \text{ (m, 1 H)}, 4.28 - 4.18 \text{ (m, 1 H)}, 4.18 - 4.01 \text{ (m, 7 H)}, 3.99 \text{ (dd, 1 H)}, J = 6.5, 1.28 \text{ (m, 1 H$ 4.5 Hz), 3.91 (dd, 1 H, J = 11.7, 4.3 Hz), 3.86 (dd, 1 H, J = 4.3, 2.2 Hz), 3.78–3.72 (m, 3 H), 3.62-3.54 (m, 5 H), 3.40 (ddd, 1 H, J = 9.7, 6.7, 6.7 Hz), 3.38-3.34 (m, 2 H), 3.27 (dd, 2 H, J =7.0, 7.0 Hz), 1.89 (br s, 1 H), 1.66–1.59 (m, 4 H), 1.43–1.33 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.2(6), 138.1(9), 138.1(7), 138.0(8), 137.8, 137.6(9), 137.6(7), 137.5, 128.5, 128.5, 128.4(5), 128.4(4), 128.3(9), 128.3(7), 128.2(9), 128.0, 127.9, 127.8(6), 127.8(4), 127.8(0), 127.7(3), 127.7(0), 127.6(6), 127.6(3), 127.6(0), 127.5(7), 127.5(5), 109.0 (C-1), 106.1 (C-1), 106.0 (C-1), 105.5 (C-1), 100.1 (C-1), 88.6, 88.5, 85.7, 84.6, 84.3, 84.1, 83.2, 83.0, 82.4, 81.6, 80.5, 80.1, 80.0, 78.4, 73.6, 73.3, 73.1, 72.4, 72.3, 72.2, 72.1, 72.0, 71.9(8), 71.9(0), 70.0, 69.7, 67.0, 66.0, 65.7, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₀₃H₁₁₇N₃O₂₁Na: 1754.8071. Found: 1754.8069.

8-Azidooctyl 2,3,4-tri-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3-di-*O*-benzyl-5-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-benzyl- α -D-be

benzyl-α-D-arabinofuranoside (LAM-57). To a mixture of LAM-56 (840 mg, 0.485 mmol), LAM-9¹⁵ (378 mg, 0.699 mmol) and 4 Å molecular sieves (0.2 g) in CH₂Cl₂ (70 mL) was added *N*-iodosuccinimide (199 mg, 0.839 mmol) followed by silver triflate (25 mg, 0.11 mmol) at -60 °C. The reaction was slowly warmed up to -30 °C and kept stirring for 20 min at -30 °C. The reaction mixture turned dark red, Et₃N was added, and then diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed with satd aq Na₂S₂O₃ soln, dried (Na₂SO₄), and concentrated to give a residue that was purified by chromatography (3:1 hexanes-EtOAc) to give LAM-57 (863 mg, 83%) as a colorless syrup. $R_f 0.34$ (3:1 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.04–8.00 (m, 2 H), 7.56–7.51 (m, 1 H), 7.41–7.16 (m, 62 H), 5.23 (s, 1 H, H-1), 5.20-5.18 (m, 2 H, 2 × H-1), 5.16 (s, 1 H, H-1), 5.03 (d, 1 H, J = 4.4 Hz, H-1), 5.02 (s, 1 H, H-1), 4.77–4.32 (m, 33 H), 4.28–4.01 (m, 15 H), 3.90–3.81 (m, 2 H), 3.75–3.69 (m, 2 H), 3.62– 3.54 (m, 6 H), 3.38 (ddd, 1 H, J = 9.6, 6.7, 6.7 Hz), 3.27 (dd, 2 H, J = 7.0, 7.0 Hz), 1.66-1.57 (m, 6 Hz)4 H), 1.43–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 138.3(3), 138.3(2), 138.2(8), 138.2(6), 138.2(1), 138.1(2), 138.1(0), 137.9(5), 137.7(9), 137.7(0), 137.6, 133.0, 129.8, 128.7, 128.5, 128.4(6), 128.4(5), 128.4(2), 128.3(9), 128.3(5), 128.3(3), 128.3(2), 128.2(7), 128.2(1128.0(9), 128.0(4), 127.9(8), 127.9(0), 127.8(6), 127.8(4), 127.8(1), 127.7(7), 127.7(3), 127.7(2), 127.6(7), 127.6(2), 127.5(7), 127.5(0), 127.4, 106.7 (C-1), 106.2 (C-1), 106.1 (C-1), 105.5 (C-1), 101.0 (C-1), 100.0 (C-1), 88.6, 86.6, 85.8, 84.4, 84.1, 83.8, 83.2, 83.1, 82.5, 81.6, 81.4, 80.7, 80.1, 80.0, 78.6, 73.3, 73.1, 72.4(7), 72.4(1), 72.3(9), 72.3(1), 72.2 (2), 72.1, 72.0, 71.8, 70.0, 69.8, 67.6, 66.5, 65.9, 65.4, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1.

8-Azidooctyl 2,3,4-tri-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-Darabinofuranosyl-(1→3)-[2,3-di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-Darabinofuranoside (LAM-58). Hexasaccharide LAM-57 (851 mg, 0.40 mmol) was dissolved in CH₂Cl₂ (10 mL) and CH₃OH (5 mL) and then treated with 1M methanolic sodium methoxide (0.1 mL). After stirring for 6 h, the solution was neutralized with HOAc and concentrated. The crude product was purified by chromatography (4:1 hexanes–EtOAc) to yield LAM-58 (718 mg, 89%) as an oil. R_f 0.23 (3:1 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.41–7.26 (m, 60 H), 5.21 (s, 1 H, H-1), 5.19 (d, 1 H, J = 1.4 Hz, H-1), 5.17 (d, 1 H, J = 4.8 Hz, H-1), 5.16 (s, 1 H, H-1), 5.06 (d, 1 H, J = 4.5 Hz, H-1), 5.02 (d, 1 H, J = 0.9 Hz, H-1), 4.78–4.37 (m, 27 H), 4.32– 4.24 (m, 3 H), 4.22–4.12 (m, 6 H), 4.11–3.97 (m, 7 H), 3.89 (dd, 1 H, J = 12.7, 4.3 Hz), 3.82 (dd, 1 H, J = 11.9, 2.3 Hz), 3.75–3.69 (m, 2 H), 3.67–3.53 (m, 8 H), 3.38 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.28 (dd, 2 H, J = 7.0, 6.9 Hz), 2.38 (dd, 1 H, J = 7.6, 5.2 Hz), 1.66–1.57 (m, 4 H), 1.44–1.33 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.3(1), 138.2(7), 138.2(4), 138.2(5), 138.1(3), 138.1(0), 137.7(9), 137.7(7), 137.7(1), 137.6, 128.5, 128.5, 128.4(7), 128.4(6), 128.4(3), 128.4(1), 128.4(0), 128.3(8), 128.3(6), 128.3(3), 128.2, 128.0(6), 128.0(4), 127.9(5), 127.9(1), 127.8(7), 127.8(2), 127.7(4), 127.7(1), 127.6(8), 127.6(3), 127.5(8), 127.5(3), 106.4 (C-1), 106.2 (C-1), 106.1 (C-1), 105.4 (C-1), 100.1 (C-1), 100.0 (C-1), 88.6, 86.0, 85.8, 84.1(5), 84.1(3), 84.0, 83.3, 83.1, 81.9, 81.7, 80.7, 80.6, 80.1, 80.0, 73.4, 73.1, 72.5, 72.3(9), 72.3(7), 72.3(3), 72.2, 72.1, 72.0, 71.8, 69.9, 69.6, 67.6, 66.0, 65.7, 63.5, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₂H₁₃₇N₃O₂₅Na: 2066.9439. Found: 2066.9435.

8-Azidooctyl 2,3,5-tri-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[5-*O*-*p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-

 $arabinofuranosyl-(1\rightarrow 2)-3, 5-di-\textit{O}-benzyl-\alpha-D-arabinofuranosyl-(1\rightarrow 5)]-2-\textit{O}-benzyl-\alpha-D-arabinofuranosyl-(1\rightarrow 5)-2, 3-di-\textit{O}-benzyl-\alpha-D-arabinofuranoside} (LAM-59).$

Trichloroacetimidate **LAM-42** (prepared from 0.34 g (0.37 mmol) of hemiacetal **LAM-41** (Scheme S7), 0.6 mL of CCl₃CN and 10 μ L of DBU) in CH₂Cl₂ (10 mL), alcohol **LAM-58** (0.0.42 g, 0.21 mmol) in CH₂Cl₂ (10 mL), 4 Å molecular sieves (0.39 g) and TMSOTf (9 μ L, 0.05 mmol) at -30 °C as described for the synthesis of **LAM-43** to afford **LAM-59** (0.41 g, 68%) as a thick syrup. R_f 0.37 (7:3 hexanes–EtOAc); $[\alpha]_D$ +25.8 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.08–8.02 (m, 2 H), 7.65–7.56 (m, 3 H), 7.40–7.00 (m, 84 H), 5.61 (dd, 1 H, J = 2.6, 2.6 Hz), 5.40 (d, 1 H, J = 4.3 Hz, H-1), 5.18 (s, 1 H, H-1), 5.16 (s, 1 H, H-1), 5.13 (d, 1 H, J = 4.4 Hz, H-1), 5.12 (d, 1 H, J = 1.7 Hz, H-1), 4.76–4.30 (m, 35 H), 4.29–3.64 (m, 32 H), 3.64–3.50 (m, 7 H), 3.35 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.26 (dd, 1 H, J = 7.0, 7.0 Hz), 2.34 (s, 3 H), 1.64–1.56 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.4, 144.5, 138.7, 138.2(9), 138.2(8), 138.2(4), 138.2(2), 138.2, 138.0(8), 138.0(6), 137.7(4), 137.7(1), 137.7, 137.4, 133.2, 132.8, 130.0, 129.6, 128.5(1), 128.5, 128.4(2), 128.4(1), 128.4, 128.3(2), 128.2(9), 128.2(7), 128.2(5), 128.0(2), 128.0, 127.9(3), 127.9, 127.8(4), 127.8(2), 127.7(9), 127.7(5),

127.7(1), 127.7, 127.6(4), 127.6(2), 127.5(9), 127.5(5), 127.5(1), 127.5, 127.4(3), 127.4, 127.3(4), 127.2(9), 127.2(6), 127.2, 127.1, 106.6 (C-1), 106.2 (C-1), 106.1 (C-1), 105.3 (C-1), 100.8 ($2 \times C$ -1), 100.1 (C-1), 97.5 (C-1), 88.6, 86.2, 85.8, 84.4, 84.1, 84.0, 83.9, 83.3, 83.2(3), 83.2, 82.2, 81.6, 81.3, 80.7(2), 80.6(9), 80.6, 80.1(1), 80.1, 80.0, 79.1, 78.6, 74.4, 73.3, 73.2, 73.1, 72.6, 72.4, 72.3(4), 72.3(0), 72.3, 72.1(2), 72.1, 72.0, 71.8, 71.6, 71.1, 70.6, 70.0, 69.8, 69.7, 69.1, 69.0, 67.7, 67.6, 65.9, 65.4, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1, 21.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₇₅H₁₈₉N₃O₃₇SNa: 3002.2505. Found: 1501.1257 (M+2Na).

2.3-di-O-benzyl-α-D-arabinofuranoside (LAM-60). Prepared from LAM-59 (0.38 mg, 0.13 mmol) and 1M methanolic sodium methoxide solution in CH₂Cl₂-CH₃OH (4:1, 20 mL) as described for the synthesis of LAM-44 to afford LAM-60 (0.33 g, 90%) as a thick syrup. $R_f 0.18$ (7:3 hexanes-EtOAc); $[\alpha]_{D}$ + 37.2 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, δ_{H}) 7.73–7.64 (m, 2 H), 7.40–7.10 (m, 82 H), 5.46 (d, 1 H, J = 4.3 Hz, H-1), 5.17 (s, 1 H, H-1), 5.16–5.12 (m, 3 H, $3 \times$ H-1), 5.06 (d, 1 H, J = 4.4 Hz, H-1), 5.01 (s, 1 H, H-1), 4.89 (s, 1 H, H-1), 4.76–4.24 (m, 37 H), 4.24–3.92 (m, 20 H), 3.90–3.78 (m, 6 H), 3.72–3.54 (m, 10 H), 3.37 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.26 (dd, 1 H, J = 7.0, 7.0 Hz), 2.41 (s, 3 H), 1.63–1.54 (m, 4 H), 1.40–1.30 (m, 8 H); ¹³C NMR (125 MHz, CD₂Cl₂, δ_C) 145.4, 139.1, 138.9, 138.8, 138.7, 138.6, 138.4, 138.3, 138.2(4), 138.2(3), 138.2(1), 133.3, 130.2, 129.0(1), 129.0, 128.9, 128.8(3), 128.8(2), 128.7(9), 128.7(5), 128.7(1), 128.7, 128.6, 128.5, 128.3(4), 128.3, 128.2(2), 128.1(9), 128.1(7), 128.1(3), 128.1(7), 128.1(128.1(1), 128.1, 128.0(3), 127.9(9), 127.9(7), 127.9(1), 127.8(9), 127.8(7), 127.8(6), 127.5, 107.1 (C-1), 106.7 (C-1), 106.6 (C-1), 105.8 (C-1), 101.1 (2 × C-1), 100.6 (C-1), 99.5 (C-1), 89.1, 88.9, 86.8, 86.2, 84.8, 84.7, 84.5(1), 84.5, 84.1, 83.5, 83.0, 82.3, 81.8, 81.2, 81.0, 80.7, 80.6, 79.6, 74.8, 73.7, 73.6, 73.5, 73.1, 72.7(9), 72.7(6), 72.7(3), 72.6(9), 72.6(6), 72.6(3), 72.6, 72.4(1), 72.4, 72.3, 71.4, 71.2, 70.9, 70.4, 69.7, 69.5, 69.3, 68.0, 67.4, 66.7, 66.0, 51.9, 30.0, 29.7, 29.5, 29.2, 27.1, 26.5, 21.8. HRMS (ESI) m/z calcd for (M+Na) $C_{168}H_{185}N_3O_{36}SNa$: 2898.2243. Found: 1449.1123 (M+2Na).

8-Azidooctyl 2,3,5-tri-O-benzyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-O-benzyl- α -Darabinofuranosyl- $(1\rightarrow 3)$ -[5-deoxy-5-thiomethyl-2,3-di-O-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzyl-α-D-arabinofuranoside (LAM-61) Prepared from LAM-60 (0.16 g, 0.06 mmol), and sodium thiomethoxide (0.02 g, 0.28 mmol) in CH₃CN (5 mL) as described for the synthesis of LAM-45 to afford LAM-61 (0.11 g, 70%) as a syrup. R_f 0.34 (7:3 hexanes–EtOAc); $[\alpha]_{\rm D}$ +32.2 (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, $\delta_{\rm H}$) 7.40–7.12 (m, 80 H), 5.52 (d, 1 H, J = 4.3 Hz, H-1), 5.15 (s, 1 H, H-1), 5.14–5.10 (m, 3 H, 3 × H-1), 5.04 (d, 1 H, J = 4.4 Hz, H-1), 4.99 (s, 1 H, H-1), 4.89 (d, 1 H, J = 1.1 Hz, H-1), 4.74–3.96 (m, 54 H), 3.96–3.92 (m, 2 H), 3.92–3.74 (m, 5 H), 3.74–3.52 (m, 12 H), 3.36 (dd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, J = 7.0, 7.0 Hz), 2.70 (dd, 1 H, J = 5.1, 13.8 Hz), 2.53 (dd, 1 H, J = 7.2, 13.8 Hz), 2.39 (s, 1 H), 2.07 (s, 3 H), 1.62–1.52 (m, 4 H), 1.40–1.28 (m, 8 H); 13 C NMR (125 MHz, CD₂Cl₂, δ_{C}) 139.2, 138.9, 138.7(4), 138.7(0), 138.7, 138.4, 138.3, 138.2, 129.0(3), 129.0, 128.9, 128.7, 128.6, 128.4(3), 128.4, 128.2(9), 128.2(5), 128.2(0), 128.2, 128.0(1), 128.0, 127.9, 127.8, 127.5, 107.0 (C-1), 106.7 (C-1), 106.5 (C-1), 105.8 (C-1), 101.3 (C-1), 101.1 (C-1), 100.6 (C-1), 99.5 (C-1), 89.1, 88.9, 86.8, 86.1, 84.8, 84.7, 84.4(8), 84.4(5), 84.1(3), 84.1, 83.5, 83.4, 82.3, 82.2, 81.8, 81.2, 81.1, 80.7, 80.6, 79.6, 77.9, 73.7, 73.5, 72.9, 72.7(7), 72.7(5), 72.7(2), 72.7, 72.6(4), 72.6(1), 72.5(4), 72.5, 72.3(4), 72.3, 71.4(0), 71.4, 71.0, 70.4, 69.9, 69.3, 68.0, 67.5, 66.7, 66.0, 51.9, 34.9, 30.0, 29.7, 29.5, 29.2, 27.1, 26.5, 16.9. HRMS (ESI) m/z calcd for (M+Na) C₁₆₂H₁₈₁N₃O₃₃SNa: 2774.2082. Found: 1387.1044 (M+2Na).

8-Aminooctyl β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[5-deoxy-5-thiomethyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ - α -D-mannopyranosyl- $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (10). Prepared from LAM-61 (0.1 g, 0.037 mmol), liquid NH₃ (25 mL) and sodium metal (0.1 g) in THF (2 mL) as described for the synthesis of 7 to give 10 (28 mg, 60%) as a thick syrup that was later lyophilized from water to a foam. [α]_D +91.6 (c = 0.1, CH₃OH); ¹H NMR (500 MHz, D₂O, δ _H) 5.42 (d, 1 H, J = 4.5 Hz, H-1), 5.24 (d, 1 H, J = 1.1 Hz, H-1), 5.18 (d, 1 H, J = 1.2 Hz, H-1), 5.15–5.12 (m, 2 H, 2 × H-1), 5.11 (s, 1 H, H-1), 5.01 (d, 1 H, J = 1.3 Hz, H-1), 4.92 (s, 1 H, H-1), 4.38 (ddd, 1 H, J = 4.9, 9.9, 13.3 Hz), 4.35–3.97 (m, 20 H), 3.97–3.65 (m, 19 H), 3.61– 3.52 (m, 2 H), 2.88 (dd, 2 H, J = 7.3, 7.3 Hz), 2.80 (dd, 1 H, J = 4.9, 13.8 Hz), 2.68 (dd, 1 H, J = 8.4, 13.8 Hz), 2.18 (s, 3 H), 1.65–1.55 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 108.3 (C-1), 108.1 (C-1), 106.5 (C-1), 106.3(5) (C-1), 103.4 (C-1), 101.6 (C-1), 101.5 (C-1), 100.7 (C-1), 88.0(6), 88.0, 84.1, 83.7, 83.5, 82.9, 82.7, 82.4(1), 82.4(2), 81.9, 81.8, 80.7, 80.0, 78.6, 77.5(3), 77.5, 77.3, 77.2, 76.9, 76.5, 76.0, 75.6, 75.0(2), 75.0, 74.9(1), 74.9, 72.4, 71.5, 71.1(3), 71.1, 69.5, 69.2, 67.3, 67.2, 63.8(2), 63.8, 63.4, 61.9, 61.6, 61.5, 40.7, 33.9, 29.6, 29.5, 29.1(0), 29.1, 28.9, 26.5, 26.0, 15.9. HRMS (ESI) *m/z* calcd for (M+Na) C₅₀H₈₈N₁O₃₃SNa: 1262.4953. Found: 1262.4956.

8. Synthesis of 11

Scheme S11. Synthesis of 11. a) HF · pyridine, pyridine, THF, 96%; b) LAM-6, NIS, AgOTf, CH₂Cl₂, 95%; c) NaOCH₃, CH₃OH, CH₂Cl₂, 99%; d) TBDPSCl, pyridine, CH₂Cl₂, 86%; e) LAM-9, NIS, AgOTf, CH₂Cl₂, 71%; f) NaOCH₃, CH₃OH, CH₂Cl₂, 93%; g) BnBr, NaH, DMF, 94%; h) *n*-Bu₄NF, THF, 99%; i) LAM-42, TMSOTf, CH₂Cl₂, 69%; j) NaOCH₃, CH₃OH, CH₂Cl₂, 88%; k) NaSCH₃, CH₃CN, 71%; l) Na, NH₃ (l), THF; then CH₃OH, H₂O, 55%.

8-Azidooctyl 2,3-di-O-benzyl-5-O-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-

benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 3)$ -2-O-benzyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-

benzyl-α-D-arabinofuranoside (LAM-63). To a solution of LAM-62¹⁹ (2.40 g, 1.43 mmol) in pyridine (6 mL) and THF (30 mL) was added 70% HF pyridine (1.0 mL) at 0 °C and the mixture was stirred for 30 h while warming to rt. The reaction was concentrated, diluted with EtOAc and washed with a satd aq NaHCO₃ soln. The organic layer was dried (Na₂SO₄), filtered and concentrated and the resulting residue was purified by chromatography (7:3 hexanes-EtOAc) to afford LAM-63 (1.98 g, 96%) as a colorless oil. $R_f 0.28$ (7:3 hexanes–EtOAc); $[\alpha]_D$ +30.8 (c = 1.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.02–7.99 (m, 2 H), 7.55–7.51 (m, 1 H), 7.39–7.19 (m, 37 H), 5.17 (s, 1 H, H-1), 5.15 (d, 1 H, J = 1.5 Hz, H-1), 5.08 (d, 1 H, J = 4.4 Hz, H-1), 5.01 (s, 1 H, H-1), 4.74 (d, 1 H, J = 11.6 Hz), 4.67–4.42 (m, 14 H), 4.38–4.33 (m, 2 H), 4.30-4.17 (m, 5 H), 4.11-4.02 (m, 6 H), 3.90-3.69 (m, 5 H), 3.56 (dd, 1 H, J = 10.6, 4.1 Hz), 3.53 (dd, 1 H, J = 10.6, 5.9 Hz), 3.39 (ddd, 1 H, J = 9.5, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 2.15 (br s, 1 H), 1.65–1.56 (m, 4 H), 1.42–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 138.0, 137.8, 137.7, 137.6, 137.5, 133.1, 129.7(8), 127.7(5), 128.5, 128.4(4), 128.4(1), 128.3, 128.2, 128.0, 127.9, 127.8(8), 127.8(4), 127.7(7), 127.7(6), 127.7(2), 127.6(5), 127.6(0), 127.5, 106.1 (C-1), 106.0 (C-1), 105.9 (C-1), 100.8 (C-1), 88.6, 88.3, 86.6, 84.2, 83.9, 83.2, 82.3, 81.7, 81.3, 80.4, 79.9, 78.8, 73.3, 72.5(4), 72.5(1), 72.4, 72.3, 72.1, 71.9, 69.9, 67.6, 66.2, 66.0, 61.8, 51.4, 29.5, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₈₄H₉₅N₃O₁₈Na: 1456.6502. Found: 1456.6504.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-benzoyl-β-D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*benzyl-α-D-arabinofuranosyl-(1 \rightarrow 3)-[3,5-di-*O*-benzyl-2-*O*-benzoyl-α-D-arabinofuranosyl-(1 \rightarrow 5)]-2-*O*-benzyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-64). To a mixture of alcohol LAM-63 (1.96 g, 1.37 mmol), LAM-6¹⁴ (908 mg, 1.68 mmol) and 4 Å molecular sieves (0.6 g) in CH₂Cl₂ (40 mL) was added *N*-iodosuccinimide (477 mg, 2.01 mmol) followed by silver triflate (60 mg, 0.23 mmol) at 0 °C. The reaction mixture turned dark red after 15 min, Et₃N was added, and was then diluted with CH₂Cl₂ (60 mL) and filtered through Celite. The filtrate was washed with satd aq Na₂S₂O₃ soln, dried (Na₂SO₄) and concentrated to a residue that was purified by chromatography (3:1 hexanes–EtOAc) to give LAM-64 (2.40 g, 95%) as a colorless syrup. *R*_f 0.39 (3:1 hexanes–EtOAc); [α]_D +42.0 (*c* = 0.8, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.03–7.98 (m, 4 H), 7.60–7.51 (m, 2 H), 7.43–7.15 (m, 49 H), 5.50 (d, 1 H, J = 1.3 Hz), 5.32 (s, 1 H, H-1), 5.20 (s, 1 H, H-1), 5.19 (d, 1 H, J = 1.8 Hz, H-1), 5.06 (d, 1 H, J = 4.4 Hz, H-1), 5.01 (d, 1 H, J = 1.2 Hz, H-1), 4.82 (d, 1 H, J = 12.2 Hz), 4.72 (d, 1 H, J = 11.6 Hz), 4.66–4.32 (m, 18 H), 4.30–4.17 (m, 5 H), 4.12–4.00 (m, 7 H), 3.91 (dd, 1 H, J = 11.8, 4.4 Hz), 3.82 (dd, 1 H, J = 11.4, 2.4 Hz), 3.77–3.69 (m, 2 H), 3.63 (dd, 1 H, J = 10.9, 3.6 Hz), 3.60–3.51 (m, 3 H), 3.37 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 1.64–1.56 (m, 4 H), 1.41–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 165.2, 138.3, 138.1, 138.0(8), 138.0(3), 137.8, 137.6(9), 137.6(6), 133.1, 133.0, 129.8, 129.7(6), 129.7(1), 128.4(9), 128.4(2), 128.3(9), 128.3(6), 128.3(5), 128.2(8), 128.2(6), 128.1, 128.0, 127.9(4), 127.9(1), 127.8(9), 127.8(0), 127.7(7), 127.7(1), 127.6(7), 127.6(5), 127.5(8), 127.5(7), 127.4(8), 127.4(4), 127.4(3), 106.2 (C-1), 106.1 (C-1), 106.0 (C-1), 105.6 (C-1), 100.6 (C-1), 88.7, 88.4, 86.4, 84.3, 83.9, 83.5, 83.2, 82.5, 82.2, 81.8, 81.7, 80.4, 80.0(8), 80.0(3), 78.8, 73.3, 73.2, 72.4, 72.3(9), 72.3(3), 72.2, 72.0(8), 72.0(6), 71.8, 69.8, 69.2, 67.6, 66.4, 66.1, 65.7, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₁₁₀H₁₁₉N₃O₂₃Na: 1872.8122. Found: 1872.8126.

8-Azidooctyl 2,3-di-O-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-O-benzyl-α-Darabinofuranosyl- $(1\rightarrow 3)$ - $[3,5-di-O-benzyl-\alpha-D-arabinofuranosyl-<math>(1\rightarrow 5)]$ -2-O-benzyl- α -Darabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-65). Pentasaccharide LAM-64 (2.31 g, 1.25 mmol) was dissolved in CH₂Cl₂ (30 mL) and CH₃OH (20 mL) and then treated with 1M methanolic sodium methoxide (2.5 mL). After stirring for 16 h, the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography (2:1 hexanes-EtOAc) to yield LAM-65 (2.02 g, 99%) as an oil. R_f 0.62 (3:2 hexanes-EtOAc); $[\alpha]_{D}$ +49.4 (c = 1.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.39–7.22 (m, 45 H), 5.20 (s, 1 H, H-1), 5.18 (d, 1 H, J = 1.0 Hz, H-1), 5.10 (s, 1 H, H-1), 5.03–5.01 (m, 2 H, 2 \times H-1), 4.72 (d, 1 H, J = 11.7 Hz), 4.65–4.33 (m, 19 H), 4.32–4.29 (m, 1 H), 4.26–4.17 (m, 5 H), 4.15–4.12 (m, 1 H), 4.11–3.98 (m, 6 H), 3.90 (dd, 1 H, *J* = 11.7, 4.3 Hz), 3.85 (dd, 1 H, *J* = 5.2, 2.2 Hz), 3.77–3.70 (m, 3 H), 3.64 (dd, 1 H, J = 12.1, 3.1 Hz), 3.62–3.51 (m, 4 H), 3.41–3.36 (m, 2 H), 3.26 (dd, 2 H, J = 7.0, 7.0 Hz), 2.32 (br s, 1 H), 1.65–1.57 (m, 4 H), 1.42–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.1, 138.0, 137.9, 137.8, 137.7, 137.6, 137.5, 137.4, 128.5, 128.4(8), 128.4(5), 128.4(4), 128.4(0), 128.3, 128.0, 127.9, 127.7(9), 127.7(1), 127.5(8), 109.1

(C-1), 106.1 (C-1), 105.9 (C-1), 105.3 (C-1), 99.9 (C-1), 88.6, 88.4, 86.1, 84.5, 84.1, 83.4, 83.2, 82.4, 82.0, 81.2, 80.7, 80.4, 79.9, 78.5, 73.6, 73.4, 72.5, 72.3, 72.2, 72.1(4), 72.1(1), 71.9, 71.8, 69.7, 69.6, 67.6, 65.9, 65.8, 63.5, 51.4, 29.5, 29.2, 29.1, 28.8, 26.7, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₉₆H₁₁₁N₃O₂₁Na: 1664.7602. Found: 1664.7605.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 3)-[3,5-di-*O*-benzyl- α -D-arabinofuranosyl-

$(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranoside

(LAM-66). To a solution of LAM-65 (1.93 g, 1.17 mmol) in pyridine (3 mL) and CH₂Cl₂ (15 mL) added t-butyldiphenylsilyl chloride (0.36 mL, 1.41 mmol) at 0 °C. The reaction mixture was stirred for 12 h while warming to rt. The solution was diluted with CH₂Cl₂ (60 mL) and then washed with satd aq NaHCO₃ soln, water and brine. The organic layer was subsequently dried (Na_2SO_4) , filtered and concentrated and the resulting residue was purified by chromatography (2:1 hexanes-EtOAc) to yield LAM-66 (1.91 g, 86%) as an oil. R_f 0.41 (2:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.67–7.62 (m, 4 H), 7.40–7.14 (m, 50 H), 7.07–7.04 (m, 2 H), 5.16 (d, 1 H, J = 1.6 Hz, H-1), 5.13 (s, 1 H, H-1), 5.06 (s, 1 H, H-1), 4.99 (s, 1 H, H-1), 4.94 (d, 1 HH, J = 4.4 Hz, H-1), 4.63-4.26 (m, 20 H), 4.20-3.99 (m, 11 H), 3.96 (dd, 1 H, J = 6.1, 4.4 Hz, H-2 β), 3.89–3.78 (m, 5 H), 3.74–3.67 (m, 3 H), 3.55–3.44 (m, 3 H), 3.36 (ddd, 1 H, J = 9.6, 6.7, 6.7Hz), 3.32 (dd, 1 H, J = 10.5, 2.8 Hz), 3.25 (dd, 2 H, J = 7.1, 6.9 Hz), 1.64–1.55 (m, 4 H), 1.41–1.30 (m, 8 H), 1.04 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.2, 138.1(8), 138.1(3), 138.0, 137.9, 137.8, 137.6(4), 137.6(2), 137.4, 135.5(7), 135.5(3), 133.2, 133.1, 129.8, 129.7, 128.4(7), 128.4(1), 128.4(0), 128.3(6), 128.3(5), 128.3(3), 128.1, 128.0, 127.8(8), 127.8(3), 127.8(0), 127.7(7), 127.7(0), 127.6(8, 127.6(3), 127.5(6), 127.5(2), 127.4, 108.9 (C-1), 106.0 (C-1), 105.9 (C-1), 105.3 (C-1), 100.3 (C-1), 88.6, 85.5, 85.4, 84.7, 84.6, 84.2, 84.1, 83.2, 82.3, 82.0, 81.8, 80.4, 79.9, 78.3, 73.5, 73.2, 72.3, 72.2(2), 72.2(0), 72.0(7), 72.0(4), 71.9, 71.8, 70.2, 69.7, 67.6, 66.1, 66.0, 65.7, 51.4, 29.5, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.2. HRMS (ESI) m/z calcd for (M+Na) C₁₁₂H₁₂₉N₃O₂₁Na: 1902.8786. Found: 1902.8790.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 3)-[2,3-di-*O*-benzyl-5-*O*-benzoyl- β -Darabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 5)]-2-*O*-benzyl- α -Darabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzyl- α -D-arabinofuranoside (LAM-67). To a mixture of LAM-66 (1.78 g, 0.95 mmol), LAM-9¹⁵ (614 mg, 1.14 mmol) and 4 Å molecular sieves (0.7 g) in CH₂Cl₂ (80 mL) at -60 °C was added N-iodosuccinimide (310 mg, 1.31 mmol) followed by silver triflate (50 mg, 0.20 mmol). The reaction was slowly warmed to -25 °C and kept stirring for 20 min at -25 °C. The reaction mixture turned dark red, Et₃N was added, and was then diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed with satd aq Na₂S₂O₃ soln, dried (Na₂SO₄), and concentrated to give a residue that was purified by chromatography (3:1 hexanes-EtOAc) to give LAM-67 (1.54 g, 71%) as a colorless oil. R_f 0.26 (3:1 hexanes-EtOAc); $[\alpha]_D$ +11.8 (c = 0.5, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.98–7.95 (m, 2 H), 7.64–7.60 (m, 4 H), 7.51–7.48 (m, 1 H), 7.38–7.11 (m, 61 H), 7.04–7.02 (m, 2 H), 5.15 (s, 1 H, H-1), 5.13 (d, 1 H, J = 4.5 Hz, H-1), 5.11 (s, 1 H, H-1), 5.08 (s, 1 H, H-1), 4.96–4.94 (m, 2 H, 2 × H-1), 4.70 (d, 1 H, J = 11.6 Hz), 4.65–4.24 (m, 27 H), 4.21–4.10 (m, 7 H), 4.09–3.95 (m, 8 H), 3.85 (dd, 1 H, J = 5.8, 2.4 Hz), 3.83-3.73 (m, 4 H), 3.67-3.62 (m, 2 H), 3.55-3.44 (m, 4 H), 3.31 (ddd, 1 H, J = 9.7, 6.7, 6.7 Hz), 3.24 (dd, 2 H, J = 7.0, 7.0 Hz), 1.62–1.52 (m, 4 H), 1.38–1.27 (m, 8 H), 1.02 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 138.3, 138.2(6), 138.2(4), 138.1, 138.0, 137.8, 137.7(9), 137.7(2), 137.7(2), 137.6, 137.5(9), 135.5(4), 135.5(1), 133.2,133.1, 132.9, 129.8, 129.7(5), 129.7(3), 128.4, 128.3(8), 128.3(6), 128.3(2), 128.2(9), 128.2(5), 128.1, 128.0(9), 128.0(2), 127.9(8), 127.9(1), 127.8(4), 127.8(0), 127.7(7), 127.7(5), 127.7(2), 127.6(6), 127.6(2), 127.5(6), 127.5(3), 127.5(1), 127.4, 127.3(8), 127.3(4), 106.6 (C-1), 106.1 (C-1), 106.0 (C-1), 105.2 (C-1), 100.9 (C-1), 100.3 (C-1), 88.5, 86.5, 85.5, 84.5, 84.3, 84.1, 83.7, 83.2, 82.5, 82.0, 81.8, 81.3, 80.5, 80.0, 79.9, 78.5, 73.2, 73.1, 72.4, 72.3(4), 72.3(1), 72.2(8), 72.2(1), 72.0(4), 72.0(0), 71.8, 69.9(7), 69.9(2), 67.5, 66.4, 66.1, 65.9, 65.3, 51.4, 29.4, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₃₈H₁₅₃N₃O₂₆SiNa: 2319.0403. Found: 2319.0431.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl-α-D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3-di-*O*-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl-α-D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl-α-D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-68). Hexasaccharide LAM-67 (1.48 g, 0.64 mmol) was dissolved in CH₂Cl₂ (10 mL) and CH₃OH (5 mL) and then treated with 1M methanolic sodium methoxide (1.2 mL). After stirring at rt overnight, the reaction mixture was neutralized with HOAc and concentrated. The crude product was purified by chromatography

(3:1 hexanes-EtOAc) to yield LAM-68 (1.31 g, 93%) as an oil. R_f 0.46 (3:1 hexanes-EtOAc); $[\alpha]_{\rm D}$ +6.7 (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.64–7.61 (m, 4 H), 7.38–7.12 (m, 59 H), 7.05–7.03 (m, 2 H), 5.13 (s, 1 H, H-1), 5.12–5.09 (m, 3 H, 3 × H-1), 4.98 (d, 1 H, J = 4.4 Hz, H-1), 4.96 (s, 2 H, H-1), 4.71 (d, 1 H, J = 11.8 Hz), 4.62–4.34 (m, 22 H), 4.31 (dd, 1 H, J = 11.8 Hz) 7.3, 3.9 Hz), 4.26–4.21 (m, 3 H), 4.19–3.91 (m, 14 H), 3.85 (dd, 1 H, J = 5.8, 2.4 Hz), 3.83–3.76 (m, 3 H), 3.74 (dd, 1 H, J = 11.8, 2.2 Hz), 3.68–3.63 (m, 2 H), 3.60–3.45 (m, 6 H), 3.32 (ddd, 1 H, J = 9.7, 7.1, 7.1 Hz), 3.24 (dd, 2 H, J = 7.0, 6.9 Hz), 1.62–1.52 (m, 4 H), 1.38–1.28 (m, 8 H), 1.03 (s, 9 H, CH₃x3); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.2(8), 138.2(2), 138.1, 138.0(7), 138.0(3), 138.0, 137.9, 137.7(7), 137.6(8), 137.6(3), 137.6(1), 135.5(4), 135.5(2), 133.2, 133.1, 129.7(6), 129.7(4), 128.4(6), 128.4(0), 128.3(9), 128.3(7), 128.3(4), 128.3(2), 128.2(9), 128.128.2(6), 128.1, 128.0, 127.9, 127.8(8), 127.8(5), 127.8(1), 127.7(8), 127.7(5), 127.6(9), 127.6(5), 127.6(1), 127.5(7), 127.5(4), 127.5(1), 127.4, 127.3, 106.3 (C-1), 106.1 (C-1), 106.0 (C-1), 105.2 (C-1), 100.4 (C-1), 99.9 (C-1), 88.5, 85.9, 85.6, 84.5, 84.1, 84.0, 83.2, 83.1, 82.0, 81.9, 81.8, 80.6(6), 80.6(4), 80.5, 80.0, 79.9, 73.3, 73.1, 72.5, 72.3, 72.2, 72.0(6), 72.0(1), 71.8, 70.0, 69.4, 67.6, 66.1, 65.9, 65.6, 63.4, 51.4, 29.5, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.2. HRMS (ESI) m/z calcd for (M+Na) C₁₃₁H₁₄₉N₃O₂₅SiNa: 2215.0141. Found: 2215.0158.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→3)-[2,3,5-tri-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-69). To a solution of LAM-68 (570 mg, 0.26 mmol) in DMF (2 mL) at 0 °C was added NaH (21 mg, 0.52 mmol, 60% dispersion in oil) and the solution was stirred for 2 min. Benzyl bromide (0.037 mL, 0.31 mmol) was added and the solution was stirred for 2 h at rt. The reaction mixture was quenched by adding a few drops of CH₃OH, diluted with CH₂Cl₂ (20 mL), and washed with a satd aq NaHCO₃ soln (20 mL) and water (20 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated, and the resulting residue was purified by chromatography (4:1 hexanes–EtOAc) to provide LAM-69 (556 mg, 94%) as a colorless oil. R_f 0.25 (4:1 hexanes–EtOAc); $[\alpha]_D$ +9.3 (c = 1.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.65–7.61 (m, 1 H), 7.39–7.12 (m, 64 H), 7.06–7.03 (m, 2 H), 5.13 (s, 2 H, 2 × H-1), 5.11 (m, 2 H, 2 × H-1), 4.98 (d, 1 H, J = 4.4 Hz, H-1), 4.96 (s, 1 H, H-1), 4.67–4.25 (m, 27 H), 4.20–3.95 (m, 15 H), 3.86 (dd, 1 H, J = 5.7, 2.4 Hz), 3.84–3.73 (m, 4 H), 3.69–3.63 (m, 2 H), 3.59-3.46 (m, 6 H), 3.32 (ddd, 1 H, J = 9.6, 6.7, 6.7 Hz), 3.24 (dd, 2 H, J = 6.9, 6.9 Hz), 1.63-1.52 (m, 4 H), 1.40-1.28 (m, 8 H), 1.03 (s, 9 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 138.3(5), 138.3(3), 138.3(1), 138.2, 138.1, 138.0, 137.7(4), 137.8, 137.7, 137.6, 135.5(5), 135.5(2), 133.2, 133.1, 129.7(6), 129.7(4), 128.4, 128.3(9), 128.3(3), 128.2(9), 128.2(6), 128.2(1), 128.1, 127.9, 127.8(7), 127.7(8), 127.7(0), 127.6(6), 127.6(0), 127.5(7), 127.5(4), 127.5(2), 127.4, 127.3(9), 127.3(4), 106.6 (C-1), 106.1 (C-1), 106.0 (C-1), 105.2 (C-1), 100.3(4) (C-1), 100.3(1) (C-1), 88.6, 85.8, 85.5, 84.5, 84.1, 83.9, 83.2, 82.0, 81.8, 81.1, 80.5, 80.0(5), 80.0(2), 79.9, 73.2, 73.1, 73.0, 72.3, 72.2(8), 72.2(5), 72.2(2), 72.0(4), 72.0(2), 71.8, 69.9, 67.5, 66.1, 65.9, 65.4, 51.4, 29.5, 29.2, 29.1, 28.8, 26.8, 26.6, 26.0, 19.2. HRMS (ESI) *m/z* calcd for (M+Na) C₁₃₈H₁₅₅N₃O₂₅SiNa: 2305.0617. Found: 2305.0611.

8-Azidooctyl 2,3-di-*O*-benzyl-5-*O*-*t*-butyldiphenylsilyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→3)-[2,3,5-tri-*O*-benzyl-β-D-arabinofuranosyl-

 $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -D-arabinofuranosyl-

 $(1 \rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-70). Hexasaccharide LAM-69 (460 mg, 0.20 mmol) in THF (3 mL) was treated with 1M n-Bu₄NF in THF solution (0.24 mL) and the reaction mixture was stirred at rt for 6 h. The crude mixture was concentrated and purified by chromatography (3:1 hexanes-EtOAc) to yield LAM-70 (408 mg, 99%) as an oil. R_f 0.21 (3:1 hexanes-EtOAc); $[\alpha]_D$ +11.7 (c = 0.6, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.37-7.19 (m, 60 H), 5.16–5.15 (m, 2 H, 2 × H-1), 5.12–5.10 (m, 2 H, 2 × H-1), 5.03 (d, 1 H, J = 4.5 Hz, H-1), 4.97 (s, 1 H, H-1), 4.72–4.37 (m, 24 H), 4.36–4.28 (m, 4 H), 4.23 (dd, 1 H, J = 6.9, 6.7 Hz), 4.19-4.11 (m, 4 H), 4.11-3.96 (m, 10 H), 3.85 (dd, 1 H, J = 11.7, 4.4 Hz), 3.78 (dd, 1 H, J = 11.7) 12.0, 2.5 Hz), 3.70–3.64 (m, 2 H), 3.62–3.49 (m, 8 H), 3.34 (ddd, 1 H, J = 9.6, 6.6, 6.6 Hz), 3.25 (dd, 2 H, J = 7.0, 6.9 Hz), 2.22 (br s, 1 H), 1.62–1.53 (m, 4 H), 1.40–1.29 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.3, 138.2, 138.1(3), 138.1(1), 138.0, 137.9, 137.7(7), 137.7(0), 137.6, 128.4(7), 128.4(5), 128.4(2), 128.4(1), 128.3(6), 128.3(5), 128.3(0, 128.2, 128.0, 127.9(9), 127.9(2), 127.8(9), 127.8(5), 127.7(7), 127.7(6), 127.7(2), 127.6(7), 127.6(3), 127.5(8), 127.5(2), 127.4, 106.6 (C-1), 106.1 (C-1), 106.0 (C-1), 105.1 (C-1), 100.3 (C-1), 99.9 (C-1), 88.6, 88.4, 86.1, 85.9, 84.1(3), 84.1(1), 83.9, 83.2(5), 83.2(0), 83.1, 81.9, 81.2, 80.8, 80.7, 80.1, 79.9, 73.3(6), 73.3(0), 73.0, 72.5, 72.3(6), 72.3(0), 72.2, 72.0(9), 72.0(6), 71.7, 70.0, 69.4, 67.6, 65.8,

65.4, 63.4, 51.4, 29.5, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₂H₁₃₇N₃O₂₅Na: 2066.9439. Found: 2066.9433.

8-Azidooctyl 5-O-p-toluenesulfonyl-2,3-di-O-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-2-*O*-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3,5-tri-*O*-benzyl- β -Darabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzyl- α -Darabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl- α -D-arabinofuranoside (LAM-71). Prepared from the trichloroacetimidate LAM-42 (prepared from 0.15 g (0.16 mmol) of hemiacetal LAM-41 (Scheme S7), 0.6 mL of CCl₃CN and 10 µL of DBU) in CH₂Cl₂ (9 mL), alcohol LAM-70 (0.25 g, 0.12 mmol) in CH₂Cl₂ (7 mL), 4 Å molecular sieves (0.29 g) and TMSOTf (5 μ L, 0.03 mmol) at -30 °C as described for the synthesis of LAM-43 to afford LAM-71 (0.25 g, 69%) as a thick syrup. $R_f 0.37$ (7:3 hexanes–EtOAc); $[\alpha]_D$ +24.7 (c = 0.29, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, $\delta_{\rm H}$) 8.08–8.03 (m, 2 H), 7.68–7.58 (m, 3 H), 7.41–7.01 (m, 84 H), 5.63 (dd, 1 H, J = 2.2, 2.9 Hz), 5.42 (d, 1 H, J = 4.3 Hz, H-1), 5.18 (s, 1 H, H-1), 5.17–5.12 (m, 3 H, 3 × H-1), 5.08 (d, 1 H, J =4.4 Hz, H-1), 5.01 (s, 1 H, H-1), 4.92 (d, 1 H, J = 1.8 Hz, H-1), 4.75–4.30 (m, 35 H), 4.30–3.78 (m, 30 H), 3.76-3.66 (m, 4 H), 3.65-3.52 (m, 4 H), 3.38 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.26(dd, 1 H, J = 7.0, 7.0 Hz), 2.35 (s, 3 H), 1.64–1.54 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125) MHz, CD₂Cl₂, δ_C) 165.7, 145.3, 139.3, 138.9(0), 138.9, 138.8, 138.7(4), 138.7(2)(Ar), 138.6, 138.4, 138.2(9), 138.2(6), 138.2, 138.1, 133.7, 133.1(5), 130.2, 130.1, 128.9, 128.8(0), 128.7(7), 128.7(1), 128.7, 128.6, 128.4(4), 128.4(3), 128.4, 128.3(3), 128.3, 128.2(3), 128.2(1), 128.2, 128.0(9), 128.0(6), 128.0(3), 128.0(2), 128.0(0), 128.0, 127.9(1), 127.9, 127.8(3), 127.8, 127.5(2), 127.5, 107.0 (C-1), 106.6 (C-1), 106.5 (C-1), 105.8 (C-1), 101.2 (C-1), 100.9 (C-1), 100.8 (C-1), 97.9 (C-1), 89.1, 88.9, 86.2, 84.8(1), 84.8, 84.5(3), 84.5, 84.1, 83.5, 82.9, 82.3, 81.8, 81.1, 80.7(0), 80.7, 80.5, 79.8, 79.1, 74.8, 73.7, 73.6(3), 73.6, 73.4, 73.0, 72.8, 72.7(4), 72.7(1), 72.7, 72.6(1), 72.6, 72.5, 72.3(4), 72.3, 71.8, 71.0, 70.6, 70.3, 70.0, 69.6, 68.2, 68.0, 66.7, 65.9, 51.9(1), 29.9(4), 29.5, 29.2, 27.1, 26.5, 21.7; HRMS (ESI) *m/z* calcd for (M+Na) C₁₇₅H₁₈₉N₃O₃₇SNa: 2979.2618. Found: 2979.2612.

8-Azidooctyl 5-*O-p*-toluenesulfonyl-2,3-di-*O*-benzyl- α -D-xylofuranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3,5-tri-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ - 3,5-di-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzyl-a-D-arabinofuranoside (LAM-72). Prepared from LAM-71 (0.23 g, 0.08 mmol) and 1M methanolic sodium methoxide solution in CH₂Cl₂-CH₃OH (4:1, 10 mL) as described for the synthesis of LAM-44 to afford LAM-72 (0.19 g, 88%) as a thick syrup. $R_f 0.18$ (7:3 hexanes-EtOAc); $[\alpha]_D$ +36.8 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.73-7.64 (m, 2 H), 7.40–7.10 (m, 82 H), 5.40 (d, 1 H, J = 4.2 Hz, H-1), 5.18 (s, 1 H, H-1), 5.16 (s, 1 H, H-1), 5.14–5.10 (m, 2 H, 2 × H-1), 5.01 (d, 1 H, J = 4.3 Hz, H-1), 4.98 (s, 1 H, H-1), 4.90 (s, 1 H, H-1), 4.70–4.18 (m, 37 H), 4.18–3.75 (m, 27 H), 3.72–3.50 (m, 10 H), 3.34 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.25 (dd, 1 H, J = 7.0, 7.0 Hz), 2.40 (s, 3 H), 1.63–1.54 (m, 4 H), 1.42–1.30 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 144.6, 138.5, 138.4, 138.3(3), 138.3(0), 138.3, 138.2, 138.1(3), 138.1(0), 138.1, 137.8, 137.7(3), 137.7(1), 137.7, 137.5, 133.0, 129.7, 128.6, 128.5(3), 128.4(6), 128.4(5), 128.4(3), 128.4(2), 128.4(0), 128.4, 128.3, 128.2, 128.1, 128.0(1), 128.0(0), 128.0, 127.9(0), 127.8(5), 127.8(1), 127.8, 127.7(3), 127.7(2), 127.7(0), 127.7, 127.6(1), 127.5(9), 127.5(6), 127.5(4), 127.5(2), 127.5, 127.4, 127.0, 106.6 (C-1), 106.1 (2 × C-1), 105.4 (C-1), 100.7 (C-1), 100.4(4) (C-1), 100.4 (C-1), 98.9 (C-1), 88.7, 88.6, 86.2, 85.9, 84.1, 84.0(4), 84.0(0), 84.0, 83.9, 83.7, 83.3, 83.2, 82.3, 81.7, 81.2, 80.7, 80.6, 80.3, 80.1, 80.0, 79.9, 79.1, 74.3(2), 73.3(1), 73.3, 73.2, 73.1, 72.7, 72.4, 72.3(3), 72.3(1), 72.3, 72.1(4), 72.1(0), 72.0(6), 72.0, 71.8, 71.3, 70.7, 70.5, 70.0, 69.7, 69.3, 68.9, 68.8, 67.6, 67.0, 66.0, 65.5, 51.5, 29.5, 29.3, 29.1, 28.9, 26.7, 26.1, 21.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₆₈H₁₈₅N₃O₃₆SNa: 2875.2356. Found: 2875.2350.

8-Azidooctyl 5-deoxy-5-thiomethyl-2,3-di-*O*-benzyl-α-D-xylofuranosyl-(1→4)-3,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→5)-2,3-di-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzyl-β-D-arabinofuranosyl-(1→5)-3,5-di-*O*-benzyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzyl-α-D-arabinofuranoside (LAM-73). Prepared from LAM-72 (0.19 g, 0.067 mmol), and sodium thiomethoxide (0.02 g, 0.28 mmol) in CH₃CN (5 mL) as described for the synthesis of LAM-45 to afford LAM-73 (0.13 g, 71%) as a syrup. R_f 0.29 (7:3 hexanes–EtOAc); [α]_D +31.0 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CD₂Cl₂, δ _H) 7.40–7.12 (m, 80 H), 5.51 (d, 1 H, J = 4.3 Hz, H-1), 5.17 (s, 1 H, H-1), 5.14–5.10 (m, 3 H, 3 × H-1), 5.05 (d, 1 H, J = 4.3 Hz, H-1), 4.98 (s, 1 H, H-1), 4.88 (s, 1 H, H-1), 4.69–4.17 (m, 32 H), 4.17–3.75 (m, 20 H), 3.75–3.50 (m, 10 H), 3.74–3.52 (m, 10 H), 3.35 (ddd, 1 H, J = 6.6, 9.5, 13.2 Hz), 3.24 (dd, 1 H, J = 7.0, 7.0 Hz), 2.71 (dd, 1 H, J = 5.0, 13.8 Hz), 2.53 (dd, 1 H, J = 7.2, 13.8 Hz), 2.35 (s, 1 H), 2.06 (s, 3 H), 1.62–1.52 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (125 MHz, CD₂Cl₂, δ_{C}) 139.2, 138.9(2), 138.9, 138.8(4), 138.8(3), 138.8, 138.7, 138.6(3), 138.6, 138.4(2), 138.4, 138.3(1), 138.3, 138.2, 128.9, 128.8(0), 128.7(7), 128.7(6), 128.7(3), 128.7(1), 128.6(9), 128.6(8), 128.6(5), 128.6(3), 128.6, 128.4(2), 128.4(1), 128.3(3), 128.2(4), 128.2(0), 128.2, 128.1(3), 128.0(9), 128.0(7), 128.0(5), 128.0(2), 128.0, 127.9(0), 127.9, 127.8(4), 127.8(2), 127.8, 127.5, 107.0 (C-1), 106.6 (C-1), 106.5 (C-1), 105.9 (C-1), 101.3 (C-1), 100.9 (C-1), 100.8 (C-1), 99.4 (C-1), 89.1, 88.9, 86.4, 86.2, 84.8, 84.6, 84.5, 84.4, 84.3, 84.1, 83.6, 83.4, 82.3, 82.2, 81.8, 81.0(8), 81.0(6), 80.7(0), 80.7, 80.5, 79.7, 77.9, 73.6(5), 73.6, 73.4, 72.9, 72.8(4), 72.8, 72.7(1), 72.6(7), 72.6(1), 72.6, 72.5(4), 72.5, 72.4, 72.3, 71.4, 71.1, 70.6, 70.3, 69.9, 69.3, 68.0, 67.6, 66.7, 66.0, 51.9, 34.9, 29.9, 29.7, 29.5, 29.2, 27.1, 26.5, 16.9. HRMS (ESI) *m/z* calcd for (M+Na) C₁₆₂H₁₈₁N₃O₃₃SNa: 2751.2196. Found: 2751.2196.

8-Azidooctyl 5-deoxy-5-thiomethyl- α -D-xylofuranosyl- $(1 \rightarrow 4)$ - α -D-mannopyranosyl- $(1\rightarrow 5)$ - β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 3)$ - $[\beta$ -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (11). Prepared from LAM-73 (0.13 g, 0.048 mmol), liquid NH₃ (25 mL) and sodium metal (0.1 mg) in THF (2 mL) as described for the synthesis of 7 to give 11 (33 mg, 55%) as a thick syrup which was later lyophilized to a foam. ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.42 (d, 1 H, J = 4.4 Hz, H-1), 5.24 (s, 1 H, H-1), 5.17 (s, 1 H, H-1), 5.14–5.12 (m, 2 H × H-1), 5.11 (s, 1 H, H-1), 5.01 (d, 1 H, J = 1.1 Hz, H-1), 4.92 (s, 1 H, H-1), 4.38 (ddd, 1 H, J = 4.9, 9.9, 13.3 Hz), 4.35–3.96 (m, 20 H), 3.96–3.64 (m, 19 H), 3.60-3.54 (m, 2 H), 2.97 (dd, 2 H, J = 7.3, 7.3 Hz), 2.79 (dd, 1 H, J = 4.9, 13.8 Hz), 2.68 (dd, 1 H, J = 8.4, 13.8 Hz), 2.18 (s, 3 H), 1.66–1.55 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_C) 108.3 (C-1), 108.1 (C-1), 106.6 (C-1), 106.3 (C-1), 103.4 (C-1), 101.7 (C-1), 101.5 (C-1), 100.7 (C-1), 88.4, 87.7, 83.9, 83.8, 83.3, 82.9, 82.6, 82.5, 81.9, 81.8, 80.7, 79.9, 78.7, 77.5, 77.2(3), 77.2, 76.9, 76.5, 75.8, 75.7, 75.1, 75.0(1), 75.0, 74.9(4), 74.9(2), 72.4, 71.5, 71.1, 69.5, 67.4, 67.2, 63.9, 63.4, 61.9, 61.5, 40.5, 33.8, 29.5, 29.1, 29.0, 27.7, 26.4, 26.0, 15.9. HRMS (ESI) *m/z* calcd for (M+Na) C₅₀H₈₈N₁O₃₃SNa: 1262.4953. Found: 1262.4960.
9. Synthesis of 12

Scheme S12. Synthesis of pentasaccharide LAM-86, a precursor to 12. a) HF·pyridine, pyridine, THF, 95%; b) TBPDSCI, pyridine, CH_2CI_2 ; c) BzCI, pyridine; 88% over two steps; d) LAM-78, NIS, AgOTf, CH_2CI_2 ; e) HF·pyridine, pyridine, THF 89% over two steps; f) LAM-13, NIS, AgOTf, CH_2CI_2 , 80%; g) H_2NNH_2 ·HOAc CH_2CI_2 , CH_3OH , 96%; h) LAM-83, NIS, AgOTf, CH_2CI_2 , 71%; i) CF_3CO_2H , CH_2CI_2 , 62%; j) BzCI, pyridine, 95%.

p-Tolyl 2-*O*-levulinoyl-1-thio-α-D-arabinofuranoside (LAM-75). Prepared from compound LAM-74¹ (6.56 g, 13.2 mmol) and 70% HF·pyridine (6 mL) in THF–pyridine (150 mL, 4:1) as described for the synthesis of LAM-26 to afford LAM-75 (4.46 g, 95%) as a thick syrup. R_f 0.14 (2:3 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.43–7.39 (m, 2 H), 7.14–7.10 (m, 2 H), 5.48 (d, 1 H, J = 3.1 Hz, H-1), 4.94 (app t, 1 H, J = 3.4 Hz), 4.27–4.22 (m, 1 H, H-

4), 4.18–4.13 (m, 1 H), 3.90 (ddd, 1 H, J = 3.2, 4.8, 12.0 Hz), 3.77 (ddd, IH, J = 3.9, 7.9, 12.0 Hz), 3.43 (d, 1 H, J = 3.6 Hz), 2.85–2.70 (m, 2 H), 2.63–2.55 (m, 2 H), 2.33 (s, 3 H), 2.19 (s, 3 H), 2.13 (dd, 1 H, J = 4.9, 7.8 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 206.6, 173.5, 138.2, 132.8, 129.8, 129.7, 89.5 (C-1), 86.5, 82.8, 76.0, 61.3, 37.9, 29.8, 27.8, 21.1.

p-Tolyl 5-O-t-butyldiphenylsilyl-3-O-benzoyl-2-O-levulinoyl-1-thio-α-Darabinofuranoside (LAM-77). Diol LAM-75 (5.7 g, 16.1 mmol) was dissolved in CH₂Cl₂pyridine (100 mL, 1:2), TBDPSCl (6 mL, 23.4 mmol) was added and the mixture was stirred at rt for 48 h to give LAM-76, which was not isolated. Instead, the solution was cooled to 0 °C and benzoyl chloride (2.5 mL, 21.5 mmol) was added dropwise and the resulting reaction mixture stirred at rt for 12 h before CH₃OH was added (2 mL). After stirring for 30 min, the reaction mixture was diluted with CH₂Cl₂ and poured into a satd aq NaHCO₃ soln. The organic layer was washed with water, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:1 hexanes-EtOAc) to afford LAM-77 (9.86 g, 88% over two steps) as a thick syrup. *R*_f 0.36 (3:1 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.11–8.04 (m, 2 H), 7.72– 7.64 (m, 4 H), 7.62–7.55 (m, 1 H), 7.52–7.30 (m, 10 H), 7.14–7.10 (m, 2 H), 5.57–5.54 (m, 2 H), 5.41 (app t, 1 H, J = 2.2 Hz), 4.53 (app q, 1 H, J = 4.3 Hz), 4.00 (dd, 1 H, J = 4.6, 11.2 Hz), 3.97 (ddd, 1 H, J = 3.9, 11.2 Hz), 2.80–2.45 (m, 4 H), 2.34 (s, 3 H), 2.15 (s, 3 H), 1.07 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.0, 171.6, 165.5, 137.8, 135.7, 133.4, 133.2, 133.1, 132.7, 130.0, 129.7, 129.3, 128.4, 127.7, 91.1, 83.1, 82.1, 77.6, 63.4, 37.8, 29.8, 27.8, 26.8, 21.2, 19.3.

p-Methoxyphenyl 3-*O*-benzoyl-2-*O*-levulinoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[3-*O*-benzoyl-2-*O*-levulinoyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$]-2-*O*-benzoyl- α -D-arabinofuranoside (LAM-80). Diol LAM-78¹ (4.78 g, 13.2 mmol) and thioglycoside LAM-77 (25.0 g, 35.8 mmol) were dried under vacuum in the presence of P₂O₅ for 14 h. After drying, CH₂Cl₂ (600 mL) was added followed by powdered 4 Å molecular sieves (4.0 g) and the mixture was stirred for 30 min at rt. The solution was then cooled to 0 °C and *N*-iodosuccinimide (8.0 g, 35.6 mmol) and silver triflate (0.46 g, 1.8 mmol) were added. After stirring the mixture for 20 min at 0 °C, Et₃N was added until the pH of the solution was slightly basic as determined using wet pH paper. The reaction mixture was diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed with a satd aq soln of Na₂S₂O₃, water and brine. The organic layer dried (Na₂SO₄), filtered and concentrated to a residue that was dried under vacuum for 3 h. This compound (LAM-79), without any further purification, was dissolved in THF–pyridine (225 mL 7:2), cooled to 0 °C

and then 70% HF pyridine (8 mL) was added dropwise. The reaction mixture was stirred at rt overnight and concentrated to ~50 mL. The solution was then diluted with CH₂Cl₂, poured into a satd aq NaHCO₃ solution and extracted with CH₂Cl₂. The organic layer was washed with water, brine, dried (Na_2SO_4), filtered and concentrated to a residue that was purified by chromatography (1:4 hexanes-EtOAc) to afford LAM-80 (12.15 g, 89% over two steps) as a thick syrup. $R_f 0.1$, (3:7 hexanes–EtOAc), $[\alpha]_D$ +52.5 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.03–7.98 (m, 4 H), 7.91–7.87 (m, 2 H), 7.56–7.44 (m, 3 H), 7.40–7.34 (m, 4 H), 7.32–7.26 (m, 2 H), 7.03– 6.98 (m, 2 H), 6.80–6.76 (m, 2 H), 5.71 (s, 1 H), 5.57 (d, 1 H, J = 1.6 Hz), 5.36 (d, 1 H, J = 1.6 Hz), 5.33 (d, 1 H, J = 1.5 Hz), 5.29 (s, 1 H), 5.16 (dd, 1 H, J = 1.4, 4.8 Hz), 5.13 (dd, 1 H, J =1.0, 4.8 Hz), 4.54 (dd, 1 H, J = 0.9, 5.8 Hz), 4.45–4.40 (m, 1 H), 4.29 (dd, 1 H, J = 3.8, 6.8 Hz), 4.24 (dd, 1 H, J = 4.8, 8.6 Hz), 3.98 (dd, 1 H, J = 4.0, 11.5 Hz), 3.95–3.76 (m, 6 H), 3.75 (s, 3 H), 2.82–2.55 (m, 10 H), 2.16 (s, 3 H), 2.15 (s, 3 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 206.4, 171.4, 166.0, 165.9, 165.5, 155.1, 150.2, 133.5, 133.4, 129.8(2), 129.8, 129.7, 129.1, 128.9, 128.5, 128.4, 118.4, 114.6, 105.3, 105.2, 105.1, 84.5, 83.7, 82.8, 82.1, 81.3, 81.1, 80.4, 77.8, 77.3, 65.1, 62.5, 55.7, 37.9, 29.7, 27.8. HRMS (ESI) m/z calcd for (M+Na) C₅₃H₅₆O₂₁Na: 1051.3206. Found: 1051.3200.

p-Methoxyphenyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl-α-D-mannopyranosyl-(1 \rightarrow 5)-3-*O*-benzoyl-2-*O*-levulinoyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl-α-D-mannopyranosyl-(1 \rightarrow 5)-3-*O*-benzoyl-2-*O*-levulinoyl-α-D-arabinofuranosyl-(1 \rightarrow 3)]-2-*O*-benzoyl-α-D-arabinofuranoside (LAM-81). Diol LAM-80 (5.0 g, 4.86 mmol) was glycosylated with thioglycoside LAM-13¹⁶ (8.9 g, 13.5 mmol), powdered 4 Å molecular sieves (3.0 g), *N*-iodosuccinimide (3.1 g, 13.8 mmol) and silver triflate (0.35 g, 1.36 mmol) in CH₂Cl₂ (280 mL) as described for the synthesis of LAM-3 to afford LAM-81 (16.34 g, 80%) as a thick syrup. *R*_f0.21 (65:35 hexanes–EtOAc), [α]_D +45.8 (*c* = 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.08–8.02 (m, 6 H), 8.00–7.97 (m, 2 H), 7.94–7.88 (m, 2 H), 7.58–7.45 (m, 3 H), 7.45–7.42 (m, 2 H), 7.40–7.15 (m, 40H), 7.03–6.98 (m, 2 H), 6.78–6.75 (m, 2 H), 5.74 (s, 1 H), 5.71–5.69 (m, 2 H), 5.59 (d, 1 H, *J* = Hz), 5.48 (s, 1 H), 5.44 (dd, 1 H, *J* = 1.4, 4.8 Hz), 5.40 (d, 1 H, *J* = 1.5 Hz), 5.32 (d, 1 H, *J* = 4.7 Hz), 5.27 (d, 1 H, *J* = 1.2 Hz), 5.21 (s, 1 H), 5.09 (d, 1 H, *J* = 1.8 Hz), 4.83 (d, 1 H, *J* = 4.3 Hz), 4.81 (d, 1 H, *J* = 4.3 Hz), 4.76–4.70 (m, 4 H), 4.54–4.44 (m, 8 H), 4.36–4.31 (m, 2 H), 4.14–3.97 (m, 7 H), 3.96–3.82 (m, 6 H), 3.82–3.70 (m, 6 H), 2.67–2.54 (m, 8 H), 2.06 (s, 3 H), 2.05 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 205.9,

171.8, 171.6, 165.4, 155.0, 150.3, 138.5, 138.1, 133.4, 133.3, 133.0, 129.9(4), 129.9, 129.8, 129.2, 129.1, 128.5, 128.4, 128.3, 128.2, 128.0, 127.5, 118.4, 114.5, 106.0, 105.3, 98.3(3), 98.3, 82.8, 82.6, 82.5, 82.2, 81.6, 81.4, 80.8, 78.5, 77.5, 77.4, 75.2, 74.2(1), 74.2, 73.4, 72.0(2), 72.0, 71.6, 69.0, 68.9, 68.8, 66.5, 66.4, 66.0, 55.6, 37.8, 37.7, 29.6, 27.8. HRMS (ESI) *m/z* calcd for (M+2Na) C₁₂₁H₁₂₀O₃₃Na₂: 1073.3748. Found: 1073.3750.

p-Methoxyphenyl 3,4,6-tri-O-benzyl-2-O-benzoyl-α-D-mannopyranosyl-(1→5)-3-O-benzoyl-α-D-arabinofuranosyl-(1→5)-[3,4,6-tri-O-benzyl-2-O-benzoyl-α-D-benzoyl-α-benzo

mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$]-2-*O*-benzoyl- α -D-

arabinofuranoside (LAM-82). Prepared from LAM-81 (16.3 g, 7.7 mmol) and hydrazine acetate (2.25 g, 24.4 mmol) in CH₂Cl₂-CH₃OH (380 mL, 6:1) as described for the synthesis of **LAM-116** to give LAM-82 (14.2 g, 96%) as a foam. $R_f 0.25$ (65:35 hexanes–EtOAc), $[\alpha]_D$ +47.6 $(c = 0.3, \text{ CHCl}_3)$; ¹H NMR (600 MHz, CDCl₃, δ_H) 8.10–8.00 (m, 9 H), 7.96–7.92 (m, 2 H), 7.58–7.46 (m, 4 H), 7.38–7.16 (m, 40 H), 7.03–6.98 (m, 2 H), 6.81–6.76 (m, 2 H), 5.75 (s, 1 H), 5.67-5.64 (m, 2 H), 5.60 (d, 1 H, J = 1.5 Hz), 5.39 (s, 1 H), 5.18 (s, 1 H), 5.10 (dd, 1 H, J = 1.2, 4.1 Hz), 5.07 (d, 1 H, J = 1.9 Hz), 5.05 (d, 1 H, J = 1.9 Hz), 5.00 (dd, 1 H, J = 1.7, 4.7 Hz), 4.85 (d, 1 H, J = 2.4 Hz), 4.84 (d, 1 H, J = 2.4 Hz), 4.76 (d, 1 H, J = 2.4 Hz), 4.74 (d, 1 H, J = 2.4 Hz),4.72 (d, 1 H, J = 3.5 Hz), 4.70 (d, 1 H, J = 3.4 Hz), 4.56–4.48 (m, 6 H), 4.46–4.40 (m, 2 H), 4.37-4.32 (m, 2 H), 4.26 (dd, 1 H, J = 1.8, 7.3 Hz), 4.14-4.04 (m, 6 H), 3.99 (dd, 1 H, J = 4.2, 11.7 Hz), 3.92-3.85 (m, 4 H), 3.84-3.66 (m, 8 H), 3.20 (dd, 2 H, J = 6.5, 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.6, 166.5, 165.6, 165.5, 155.1, 150.3, 138.5, 138.4, 138.0, 133.5, 133.2, 130.0, 129.8, 129.3, 129.1, 128.6, 128.5, 128.4, 128.3(4), 128.3, 128.1(3), 128.1, 127.6, 127.5, 118.5, 114.6, 108.5, 107.8, 105.3, 98.5, 98.4, 83.1, 82.9, 82.4, 81.6, 80.7, 80.4, 79.9, 79.4, 78.4, 75.3, 74.1, 74.0, 73.4, 72.2, 72.1, 71.8, 68.9, 68.8(3), 68.8, 67.0, 66.9, 66.1, 55.7. HRMS (ESI) m/z calcd for (M+Na) C₁₁₁H₁₀₈O₂₉Na: 1927.6868. Found: 1927.6892.

p-Methoxyphenyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-[5-*O*-*p*-methoxybenzyl-2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-[(5-*O*-*p*-methoxybenzyl-2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 3)$]-2-*O*-benzoyl- α -D-arabinofuranoside (LAM-84). Diol LAM-82 (0.5 g, 0.26 mmol) and thioglycoside LAM-83²⁰ (0.39 g, 0.8 mmol) were dried under vacuum in the

presence of P₂O₅ for 14 h. After drying, CH₂Cl₂ (40 mL) was added followed by powdered 4 Å molecular sieves (0.88 g) and the solution was stirred for 20 min at rt. The mixture was then cooled to -45 °C and N-iodosuccinimide (0.28 g, 1.24 mmol) and silver triflate (30 mg, 0.12 mmol) were added. The reaction mixture was stirred at -45 °C for 10 min, warmed to -35 °C over 1 h, and then Et₃N was added until the pH of the solution was slightly basic as determined using wet pH paper. The reaction mixture was diluted with CH₂Cl₂ and filtered through Celite and the filtrate was washed with a satd ag soln of Na₂S₂O₃, water and brine. The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (65:35 hexanes-EtOAc) to yield LAM-84 (0.49 g, 71%) as a thick syrup. Rf 0.17 (65:35 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10-7.93 (m, 9 H), 7.56-7.40 (m, 5 H), 7.40–7.05 (m, 53 H), 7.00–6.96 (m, 2 H), 6.79–6.71 (m, 6 H), 5.72 (s, 1 H), 5.67–5.61 (m, 2 H), 5.61–5.56 (m, 2 H), 5.52–5.44 (m, 2 H), 5.26–5.20 (m, 2 H), 5.05 (d, 1 H, J = 4.9 Hz), 5.01 (d, 1 H, J = 1.8 Hz), 5.00 (d, 1 H, J = 1.7 Hz), 4.97 (d, 1 H, J = 12.6 Hz), 4.90 (d, 1H, J = 12.6 Hz), 4.86-4.60 (m, 11 H), 4.59-4.42 (m, 8 H), 4.40-4.19 (m, 8 H), 4.18-3.80 (m, 18 H), 3.77-3.66 (m, 15 H), 3.60–3.44 (m, 4 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 165.5, 165.4, 165.3, 159.0, 155.0, 150.3, 138.6, 138.2, 137.0, 135.7, 135.5, 133.4, 133.3, 133.2, 133.0, 131.5, 131.2, 131.1, 130.4, 130.0(2), 130.0, 129.9, 129.8, 129.5(3), 129.5, 129.3, 129.2, 129.0, 128.5(1), 128.5, 128.3, 128.2, 128.0, 127.9, 127.4, 118.3, 114.6, 113.6, 118.3, 114.6, 113.6, 106.8, 105.5, 105.3, 102.2, 98.4, 98.2, 84.3, 83.9, 83.0, 82.9, 82.8, 82.4, 82.3, 82.1, 82.0, 81.1, 80.7, 80.3, 78.5, 78.4, 77.9, 77.7, 75.1, 74.2, 74.1, 73.4, 72.6, 72.5, 72.3, 72.2, 71.9, 71.8, 71.5, 69.5, 69.4, 69.0, 68.9, 67.7, 67.6, 66.5, 55.6, 55.2. HRMS (ESI) *m/z* calcd for (M+Na) C₁₅₃H₁₅₂O₃₉Na: 2635.9803. Found: 2635.9778.

p-Methoxyphenyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-[2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-[2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 3)$]-2-*O*-benzoyl- α -D-

arabinofuranoside (LAM-85). To a solution of LAM-84 (2.25 g, 0.86 mmol) in CH_2Cl_2 (225 mL) at 0 °C was added trifluoroacetic acid (4.5 mL, 2%) and the mixture was stirred at at 0 °C for 20 min. The solution was poured into a satd aq NaHCO₃ soln and extracted with CH_2Cl_2 . The organic layer was separated, washed with water, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:2 hexanes–EtOAc) to afford LAM-85 (1.27 g,

62%) as a foam. R_f 0.19 (3:2 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.06–8.00 (m, 6 H), 7.97–7.88 (m, 4 H), 7.55–7.40 (m, 4 H), 7.37–7.10 (m, 49 H), 6.98–6.92 (m, 2 H), 6.74–6.70 (m, 2 H), 5.71 (s, 1 H), 5.66–5.63 (m, 2 H), 5.53 (s, 1 H), 5.50 (dd, 2 H, J = 2.3, 4.5 Hz), 5.47 (s, 1 H), 5.38 (dd, 1 H, J = 2.3, 4.8 Hz), 5.25 (s, 1 H), 5.19 (d, 1 H, J = 5.1 Hz), 5.03–4.97 (m, 4 H), 4.92 (d, 1 H, J = 12.6 Hz), 4.82 (dd, 2 H, J = 3.9, 11.0 Hz), 4.78–4.61 (m, 10 H), 4.54–4.30 (m, 13 H), 4.14–4.05 (m, 5 H), 4.02 (dd, 1 H, J = 5.1, 6.6 Hz), 4.00–3.82 (m, 11 H), 3.82–3.64 (m, 11 H), 3.23 (q, 2 H, J = 5.9 Hz). HRMS (ESI) *m*/*z* calcd for (M+Na) C₁₃₇H₁₃₆O₃₇Na: 2395.8653. Found: 2395.8627.

p-Methoxyphenyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 5)$ -3-*O*benzoyl-[5-O-benzoyl-2,3-O-xylylene- α -D-arabinofuranosyl-(1 \rightarrow 2)]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[3,4,6-tri-O-benzyl-2-O-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-O-benzoyl-[5-Obenzoyl-2,3-*O*-xylylene- α -D-arabinofuranosyl-(1 \rightarrow 2)]- α -D-arabinofuranosyl-(1 \rightarrow 3)]-2-*O*benzoyl-a-D-arabinofuranoside (LAM-86). Diol LAM-85 (3.0 g, 1.26 mmol) was dissolved in CH₂Cl₂-pyridine (110 mL, 10:1), cooled to 0 °C and benzoyl chloride (1.0 mL, 8.6 mmol) was added dropwise. The resulting mixture was stirred for 14 h while warming to rt and then CH₃OH (1 mL) was added and the solution was stirred for 30 min. The reaction mixture was then diluted with CH₂Cl₂ and poured into a satd aq NaHCO₃ soln. The organic layer was washed with water, dried (Na₂SO₄), filtered and concentrated to give a syrup that was purified by chromatography (3:2 hexanes-EtOAc) to afford LAM-86 (3.1 g, 95%) as a foam. $R_f 0.39$ (3:2 hexanes-EtOAc), $[\alpha]_{\rm D}$ +32.5 (c = 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 8.12–8.00 (m, 4 H), 8.00–7.80 (m, 10 H), 7.60–7.12 (m, 59 H), 7.00–6.95 (m, 2 H), 6.75–6.70 (m, 2 H), 5.76 (s, 1 H), 5.65 (app t, 1 H, J = 2.6 Hz), 5.63 (app t, 1 H, J = 2.4 Hz), 5.60 (s, 1 H), 5.55 (dd, 1 H, J = 3.1, 4.9 Hz), 5.51 (s, 1 H), 5.46 (dd, 1 H, J = 2.9, 5.1 Hz), 5.31(d, 1 H, J = 4.9 Hz), 5.28 (s, 1 H), 5.11 (d, 1 H, J = 4.9 Hz), 5.04–4.98 (m, 3 H), 4.91 (d, 1 H, J = 12.5 Hz), 4.85–4.62 (m, 12 H), 4.59–4.56 (m, 1 H), 4.56–4.28 (m, 16 H), 4.27–4.22 (m, 2 H), 4.18–4.04 (m, 7 H), 3.98–3.84 (m, 8 H), 3.76–3.69 (m, 7 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.0, 165.9, 165.5, 165.4, 155.1, 150.3, 138.6, 138.2, 136.8, 135.7, 135.5, 133.5(4), 133.5, 133.2, 133.0, 132.8, 132.7, 131.6, 131.2, 131.1, 130.2, 130.0(4), 130.0, 129.8(1), 129.8, 129.4(4), 129.4, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.4(4), 127.4, 118.4, 114.6, 106.9, 105.7, 105.4, 102.7, 98.3, 98.2, 85.0, 84.4, 83.0, 82.9, 82.1, 82.0, 81.9, 81.3, 81.2, 80.9, 80.4, 78.4(3), 78.4, 78.0, 77.8, 76.6, 76.5, 75.1, 74.1,

73.4, 71.9, 71.8, 71.5, 69.6, 69.5, 69.0, 68.9(0), 68.9, 67.7, 67.6, 66.7, 66.4, 66.3, 55.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₅₁H₁₄₄O₃₉Na: 2603.9177. Found: 2603.9122.

Scheme S13. Synthesis of **12**. a) CAN, H₂O, CH₃CN, 80%; b) Cl₃CCN, DBU, CH₂Cl₂; c) **LAM-2**, TMSOTf, CH₂Cl₂, 89% over two steps; d) Na, NH₃ (I), THF; then CH₃OH, H₂O, 65%.

8-Azidooctyl 3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-5-*O*-benzoyl-2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[3,4,6-tri-*O*-benzyl-2-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 5)$ -3-*O*-benzoyl-2-[5-*O*-benzoyl-2,3-*O*-xylylene- α -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -D-arabinofuranosyl- $(1\rightarrow 3)$]-2-*O*-

benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (LAM-89). To a solution of compound LAM-86 (0.37 g, 0.14 mmol) in CH₃CN-H₂O (26 mL, 12:1) at 0 °C was added CAN (0.41 g, 0.75 mmol) and the mixture was stirred for 45 min before being diluted with EtOAc and brine and then stirred well. The EtOAc layer was separated, and the aqueous phase was extracted twice with EtOAc. The combined organic layers were washed with water, a satd aq NaHCO₃ soln and water again, before being dried (Na₂SO₄), filtered and concentrated to give a residue that was purified by chromatography (3:2 hexanes-EtOAc) to afford LAM-87 (0.28 g, diastereomeric mixture, 80%) as a foam. HRMS (ESI) m/z calcd for (M+Na) C₁₄₄H₁₃₈O₃₈Na: 2497.8758. Found: 2497.8731. Trichloroacetimidate LAM-88 was then prepared from hemiacetal LAM-87 (0.28 g, 0.11 mmol) using DBU (10 µL) and trichloroacetonitrile (0.25 mL, 2.5 mmol) in CH₂Cl₂ (6 mL) as described for the synthesis of LAM-42 (Scheme S7). The product was immediately used to glycosylate LAM- 2^1 (0.09 g, 0.17 mmol) in CH₂Cl₂ (8 mL) using cat. TMSOTf (2 µL) as described for the synthesis of LAM-43, to afford LAM-89 (0.29 g, 89% over two steps) as a syrup. R_f 0.45 (65:35 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10-8.00 (m, 9 H), 8.00-7.85 (m, 10 H), 7.58-7.14 (m, 64 H), 5.65-5.62 (m, 2 H), 5.53-5.49 (m, 2 H), 5.48-5.42 (m, 4 H), 5.39 (s, 1 H), 5.29 (s, 1 H), 5.20 (d, 1 H, J = 4.9 Hz), 5.18 (s, 1 H), 5.17 (d, 1 H, J = 4.9 Hz), 5.00 (d, 1 H, J = 1.8 Hz), 4.99 (d, 1 H, J = 1.4 Hz), 4.96 (d, 1 H, J = 3.5 Hz), 4.94 (s, 1H), 4.85 (d, 1H, J = 2.9 Hz), 4.82 (d, 1H, J = 2.9 Hz), 4.80–4.64 (m, 10H), 4.56-4.33 (m, 18 H), 4.28 (dd, 2 H, J = 6.0, 6.0 Hz), 4.21-3.84 (m, 17 H), 3.76-3.68(m, 5 H), 3.45 (ddd, 1 H, J = 6.2, 9.4, 12.5 Hz), 3.23 (dd, 2 H, J = 6.9, 6.9 Hz), 1.65-1.52 (m, 4 H), 1.41–1.22 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.9, 165.6, 165.5, 165.4(0), 165.3(9), 165.3(5), 165.3(3), 165.3, 138.6(7), 138.6(5), 138.6, 138.2, 136.9, 136.8, 135.8, 135.6, 133.5, 133.3, 133.0(4), 133.0, 132.9(4), 132.9, 132.8, 132.7, 131.6, 131.5, 131.2, 131.1, 130.0(7), 130.0(5), 130.0(3), 129.9(8), 129.9(6), 129.9, 129.8(1), 129.8, 129.7, 129.4(4), 129.4(0), 129.3(7), 129.3(5), 129.3, 129.2(1), 129.2, 128.5(9), 128.5(6), 128.5(1), 128.5, 128.4, 128.2(9), 128.2(7), 128.2(0), 128.2, 128.1, 128.0, 127.9, 127.5, 127.4(2), 127.4(1), 127.4, 127.3, 107.1, 106.1, 106.0, 105.5, 102.8, 102.6, 98.3, 98.2, 84.8, 84.7, 83.1, 82.3, 82.2(4), 82.2, 82.0, 81.9, 81.8, 81.6, 81.2, 80.7, 80.5, 78.4(2), 78.4, 78.0, 77.7, 77.6, 76.5, 76.4, 75.1(1), 75.1, 74.2, 74.1, 73.4, 73.3, 71.9, 71.8, 71.4(7), 71.4(5), 69.6, 69.0, 68.9(4), 68.9(1), 68.9, 67.8, 67.5, 67.4, 66.5, 66.4, 66.3, 66.2, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₇₁H₁₆₉N₃O₄₄Na: 2991.0971. Found: 2991.0842.

8-Aminooctyl α -D-mannopyranosyl-(1 \rightarrow 5)-[α -D-arabinofuranosyl-(1 \rightarrow 2)]- α -Darabinofuranosyl- $(1\rightarrow 5)$ - $[\alpha$ -D-mannopyranosyl- $(1\rightarrow 5)$ - $[\alpha$ -D-arabinofuranosyl- $(1\rightarrow 2)$]- α -Darabinofuranosyl- $(1\rightarrow 3)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (12). To a solution of LAM-89 (0.09 g, 0.03 mmol) in CH₂Cl₂-CH₃OH (12 mL 9:3) at rt was added 1M sodium methoxide solution until the pH of the reaction mixture was 8–9 (as determined with wet pH paper). The reaction mixture was stirred for 24 h and then neutralized by the addition of Amberlyst-15 (H^+) cation exchange resin. The solution was filtered and the filtrate was concentrated to give syrup that was purified by chromatography (9:1 CH₂Cl₂-CH₃OH) to yield the expected de-benzovlated compound, which was dried under vacuum overnight; $R_f 0.39$ (9.5:0.5 CH₂Cl₂-CH₃OH). HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₈H₁₃₃N₃O₃₅Na: 2054.8612. Found: 2054.8623. This material was used in the next step after drying overnight under vacuum. To a solution of liquid NH₃ (20 mL) at -78 °C was added sodium metal (0.04 g) until a deep blue solution was produced. A solution of de-benzoylated LAM-89 in THF (2 mL) was then added over 3-4 min, making sure that the deep blue color persisted. The reaction mixture was stirred at -78 °C for 45 min and then CH₃OH was added until the dark blue color disappeared and the solution appeared clear. The solution was then warmed to rt by blowing air gently over the solution, which also facilitated removal of the NH₃. When the reaction mixture attained rt, and most of the NH₃ was evaporated, CH₃OH-H₂O (6 mL, 1:1) was added and the pH of the solution was brought to ~8 (as determined by wet pH paper) by the addition of Amberlite IR 120 H+ resin. The solution was filtered and the filtrate concentrated. The residue was re-dissolved in water and purified on a C-18 column (1:1 CH₃OH-H₂O) to give 12 (25 mg, 65%) as a thick syrup which was later lyophilized to a fluffy solid. ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.22 (s, 1 H), 5.16 (s, 1 H), 5.12 (d, 2 H, J = 4.5 Hz), 5.09 (s, 1 H), 4.99 (d, 1 H, J = 2.0 Hz), 4.91–4.88 (m, 2 H), 4.31–4.25 (m, 2 H), 4.20–4.09 (m, 9 H), 4.08–4.01 (m, 4 H), 4.01–3.96 (m, 3 H), 3.95–3.58 (m, 26 H), 3.58-3.50 (m, 1 H), 2.97 (dd, 2 H, J = 7.5, 7.5 Hz), 1.69-1.53 (m, 4 H), 1.40-1.20 (m, 8 H); HRMS (ESI) *m/z* calcd for (M+H) C₅₀H₈₈NO₃₅Na: 1262.5131. Found: 1262.5122.

10. Synthesis of 13

Scheme S14. Synthesis of 13 Trifluoroacetamide. a) *p*-TolSH, BF₃·OEt₂, CH₂Cl₂; then NaOCH₃, CH₃OH, CH₂Cl₂, 95%; b) PhCH(OCH₃)₂, *p*-TsOH, DMF, 68%; c) BnBr, NaH, THF, DMF, 87%; d) 8-Azido-1-octanol NIS, TMSOTf, CH₂Cl₂, 80%; e) *p*-TsOH, CH₃OH, CH₂Cl₂; then TBDPSCI, CH₂Cl₂, pyridine, 53%; f) Levulinic acid, DMAP, DCC, CH₂Cl₂, 93%; then HF·pyridine, THF, pyridine, 96%; g) **GLU-8**, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH₂Cl₂, 95%; h) CF₃CO₂H, CH₂Cl₂; then Ac₂O, pyridine, DMAP 74%; i) NaOCH₃, CH₃OH, CH₂Cl₂; then Pd(OH)₂–C, pyridine; then trifluoroacetic anhydride, pyridine, 82%; j) H₂, Pd–C, EtOAc, THF, CH₃OH, 90%.

p-Tolyl α -D-glucopyranosyl-(1 \rightarrow 4)-1-thio- β -D-glucopyranoside (GLU-2). To a solution of GLU- 1^{21} (15.0 g, 22.1 mmol) and *p*-thiocresol (3.29 g, 26.5 mmol) in CH₂Cl₂ (180 mL) at 0 °C was added BF₃·Et₂O (6.8 mL, 55.3 mmol) dropwise. The reaction mixture was warmed to rt and stirred for 12 h before being extracted with CH_2Cl_2 (150 mL \times 2). The combined CH₂Cl₂ extracts were washed with water (200 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was dissolved in CH₂Cl₂–CH₃OH (5:1, 60 mL). To this solution was added 1M methanolic sodium methoxide until the pH was 8–9 (as determined by wet pH paper). Additional CH₃OH (100 mL in 3 portions) was added as the reaction progressed to aid solubility of the product. The reaction mixture was stirred for 24 h, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was purified by chromatography (4:1 CH₂Cl₂-CH₃OH) to yield GLU-2 (9.42 g, 95% over two steps) as a thick syrup. $R_f 0.25$ (4:1 CH₂Cl₂-CH₃OH); ¹H NMR (600 MHz, CD₃OD, δ_H) 7.47-7.42 (m, 2 H), 7.14–7.09 (m, 2 H), 5.15 (d, 1 H, J = 3.9 Hz, H-1 α), 4.52 (d, 1 H, J = 9.7 Hz, H-1 β), 3.90-3.76 (m, 3 H), 3.69-3.56 (m, 4 H), 3.51 (dd, 1 H, J = 9.5, 9.5 Hz), 3.43 (dd, 1 H, J = 3.8, 9.7 Hz), 3.40–3.35 (m, 1 H), 3.28–3.20 (m, 2 H), 2.30 (s, 3 H); ¹³C NMR (150 MHz, CD₃OD, δ_C) 138.8, 133.6, 131.0, 130.5, 102.8 (C-1), 89.6 (C-1), 80.8, 80.6, 79.4, 75.0, 74.7, 74.1, 73.3, 71.5, 62.7, 62.3, 21.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₉H₂₈O₁₀SNa: 471.1295. Found: 471.1291.

p-Tolyl 4,6-*O*-benzylidene-α-D-glucopyranosyl-(1→4)-1-thio-β-D-glucopyranoside (GLU-3). To a solution of GLU-2 (10.0 g, 22.3 mmol) in DMF (85 mL) was added α,α-dimethoxytoluene (8.4 mL, 55.7 mmol), *p*-TsOH·H₂O (0.46 g, 2.7 mmol) and the mixture was heated at 50 °C overnight under vacuum. When all the starting material was consumed (TLC), the reaction mixture was cooled to r.t. and then water (8.5 mL) and glacial HOAc (8.5 mL) were added and the solution was stirred for 30–40 min. Next, Et₃N (15 mL) was added and the mixture was concentrated to a thick syrup that was purified by chromatography (17:1 CH₂Cl₂–CH₃OH) to give GLU-3 (8.13 g, 68%) as a thick syrup. *R*_f 0.37 (19:1 CH₂Cl₂–CH₃OH); [α]_D +50.9 (*c* = 0.7, CH₃OH); ¹H NMR (400 MHz, CD₃OD, δ_H) 7.50–7.44 (m, 4 H), 7.37–7.29 (m, 3 H), 7.14–7.09 (m, 2 H), 5.55 (s, 1 H), 5.18 (d, 1 H, *J* = 3.9 Hz, H-1α), 4.54 (d, 1 H, *J* = 9.7 Hz, H-1β), 4.22 (d, 1 H, *J* = 4.8, 10.1 Hz), 3.90–3.78 (m, 3 H), 3.76–3.68 (m, 2 H), 3.65 (dd, 1 H, *J* = 8.9, 8.9 Hz), 3.56 (dd, 1 H, *J* = 3.8, 9.3 Hz), 3.54–3.36 (m, 3 H), 3.24 (dd, 1 H, *J* = 9.0, 9.7

Hz), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CD₃OD, δ_C) 138.8, 138.5, 133.2, 130.8, 130.2, 129.6, 128.7, 127.2, 103.0 (C-1), 102.6, 89.2 (C-1), 82.1, 80.8, 80.1, 79.0, 74.4, 73.0, 71.8, 69.5, 64.7, 62.1, 20.8. HRMS (ESI) *m/z* calcd for (M+Na) C₂₆H₃₂O₁₀SNa: 559.1608. Found: 559.1608.

p-Tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl-(1→4)-2,3,6-tri-Obenzyl-1-thio-\beta-D-glucopyranoside (GLU-4). To a solution of GLU-3 (5.4 g, 10.1 mmol) in THF-DMF (72 mL, 3:1) at 0 °C under argon was added NaH (60% dispersion in mineral oil, 2.42 g, 60.4 mmol) and the mixture was stirred for 2-3 min before BnBr (7.8 mL, 65.5 mmol) was added dropwise. The solution was warmed to rt and stirred for 6 h. The reaction mixture was then cooled to 0 °C and CH₃OH (6 mL) was added carefully. After stirring for 15 min, the reaction mixture was poured into chilled water (360 mL) and extracted with CH_2Cl_2 (200 mL \times 2). The combined organic layer was washed with water (200 mL \times 2) and brine (100 mL). The organic layer was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (22:3 hexanes-EtOAc) to yield GLU-4 (8.65 g, 87%) as a thick syrup. $R_f 0.32$ (85:15 hexanes–EtOAc); $[\alpha]_D$ +2.0 (c = 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.55–7.50 (m, 4 H), 7.44–7.23 (m, 21 H), 7.20–7.12 (m, 7 H), 7.09–7.04 (m, 2 H), 5.69 (d, 1 H, J = 3.9 Hz, H-1a), 5.55 (s, 1 H), 4.94–4.82 (m, 4 H), 4.77–4.68 (m, 3 H), 4.64–4.52 (m, 4 H), 4.19–4.12 (m, 2 H), 4.02 (dd, 1 H, J = 9.4, 9.4 Hz), 3.93-3.85 (m, 2 H), 3.85-3.80 (m, 2 H), 3.66-3.50 (m, 5 H), 2.47 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.7, 138.6, 138.5, 137.8(9), 137.8(5), 137.8, 137.6, 132.9, 129.7, 129.4, 128.9, 128.4(0), 128.4, 128.3(0), 128.2(9), 128.2(7), 128.2, 128.0, 127.9, 127.8, 127.6(2), 127.6, 127.4, 127.2, 126.4, 126.1, 101.2, 97.6 (C-1), 87.4 (C-1), 87.0, 82.4, 80.9, 78.8, 78.7, 78.5, 76.8, 75.3, 75.2, 74.2, 74.0, 73.4, 71.8, 69.0, 63.4, 21.2. HRMS (ESI) m/z calcd for (M+Na) C₆₁H₆₂O₁₀SNa: 1009.3956. Found: 1009.3967.

8-Azidooctyl 2,3-di-*O*-benzyl-6-*O*-tert-butyldiphenylsilyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D-glucopyranoside (GLU-6). 8-Azido-1-octanol (1.36 g, 8.0 mmol) and GLU-4 (4.2 g, 4.3 mmol) were dried under vacuum in the presence of P₂O₅ for 6 h. After drying, CHCl₃-Et₂O (1:1, 200 mL) was added, followed by powdered 4 Å molecular sieves (1.7 g) and the mixture was stirred for 30 min. The reaction mixture was cooled to 0 °C and then *N*iodosuccinimide (1.7 g, 7.6 mmol) and TMSOTf (0.2 mL, 1.1 mmol) were added and the solution was stirred for 2 h before Et₃N was added until the pH of the solution was slightly basic as determined by wet pH paper. The mixture was diluted with CH₂Cl₂ (40 mL), filtered through Celite and the filtrate was washed with satd aq soln of Na₂S₂O₃ (50 mL), water (50 mL) and

brine (25 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (88:12 hexanes-EtOAc) to give GLU-5 (3.5 g, 80% as an inseparable α : β (2.6:1) mixture); R_f 0.36 (85:15 hexanes-EtOAc, two runs); HRMS (ESI) m/zcalcd for (M+Na) C₆₂H₇₁N₃O₁₁Na: 1056.4981. Found: 1056.4980. This compound (3.5 g, 3.38 mmol) was then dissolved in CH₂Cl₂-CH₃OH (5:3, 80 mL) and then p-TsOH·H₂O (0.96 g, 5.0 mmol) was added followed by two drops of water and the solution was stirred at rt for 24 h. The reaction mixture was then poured into water (250 mL) and extracted with CH₂Cl₂ (175 mL). The organic phase was washed with water (100 mL \times 2), dried (Na₂SO₄), filtered and concentrated to a syrup that was dried under vacuum overnight to give the corresponding disaccharide diol as an inseparable α : β mixture; $R_f 0.12$ (7:3 hexanes-EtOAc); HRMS (ESI) m/z calcd for (M+Na) C₅₅H₆₇N₃O₁₁Na: 968.4668. Found: 968.4663. This compound was then dissolved in CH₂Cl₂pyridine (2:1, 45 mL), TBDPSCI (5.0 mL, 19.5 mmol) was added and the mixture was stirred at rt for 24 h before CH₃OH (4 mL) was added. The reaction mixture was poured into a satd aq NaHCO₃ soln (40 mL) and extracted with CH₂Cl₂ (50 mL). The organic phase was washed with water (50 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (22:3 hexanes–EtOAc) to yield GLU-6 (2.11 g (pure α -product), 53% over two steps) as a thick syrup. R_f 0.23 (85:15 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.65-7.61 (m, 4 H), 7.41-7.14 (m, 31 H), 5.67 (d, 1 H, J = 3.6 Hz, H-1 α), 5.05 (d, 1 H, J = 11.6Hz), 4.89 (d, 1 H, J = 11.3 Hz), 4.80 (d, 1 H, J = 11.5 Hz), 4.75 (d, 1 H, J = 3.6 Hz, H-1 α), 4.70 (d, 1 H, J = 11.3 Hz), 4.66 (d, 1 H, J = 12.0 Hz), 4.57 (d, 1 H, J = 12.0 Hz), 4.55 (d, 1 H, J = 12.0 11.9 Hz), 4.51 (d, 1 H, J = 11.8 Hz), 4.48 (d, 1 H, J = 12.0 Hz), 4.41 (d, 1 H, J = 12.0 Hz), 4.08 (dd, 1 H, J = 9.2, 9.2 Hz), 3.98 (dd, 1 H, J = 9.8, 9.8 Hz), 3.92–3.86 (m, 1 H), 3.80–3.70 (m, 4 H), 3.68-3.60 (m, 4 H), 3.57 (dd, 1 H, J = 3.7, 9.5 Hz), 3.42-3.36 (m, 2 H), 3.23 (dd, 2 H, J =7.0, 7.0 Hz), 2.33 (d, 1 H, J = 2.2 Hz), 1.70–1.57 (m, 4 H), 1.40–1.30 (m, 8 H), 1.02 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 139.1, 138.8, 138.2, 138.1, 137.9, 135.7, 135.6, 133.4, 133.1, 129.6, 128.5, 128.4, 128.3, 128.2(0), 128.2, 128.1, 127.9, 127.8, 127.6(9), 127.6(6), 127.6, 127.4(4), 127.4, 127.0, 126.7, 96.4 (C-1), 96.1 (C-1), 82.0, 81.1, 80.2, 79.3, 75.3, 74.1, 73.2, 72.9, 72.8, 72.5, 71.9, 71.0, 69.6, 69.3, 68.2, 63.8, 51.5, 29.4, 29.3, 29.1, 28.8, 26.9, 26.7, 26.0, 19.3. HRMS (ESI) *m/z* calcd for (M+Na) C₇₁H₈₅N₃O₁₁SiNa: 1206.5846. Found: 1206.5834.

8-Azidooctyl 2,3-di-O-benzyl-4-O-levulinoyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- α -D-glucopyranoside (GLU-7). To a solution of GLU-6 (2.15 g, 1.81 mmol), levulinic

acid (0.28 mL, 2.73 mmol) and DMAP (0.11 g, 0.9 mmol) in CH₂Cl₂ (31 mL) was added DCC (0.56 g, 2.71 mmol) and the mixture was stirred at rt for 1 h. The reaction mixture was then filtered through Celite and the filter cake was washed with CH₂Cl₂. The filtrate was diluted with CH₂Cl₂ (20 mL), washed with satd aq NaHCO₃ soln (25 mL), water (25 mL) and brine (20 mL). The organic layer was dried (Na_2SO_4), filtered, and concentrated to a syrup that was purified by chromatography (4:1 hexanes-EtOAc) to afford the corresponding levulinate ester (2.16 g, 93%) as a thick syrup; R_f 0.29 (4:1 hexanes-EtOAc); HRMS (ESI) m/z calcd for (M+Na) C₇₆H₉₁N₃O₁₃SiNa: 1304.6213. Found: 1304.6221. To a solution of this compound (2.16 g, 1.68 mmol) in THF-pyridine (21:12, 33 mL) at 0 °C was added 70% HF pyridine (1.0 mL) dropwise. The solution was warmed to rt and stirred overnight before being poured into a satd aq NaHCO₃ soln (30 mL), extracted with CH₂Cl₂ (40 mL) and the organic layer washed with brine (25 mL). The organic layer was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (1:1 hexanes–EtOAc) to yield GLU-7 (1.69 g, 96%) as a thick syrup. $R_f 0.11$ (65:35 hexanes–EtOAc); $[\alpha]_D$ +46.9 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40– 7.17 (m, 25 H), 5.73 (d, 1 H, J = 3.7 Hz), 5.10 (d, 1 H, J = 11.6 Hz), 4.92 (dd, a H, J = 9.9, 9.9Hz), 4.87-4.81 (m, 2 H), 4.80 (d, 1 H, J = 3.5 Hz, H-1 α), 4.74-4.51 (m, 6 H), 4.14 (dd, 1 H, J =9.2, 9.2 Hz), 4.05 (dd, 1 H, J = 9.7, 9.7 Hz), 4.00–3.90 (m, 2 H), 3.85 (dd, 2 H, J = 3.9, 11.0 Hz), 3.74-3.60 (m, 3 H), 3.58-3.38 (m, 4 H), 3.30 (dd, 2 H, J = 7.0, 7.0 Hz), 2.82-2.73 (m, 1 H), 2.66-2.50 (m, 2 H), 2.43-2.30 (m, 2 H), 2.18 (s, 3 H), 1.80-1.60 (m, 4 H), 1.50-1.25 (m, 8 H); ^{13}C NMR (125 MHz, CDCl_3, δ_{C}) 206.2, 173.0, 139.0, 138.7, 138.2, 138.1, 137.7, 128.4(1), 128.4, 128.3(0), 128.3, 128.1, 127.8(8), 127.8(5), 127.7, 127.6(1), 127.6, 127.5, 127.1, 126.7, 96.6 (C-1), 96.5 (C-1), 81.8, 80.4, 79.0, 78.8, 75.2, 74.2, 73.5, 73.4, 73.1, 72.9, 71.0, 70.4, 69.7, 69.0, 68.3, 61.0, 51.5, 37.8, 29.7, 29.4, 29.3, 29.1, 28.9, 27.9, 27.0, 26.7, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₆₀H₇₃N₃O₁₃Na: 1066.5036. Found: 1066.5037.

8-Azidooctyl 2-*O*-[(1*S*)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3,6-di-*O*acetyl-4-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3-di-*O*-benzyl-4-*O*-levulinoyl- α -Dglucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (GLU-9). A mixture of sulfoxide donor GLU-8²² (0.2 g, 0.41 mmol), 1,3,5-trimethoxybenzene (0.1 g, 0.6 mmol), 2,6-di*t*-butyl-4-methyl pyridine (0.17 g, 0.82 mmol), and activated 4 Å molecular sieves (0.13 g) in CH₂Cl₂ (2.7 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.075 mL, 0.44 mmol) was added. After 30 min, the reaction mixture was cooled to

-40 °C and a solution of GLU-7 (0.34 g, 0.33 mmol) in CH₂Cl₂ (1.4 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (10 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (3:2 hexanes–EtOAc) to yield **GLU-9** (0.52 g, 95%) as a foam. R_f 0.25 (3:2 hexanes-EtOAc); $[\alpha]_D$ +82.0 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.80–7.20 (m, 37 H), 6.17 (s, 2 H), 5.66 (d, 1 H, J = 3.6 Hz, H-1 α), 5.59 (dd, 1 H, J = 9.7, 9.7 Hz), 5.56 (d, 1 H, J = 3.5 Hz, H-1 α), 5.04–4.78 (m, 5 H), 4.70-4.42 (m, 9 H), 4.35-4.25 (m, 3 H), 4.25-3.90 (m, 8 H), 3.90-3.82 (m, 10 H), 3.80–3.65 (m, 4 H), 3.55–3.42 (m, 4 H), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 2.99 (dd, 1 H, J = 8.8, 14.1 Hz), 2.80 (dd, 1 H, J = 3.7, 14.1 Hz), 2.62–2.45 (m, 2 H), 2.45–2.36 (m, 2 H) 2.08 (s, 3 H), 2.06 (s, 3 H), 1.76–1.60 (m, 4 H), 1.50 (s, 3 H), 1.46–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1, 171.9, 170.6, 169.3, 161.8, 161.7, 142.2, 139.4, 139.0, 138.7(3), 138.7, 138.0, 137.7, 128.4, 128.3(4), 128.2(9), 128.2(5), 128.1(7), 128.1(6), 128.1, 128.0, 127.8, 127.7, 127.6(0), 127.6, 127.4(3), 127.4(1), 127.2, 127.0(0), 127.0, 126.4, 102.2, 97.3 (C-1), 96.5 (C-1), 96.3 (C-1), 91.0, 84.5, 81.6, 80.1, 79.5, 79.4, 78.8(4), 76.6, 75.1(3), 75.1(0), 73.8, 73.5, 73.0(9), 73.0(5), 72.9, 72.8, 71.3, 70.2, 69.9, 69.8, 68.0, 67.9, 67.6, 63.1, 56.0, 55.4, 51.5, 43.5, 37.9, 30.2, 29.6, 29.4(1), 29.4, 29.2, 28.9, 28.0, 26.8, 26.1, 20.9, 20.7. HRMS (ESI) m/z calcd for (M+Na) C₉₄H₁₁₁N₃O₂₃SNa: 1704.7221. Found: 1704.7197.

8-Azidooctyl 2,3,6-tri-*O*-acetyl-4-*O*-benzyl-α-D-glucopyranosyl-(1→6)-2,3-di-*O*-benzyl-α-*D*-glucopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D-glucopyranoside (GLU-10). To a solution of GLU-9 (0.5 g, 0.3 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added trifluoroacetic acid (1.0 mL) and the mixture was stirred at that temperature for 20 min before being poured into a satd aq NaHCO₃ soln (25 mL) and extracted with CH₂Cl₂ (25 mL). The organic layer was washed with water (15 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was dried under vacuum for 3 h. The resulting product was then dissolved in CH₂Cl₂ (8 mL) and pyridine (2.5 mL), followed by the addition of DMAP (0.1 g, 0.82 mmol) and acetic anhydride (0.5 mL, 5.3 mmol). After stirring overnight, CH₃OH (1.0 mL) was added, and the solution was poured into a satd aq NaHCO₃ soln (20 mL) and extracted with CH₂Cl₂ (25 mL). The organic layer was washed with water (20 mL), dried (Na₂SO₄), filtered and concentrated to a sprup that was poured into a satd aq NaHCO₃ soln (20 mL) and extracted with CH₂Cl₂ (25 mL). The organic layer was washed with water (20 mL), dried (Na₂SO₄), filtered and concentrated to a residue that was purified by chromatography (62:38 hexanes–EtOAc) to yield GLU-10 (0.31 g, 74% over two steps). *R_f* 0.16 (3:2 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.35–7.15

(m, 30 H), 5.66 (d, 1 H, J = 3.6 Hz, H-1 α), 5.59 (dd, 1 H, J = 9.4, 10.1 Hz), 5.04 (d, 1 H, J = 11.6 Hz), 4.98 (d, 1 H, J = 3.7 Hz, H-1 α), 4.94 (dd, 1 H, J = 9.3, 10.2 Hz), 4.86–4.78 (m, 4 H), 4.66 (d, 1 H, J = 12.0 Hz), 4.62–4.50 (m, 8 H), 4.32–4.24 (m, 2 H), 4.14–4.08 (m, 1 H), 4.06–3.88 (m, 6 H), 3.82–3.77 (m, 1 H), 3.73–3.62 (m, 3 H), 3.52 (dd, 1 H, J = 3.5, 7.8 Hz), 3.46–3.40 (m, 2 H), 3.35 (dd, 1 H, J = 2.1, 11.3 Hz), 3.27 (dd, 2 H, J = 7.0, 7.0 Hz), 2.76–2.68 (m, 1 H), 2.62–2.54 (m, 1 H), 2.54–2.44 (m, 1 H), 2.35–2.26 (m, 1 H), 2.11 (s, 3 H), 2.07 (s, 3 H), 1.98 (s, 3 H), 1.93 (s, 3 H), 1.70–1.58 (m, 4 H), 1.44–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 206.3, 171.4, 170.6, 170.5, 169.4, 139.1, 138.7, 138.4(1), 138.4, 137.8, 137.5, 128.5, 128.4, 128.3(4), 128.2(8), 128.2(6), 128.1, 128.0, 127.8(2), 127.8, 127.7, 127.6, 127.5, 127.4, 127.1, 126.8, 96.4 (C-1), 96.1 (C-1), 96.0 (C-1), 81.8, 80.2, 79.3, 78.9, 75.8, 75.1, 74.1, 74.0, 73.3, 73.2, 73.0(2), 73.0, 72.1, 71.2, 70.7, 69.7, 69.5, 69.3, 68.2, 68.1, 66.4, 62.6, 51.5, 37.8, 29.7, 29.3(8), 29.3(7), 29.2, 28.9, 27.9, 26.7, 26.1, 20.9(4), 20.9, 20.7. HRMS (ESI) *m/z* calcd for (M+Na) C₇₉H₉₅N₃O₂₁Na: 1444.6350. Found: 1444.6329.

8-Trifluoroacetamidooctyl 4-O-benzyl- α -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3-di-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranoside (GLU-11). Compound GLU-10 (0.31 g, 0.22 mmol) was dissolved in CH₂Cl₂-CH₃OH (7:1, 8 mL) and 1M methanolic sodium methoxide solution was added until the pH of the solution was 8–9 (as determined by wet pH paper). The reaction mixture was stirred for 5 h, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was purified by chromatography (93:7 CH₂Cl₂-CH₃OH) to yield the expected trisaccharide tetraol (0.25 g, 96%) as a thick syrup; $R_f 0.47$ (9:1 CH₂Cl₂–CH₃OH). A portion of this compound (0.14 g, 0.12 mmol) was dissolved in pyridine (5 mL) and then 20% Pd(OH)₂-C (55 mg) was added and the mixture was stirred under H_2 (1 atm) for 6 h. The solution was filtered and the filter cake and washed with pyridine (2 mL). The combined filtrate was then cooled to 0 °C before trifluoroacetic anhydride (0.4 mL, 2.9 mmol) was added dropwise. After stirring overnight while warming to rt, the solution was diluted with CH_2Cl_2 (25 mL) and poured into a 1:1 solution of water and satd aq NaHCO₃ soln (25 mL). The organic layer was separated, washed with water (20 mL) containing 5–6 drops of ag ammonia for 10 min, and then dried (Na_2SO_4), filtered and concentrated to a syrup that was purified by chromatography (1:3 hexanes-EtOAc) to give GLU-11 (0.14 g, 82% over three steps) as a foam. R_f 0.26 (1:3 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40–7.20 (m, 30 H), 6.40 (br. s, 1 H), 5.70 (d, 1 H, J = 3.7 Hz, H-1 α), 5.10 (d, 1 H, J = 11.7 Hz), 4.96 (d, 1 H, J = 11.4 Hz), 4.89 (d, 1 H, J = 11.4 Hz), 4.83–4.76 (m, 2 H), 4.74–4.65 (m, 4 H), 4.62–4.52 (m, 5 H), 4.14 (dd, 1 H, J = 9.0, 9.0 Hz), 4.07 (dd, 1 H, J = 9.5, 9.5 Hz), 3.96–3.92 (m, 1 H), 3.88–3.62 (m, 11 H), 3.55 (dd, 1 H, J = 11.5 Hz), 3.48–3.34 (m, 7 H), 2.80 (br. s, 1 H), 2.71 (br. s, 1 H), 1.96–1.85 (m, 2 H), 1.75–1.55 (m, 4 H), 1.45–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.1 (q, J = 36.6 Hz), 139.0, 138.6, 138.3, 138.2, 137.8, 128.6, 128.5, 128.4, 128.3, 128.0(9), 128.0(8), 127.9(1), 127.9, 127.8(3), 127.8, 127.6, 127.2, 126.7, 115.9 (q, J = 287.6 Hz), 98.4 (C-1), 96.4 (C-1), 96.1 (C-1), 81.9, 81.2, 80.5, 79.4, 77.2, 75.3(4), 75.3, 74.6, 74.0, 73.4, 73.0, 72.9, 72.8, 72.0(8), 72.0(7), 70.6, 70.2, 69.7, 69.1, 68.3, 67.2, 61.9, 40.0, 29.4, 29.3, 29.1, 29.0, 26.7, 26.1. HRMS (ESI) *m*/*z* calcd for (M+Na) C₇₀H₈₄F₃NO₁₇Na: 1290.5584. Found: 1290.5571.

8-Trifluoroacetamidooctyl α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranoside (13 Trifluoroacetamide). To a solution of GLU-10 (0.135 g, 0.11 mmol) in EtOAc–THF–CH₃OH (15 mL 1:1:1) was added 20% Pd(OH)₂–C (80 mg) and the reaction mixture was stirred under H₂ (1 atm) for 24 h. The reaction mixture was filtered and the filtrate was concentrated to give a syrup that was re-dissolved in distilled water (8 mL) and extracted with CH₂Cl₂ (3 mL × 3). The aqueous phase was filtered using a 13 mm Nylon 0.2 µm syringe filter unit and the filtrate was then lyophilized to give **13 Trifluoroacetamide** (0.07 g, 90%) as a foam. R_f 0.43 (7:3 CH₂Cl₂–CH₃OH); ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.37 (d, 1 H, J = 3.9 Hz, H-1α), 4.94 (d, 1 H, J = 3.5 Hz, H-1α), 4.89 (d, 1 H, J = 3.9 Hz, H-1α), 4.05–3.45 (m, 19 H), 3.42 (dd, 1 H, J = 9.5, 9.5 Hz), 3.30 (dd, 2 H, J = 7.0, 7.0 Hz), 1.66–1.50 (m, 4 H), 1.40–1.27 (m, 8 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 158.8 (q, J = 36.8 Hz), 116.0 (q, J = 285.5 Hz), 99.9 (C-1), 98.1 (C-1), 98.0 (C-1), 77.5, 73.6, 73.1(3), 73.1(0), 71.8, 71.7, 71.5, 71.4, 71.2, 70.3, 69.6, 69.4, 68.5, 65.9, 60.6, 60.5, 39.8, 28.6, 28.3, 28.2, 27.7, 25.8, 25.3.

11. Synthesis of 14

Scheme S15. Synthesis of 14 Trifluoroacetamide. a) GLU-12, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH₂Cl₂, 72%; b) CF₃CO₂H, CH₂Cl₂; then Ac₂O, pyridine, 86%; c) DDQ, CH₂Cl₂, H₂O, 70%; d) GLU-8, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH₂Cl₂, 32%; e) CF₃CO₂H, CH₂Cl₂; then Ac₂O, pyridine, DMAP 63%; f) NaOCH₃, CH₃OH, CH₂Cl₂; then Pd(OH)₂–C, pyridine; then trifluoroacetic anhydride, pyridine, 87%; g) H₂, Pd–C, EtOAc, THF, CH₃OH, 95%.

8-Azidooctyl 2-O-[(1S)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3,6-di-Oacetyl-4-O-naphthyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3-di-O-benzyl-4-O-levulinoyl- α -Dglucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranoside (GLU-13). A mixture of sulfoxide donor GLU-12²² (0.75 g, 1.39 mmol), 1,3,5-trimethoxybenzene (0.35 g, 2.08 mmol),

2,6-di-t-butyl-4-methyl pyridine (0.57 g, 2.8 mmol), and activated 4 Å molecular sieves (0.45 g) in CH₂Cl₂ (9.3 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.26 mL, 1.54 mmol) was added. After 30 min, the reaction mixture was cooled to -40 °C and a solution of GLU-7 (1.16 g, 1.11 mmol) in CH₂Cl₂ (4.6 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (20 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (65:35 hexanes-EtOAc) to yield GLU-13 (1.4 g, 72%) as a foam. $R_f 0.25$ (65:35 hexanes–EtOAc, two runs); $[\alpha]_D$ +70.8 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.80–7.67 (m, 3 H), 7.66–7.63 (m, 1 H), 7.47–7.41 (m, 2 H), 7.40–7.10 (m, 33 H), 6.16 (s, 2 H), 5.68–5.62 (m, 2 H), 5.55 (d, 1 H, J = 3.3 Hz, H-1 α), 4.97 (d, 1 H, J = 11.4 Hz), 4.92–4.84 (m, 2 H), 4.83–4.76 (m, 2 H), 4.73–4.48 (m, 6 H), 4.46–4.25 (m, 5 H), 4.25–4.15 (m, 2 H), 4.15–3.39 (m, 5 H), 3.87 (s, 3 H), 3.84 (s, 6 H), 3.80-3.68 (m, 3 H), 3.61 (dd, 1 H, J = 3.7, 9.5 Hz), 3.54-3.48 (m, 3 H), 3.43 (ddd, 1 H, J =7.2, 9.9, 14.1 Hz), 3.27 (dd, 2 H, J = 7.0, 7.0 Hz), 2.96 (dd, 1 H, J = 8.8, 14.1 Hz), 2.88 (dd, 1 H, J = 3.5, 14.1 Hz), 2.65–2.40 (m, 4 H), 2.05 (s, 3 H), 1.94 (s, 3 H), 1.82 (s, 3 H), 1.78–1.58 (m, 4 H), 1.43–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1, 171.9, 170.6, 169.4, 161.8, 161.7, 142.2, 139.4, 138.9, 138.7, 138.6, 137.9, 135.1, 133.2, 133.0, 128.3, 128.2(3), 128.2, 128.1, 128.0, 127.9, 127.8, 127.7(3), 127.7, 127.6, 127.5(3), 127.5, 127.4(2), 127.4, 127.2, 127.0, 126.8, 126.4, 126.1, 125.9(9), 125.9(6), 102.1, 97.3 (C-1), 96.5 (C-1), 96.2 (C-1), 91.0, 84.5, 81.6, 80.1, 79.5, 79.3, 78.8, 76.5, 75.1, 75.0, 73.8, 73.4, 73.1(2), 73.1, 72.8, 72.7, 71.3, 70.2, 69.9, 69.6, 67.9(3), 67.9, 67.6, 63.1, 56.0, 55.4, 51.5, 43.4, 37.8, 29.4, 29.6, 29.4, 29.3, 29.2, 28.9, 28.0, 26.7, 26.1, 20.7(2), 20.7. HRMS (ESI) m/z calcd for (M+Na) C₉₈H₁₁₃N₃O₂₃SNa: 1754.7378. Found: 1754.7350.

8-Azidooctyl 2,3,6-tri-*O*-acetyl-4-*O*-naphthyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3-di-*O*benzyl-4-*O*-levulinoyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (GLU-14). Prepared from compound GLU-13 (1.4 g, 0.80 mmol) in CH₂Cl₂ (50 mL) and trifluoroacetic acid (2.5 mL) as described for the reaction of GLU-9 to give the corresponding alcohol as a syrup. After drying under vacuum for 2 h, the compound was dissolved in pyridine (20 mL), acetic anhydride (6.0 mL, 63.0 mmol) was added and the mixture was heated at 50 °C overnight. The reaction mixture was cooled to rt, CH₃OH (5 mL) was added, and then the solution was poured into a satd aq NaHCO₃ soln (50.0 mL) and extracted with CH₂Cl₂ (50 mL).

The organic layer was washed with water (25 mL), 12% ag copper sulfate solution (until the pyridine was completely removed as determined by TLC), dried (Na₂SO₄), filtered, and concentrated to a syrup that was purified by chromatography (3:2 hexanes-EtOAc) to yield **GLU-14** (1.02 g, 86% over two steps). R_f 0.33 (3:2 hexanes-EtOAc); $[\alpha]_D$ +92.9 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.85–7.75 (m, 3 H), 7.74–7.72 (m, 1 H), 7.56–7.42 (m, 2 H), 7.40–7.18 (m, 26 H), 5.69 (d, 1 H, J = 3.7 Hz, H-1 α), 5.66 (dd, 1 H, J = 9.4, 9.4 Hz), 5.08-4.92 (m, 3 H), 4.90-4.70 (m, 6 H), 4.65-4.50 (m, 8 H), 4.35-4.25 (m, 2 H), 4.13 (dd, 1 H, J = 9.2, 9.2 Hz), 4.08–4.00 (m, 2 H), 4.00–3.90 (m, 4 H), 3.80–3.68 (m, 2 H), 3.66 (dd, 1 H, J = 3.6, 9.4 Hz), 3.55 (dd, 1 H, J = 5.5, 11.2 Hz), 3.49–3.42 (m, 2 H), 3.38 (dd, 1 H, J = 2.0, 11.2 Hz), 3.29 (dd, 2 H, J = 7.0, 7.0 Hz), 2.80–2.70 (m, 1 H), 2.63–2.45 (m, 2 H), 2.36–2.26 (m, 1 H), 2.11 (s, 3 H), 1.98 (s, 3 H), 1.95 (s, 6 H), 1.74–1.60 (m, 4 H), 1.46–1.34 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.3, 171.5, 170.6, 170.5, 169.5, 139.1, 138.7, 138.4, 138.3, 137.8, 135.0, 133.2, 133.1, 128.3(4), 128.3(3), 128.3, 128.0, 127.8, 127.7(4), 127.7, 127.6, 127.5, 127.4, 127.1, 126.9, 126.8, 126.2, 126.1, 125.9, 96.4 (C-1), 96.1 (C-1), 96.0 (C-1), 81.8, 80.2, 79.3, 78.9, 75.7, 75.1, 74.1, 73.9, 73.3, 73.2, 73.0(0), 73.0, 72.2(1), 72.2(4), 70.7, 69.7, 69.6, 69.3, 68.2, 68.1, 66.4, 62.6, 51.5, 37.8, 29.7, 29.4, 29.1, 28.9, 27.9, 26.7, 26.1, 21.0, 20.7(0), 20.7. HRMS (ESI) *m/z* calcd for (M+Na) C₈₃H₉₇N₃O₂₁Na: 1494.6507. Found: 1494.6507.

8-Azidooctvl 2,3,6-tri-O-acetyl- α -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3-di-O-benzyl-4-Olevulinoyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- α -D-glucopyranoside (GLU-15). To a solution of GLU-14 (1.02 g, 0.69 mmol) in CH₂Cl₂-water (10:1, 88 mL) at rt was added DDQ (0.47 g, 2.0 mmol) and the solution was stirred for 1 h, at which point additional DDQ (0.24 g, 1.0 mmol) was added. After stirring for a total of 2 h, the mixture was diluted with CH_2Cl_2 (20 mL), washed with satd ag NaHCO₃ soln (50 mL) and brine (30 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (52:48 hexane–EtOAc) to yield GLU-15 (0.65 g, 70%) as a foam. R_f 0.28 (1:1 hexanes-EtOAc); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.40-7.25 (m, 18 H), 7.25-7.18 (m, 7 H), $5.67 (d, 1 H, J = 3.6 Hz, H-1\alpha), 5.29 (dd, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 4.93 (d, 1 H, J = 9.6, 9.6 Hz), 5.10-5.02 (m, 2 H), 5.10-5.02 (m,$ H, J = 3.5 Hz, H-1 α), 4.85 (dd, 2 H, J = 3.8, 7.5 Hz), 4.79 (dd, 1 H, J = 3.5, 10.0 Hz), 4.74–4.69 (m, 2 H), 4.64–4.56 (m, 6 H), 4.20–4.10 (m, 3 H), 3.99–3.94 (m, 2 H), 3.89–3.83 (m, 3 H), 3.77 (dd, 1 H, J = 3.6, 9.4 Hz), 3.72 (dd, 1 H, J = 2.1, 11.1 Hz), 3.70-3.64 (m, 2 H), 3.55-3.40 (m, 4 Hz)H), 3.32 (dd, 1 H, J = 1.5, 11.1 Hz), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 2.80–2.72 (m, 1 H), 2.56–2.46 (m, 2 H), 2.27–2.20 (m, 1 H), 2.18 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 1.86 (s, 3 H), 1.72–1.58 (m, 4 H), 1.44–1.33 (m, 8 H); ¹³C NMR (150 MHz, CDCl₃, δ_{C}) 207.2, 171.5, 171.1, 171.0, 170.3, 138.6, 138.3(7), 138.3(5), 138.3, 137.7, 128.4(3), 128.4(0), 128.4, 128.3(1), 128.3, 128.1, 127.9(2), 127.9, 127.7, 127.5(4), 127.5, 127.4, 127.3, 96.4 (C-1), 95.8 (C-1), 95.5 (C-1), 82.2, 80.6, 79.4, 79.2, 75.2, 74.5, 73.3, 73.2(2), 73.2, 73.1, 71.5, 70.8, 70.2, 69.6, 69.5(2), 69.5, 69.3, 69.0, 68.3, 65.8, 62.7, 51.5, 37.6, 29.9, 29.4, 29.3, 29.1, 28.9, 27.8, 26.7, 26.1, 21.0, 20.9, 20.6. HRMS (ESI) *m/z* calcd for (M+Na) C₇₂H₈₉N₃O₂₁Na: 1354.5881. Found: 1354.5877.

8-Azidooctyl 2-*O*-[(1*S*)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3,6-di-*O*acetyl-4-*O*-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-*O*-acetyl-α-D-glucopyranosyl-(1→6)-2,3-di-*O*-benzyl-4-*O*-levulinoyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D-

glucopyranoside (GLU-16). A mixture of sulfoxide donor GLU-8²² (0.14 g, 0.29 mmol), 1.3,5trimethoxybenzene (0.074 g, 0.44 mmol), 2,6-di-t-butyl-4-methyl pyridine (0.12 g, 0.59 mmol), and activated 4 Å molecular sieves (0.15 g) in CH₂Cl₂ (2 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.055 mL, 0.32 mmol) was added. After 30 min, the reaction mixture was cooled to -40 °C and a solution of GLU-15 (0.31 g, 0.24 mmol) in CH_2Cl_2 (1 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (10 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (65:35 hexanes-EtOAc) to yield GLU-16 (0.15 g, 32%) as a foam. R_f 0.39 (1:1 hexanes-EtOAc); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.36-7.12 (m, 35 H), 7.12-7.08 (m, 2 H), $6.20 (s, 2 H), 5.76 (d, 1 H, J = 3.2 Hz, H-1\alpha), 5.68 (d, 1 H, J = 3.5 Hz, H-1\alpha), 5.62 (dd, 1 H, J = 3.2 Hz, H-1\alpha), 5.63 (dd, 1 H, J = 3.2 Hz$ 9.6, 9.6 Hz), 5.37 (dd, 1 H, J = 9.4, 9.4 Hz), 5.08–5.00 (m, 3 H), 4.86–4.79 (m, 3 H), 4.77 (d, 1 H, J = 3.6 Hz, H-1 α), 4.71 (d, 1 H, J = 12.0 Hz), 4.63–4.50 (m, 8 H), 4.50–4.38 (m, 3 H), 4.21-3.95 (m, 6 H), 3.95-3.70 (m, 14 H), 3.70-3.63 (m, 2 H), 3.55-3.35 (m, 4 H), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 3.02 (dd, 1 H, J = 3.7, 13.9 Hz), 2.92 (dd, 1 H, J = 8.3, 13.9 Hz), 2.74–2.66 (m, 1 H), 2.64–2.58 (m, 1 H), 2.49–2.42 (m, 1 H), 2.39–2.32 (m, 1 H), 2.14 (s, 3 H), 2.12 (s, 3 H), 2.04 (s, 3 H), 1.99 (s, 3 H), 1.94 (s, 3 H), 1.70–1.58 (m, 4 H), 1.44–1.34 (m, 8 H), 1.31 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 206.5, 171.2, 170.8, 170.5, 169.7, 169.4, 162.1, 161.6, 142.1, 139.0, 138.7, 138.3, 138.2, 137.8, 137.6, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.6(3), 127.6, 127.6, 127.5, 127.4, 127.2, 126.9, 126.6, 126.3, 101.1, 98.3 (C-1), 96.5 (C-1), 96.2 (C-1), 95.9 (C-1), 91.1(3), 91.1, 85.3, 81.9, 81.2, 80.2, 79.3, 79.0, 76.7, 76.5, 75.0, 73.6, 73.3, 73.0(9),

73.0(7), 72.9(1), 72.9, 71.4, 70.4, 70.3, 69.6, 69.5, 69.3, 69.0, 68.8(1), 68.8, 68.2, 65.7, 63.2, 63.1, 56.1, 56.0, 55.4, 51.5, 43.0, 37.9, 29.7, 29.3(9), 29.3(6), 29.1, 28.9, 27.9, 26.7, 26.1, 21.4, 20.9, 20.8(4), 20.8, 20.7, 20.5. HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₆H₁₂₇N₃O₃₁SNa: 1992.8066. Found: 1992.8046.

8-Azidooctyl 2,3,6-tri-*O*-acetyl-4-*O*-benzyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-acetyl- α -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3-di-*O*-benzyl-4-*O*-levulinoyl- α -D-glucopyranosyl-

 $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- α -D-glucopyranoside (GLU-17). Prepared from GLU-16 (0.2 g, 0.10 mmol) in CH₂Cl₂ (10 mL) and trifluoroacetic acid (0.5 mL) as described for the reaction of compound **GLU-9** to give the corresponding alcohol as a syrup. After drying under vacuum for 2 h, the compound was dissolved in pyridine (7 mL), acetic anhydride (1.0 mL, 10.5 mmol) was added and the solution was heated at 50 °C overnight. The reaction mixture was cooled to rt, CH_3OH (1.0 mL) was added, and then the solution was poured into satd aq NaHCO₃ soln (20 mL) and extracted with CH₂Cl₂ (15 mL). The organic layer was washed with water (15 mL), 12% ag copper sulfate solution (until the pyridine was completely removed as determined by TLC), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (55:45 hexane-EtOAc) to yield GLU-17 (0.11 g, 63% over two steps). R_f 0.37 (1:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.40–7.15 (m, 30 H), 5.66 (d, 1 H, J = 3.5 Hz, H-1 α), 5.54 (dd, 1 H, J = 8.6, 9.7 Hz), 5.46 (dd, 1 H, J = 10.3, 10.3 Hz), 5.36 (d, 1 H, J = 4.0 Hz, H-1 α), 5.10–5.04 (m, 2 H), 5.01 (d, 1 H, J = 3.9 Hz, H-1 α), 4.87–4.78 (m, 4 H), 4.75–4.69 (m, 2 H), 4.65-4.50 (m, 7 H), 4.44 (dd, 1 H, J = 2.2, 12.3 Hz), 4.33 (dd, 1 H, J = 2.0, 12.1 Hz), 4.28-4.18 (m, 2 H), 4.13 (dd, 1 H, J = 8.8, 8.8 Hz), 4.05 (d, 1 H, J = 9.0, 9.0 Hz), 4.0-3.62 (m, 12 H), 3.52-3.41 (m, 3 H), 3.36 (d, 1 H, J = 1.5, 11.7 Hz), 3.29 (dd, 2 H, J = 7.0, 7.0 Hz), 2.84–2.76 (m, 1 H), 2.71–2.62 (m, 1 H), 2.56–2.48 (m, 1 H), 2.43–2.36 (m, 1 H), 2.18 (s, 3 H), 2.14 (s, 3 H), 2.11 (s, 3 H), 2.08 (s, 3 H), 2.02 (s, 3 H), 2.00 (s, 3 H), 1.88 (s, 3 H), 1.73-1.60 (m, 4 H), 1.46–1.34 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.6, 171.2, 171.1, 170.5(2), 170.5, 170.4, 169.5, 139.0, 138.7, 138.3, 137.8, 137.2, 128.6, 128.4(0), 128.4, 128.3(3), 128.3(0), 128.2(4), 128.2, 128.1(3), 128.1, 127.8(4), 127.8(2), 127.7, 127.6(4), 127.6(0), 127.4, 127.1, 126.8, 96.5 (C-1), 96.2 (C-1), 96.0 (C-1), 95.6 (C-1), 81.9, 80.3, 79.2, 78.9, 75.4, 75.0, 74.6, 74.1, 73.3, 73.1, 72.8, 72.7, 72.6, 71.5, 71.4, 70.5, 70.3, 69.7, 69.6, 69.5, 69.2, 68.3, 67.5, 65.8, 62.7, 62.2, 51.5, 37.9, 29.8, 29.3(8), 29.3(6), 29.1, 28.9, 28.0, 26.7, 26.1, 21.0, 20.8(7), 20.8(5), 20.7, 20.5. HRMS (ESI) *m/z* calcd for (M+Na) C₉₁H₁₁₁N₃O₂₉Na: 1732.7195. Found: 1732.7175.

8-Trifluoroacetamidooctyl

4-*O*-Benzyl- α -D-glucopyranosyl- $(1 \rightarrow 4)$ - α -D-

glucopyranosyl- $(1\rightarrow 6)$ -2,3-di-O-benzyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- α -Dglucopyranoside (GLU-18). Compound GLU-17 (0.11 g, 0.06 mmol) was dissolved in CH₂Cl₂-CH₃OH (3:1, 6 mL) and 1M methanolic sodium methoxide solution was added until the pH of the solution was 8-9 (as determined by wet pH paper). The reaction mixture was stirred at rt overnight, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was purified by chromatography (92:8, CH₂Cl₂-CH₃OH) to yield the corresponding deacylated compound (0.085 g) as a thick syrup; R_{ℓ} 0.45 (9:1 CH₂Cl₂-CH₃OH). The compound (0.14 g, 0.09 mmol) was dissolved in pyridine (4 mL), 20% Pd(OH)₂-C (44 mg) was added and the solution was stirred under H₂ (1 atm) for 3 h. The solution was filtered and the filter cake washed with pyridine (2 mL). The combined filtrate was then cooled to 0 °C and then trifluoroacetic anhydride (0.4 mL, 2.9 mmol) was added dropwise. After stirring at rt overnight, the reaction mixture was concentrated to a syrup that was redissolved in CH₂Cl₂-CH₃OH (2:1, 6 mL) and a few drops of aq ammonia solution was added and the solution was stirred for 10 min. The reaction mixture was concentrated to a syrup that was purified by chromatography (11:1 CH₂Cl₂-CH₃OH) to give GLU-18 (0.08 g, 87% over three steps) as a foam. $R_f 0.45$, (9:1 CH₂Cl₂-CH₃OH); ¹H NMR (500 MHz, CDCl₃ + 3 drops of CD_3OD , δ_H) 7.40–7.10 (m, 30 H), 5.73 (d, 1 H, J = 3.5 Hz, H-1 α), 5.12 (d, 1 H, J = 1.7 Hz), 5.04 (d, 1 H, J = 11.6 Hz), 4.90–4.82 (m, 2 H), 4.80–4.70 (m, 4 H), 4.68–4.48 (m, 7 H), 4.08 (dd, 1 H, J = 9.2, 9.2 Hz), 4.02 (dd, 1 H, J = 9.4, 9.4 Hz), 3.90–3.44 (m, 27 H), 3.43–3.20 (m, 7 H), 1.70–1.50 (m, 4 H), 1.40–1.20 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.4 (g, J = 36.8 Hz), 150.1, 145.9, 138.7, 138.4, 138.1, 138.0, 137.9, 137.7, 136.9, 128.4, 128.3(1), 128.3, 128.2, 128.1, 128.0, 127.9(3), 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.2, 126.7(4), 126.7, 124.2, 121.7(4), 121.7, 114.9 (q, J = 287.4 Hz), 101.4 (C-1), 98.2 (C-1), 96.4 (C-1), 96.3 (C-1), 81.9, 81.5, 80.5, 80.0, 79.2, 77.7, 75.6, 74.7, 74.2, 74.0, 73.8, 73.3, 73.2, 72.9, 72.8, 72.4, 71.9, 71.8, 71.0, 70.7, 69.8, 69.5, 68.8, 68.3, 61.7, 60.7, 49.6, 49.4, 49.3, 49.1, 48.9, 48.8, 48.6, 39.9, 39.8, 29.3, 29.2, 29.1, 28.8, 26.6, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₇₆H₉₄F₃NO₂₂Na: 1452.6112. Found: 1452.6106.

8-Trifluoroacetamidooctyl α -D-glucopyranosyl- $(1\rightarrow 4)$ - α -D-glucopyranosyl- $(1\rightarrow 6)$ - α -D-glucopyranosyl- $(1\rightarrow 4)$ - α -D-glucopyranoside (14 Trifluoroacetamide). Prepared from GLU-17 (0.08 g, 0.06 mmol) and 20% Pd(OH)₂-C (65 mg) in EtOAc-CH₃OH-THF: (18 mL,

S95

5:5:8) as described for the synthesis of **13 Trifluoroacetamide** to afford **14 Trifluoroacetamide** (0.047 g, 95%) as a foam. ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.36 (d, 1 H, *J* = 3.9 Hz, H-1 α), 5.33 (d, 1 H, *J* = 4.0 Hz, H-1 α), 4.92 (d, 1 H, *J* = 3.9 Hz, H-1 α), 4.88 (d, 1 H, *J* = 3.9 Hz, H-1 α), 4.02–3.35 (m, 25 H), 3.33–3.25 (m, 3 H), 1.75–1.50 (m, 4 H), 1.40–1.25 (m, 8 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 163.0 (q, *J* = 35.3 Hz, 116.4 (q, *J* = 291.7 Hz 100.1 (C-1), 99.9 (C-1), 97.9 (C-1), 77.9, 77.2, 73.6, 73.5, 73.1, 72.9, 72.8, 71.8(3), 71.8, 71.4, 71.3, 71.1, 70.4, 69.5, 69.4, 68.5, 66.3, 62.5, 60.7, 60.5(3), 60.5, 48.9, 39.8, 28.6, 28.3, 28.2, 27.7, 25.8, 25.3, 22.2. HRMS (ESI) *m/z* calcd for (M+Na) C₃₄H₅₈F₃NO₂₂Na: 912.3295. Found: 912.3287.

12. Synthesis of 15

Scheme S16. Synthesis of 15 Azide. a) TBDPSCI, pyridine; then BzCl, pyridine; b) HF · pyridine, pyridine, THF, 72% over three steps; c) LAM-93, NIS, AgOTf, CH_2Cl_2 , 96%; d) H_2NNH_2 , HOAc, CH_3OH , 93%; e) LAM-24, NIS, AgOTf, CH_2Cl_2 , 71%; f) H_2 , Pd(OH)₂–C EtOAc; then *n*-Bu₄NF, THF, HOAc; then BzCl, pyridine, 48%; g) CAN, THF, H₂O, 92%; h) Cl₃CCN, DBU, CH_2Cl_2 , then LAM-99, TMSOTf, CH_2Cl_2 , 92%; i) NaOCH₃, CH_3OH , CH_2Cl_2 , quant.

p-Methoxyphenyl 2,3-di-O-benzoyl-a-D-arabinofuranoside (LAM-92). To a solution of LAM-90¹ (1.01 g, 3.9 mmol) in pyridine (10 mL) was added added *t*-butyldiphenylsilyl chloride (1.2 mL, 4.7 mmol). The reaction mixture was stirred at rt for 5 h at which point TLC indicated the full conversion of the substrate. The reaction was then cooled to 0 °C and benzoyl chloride (1.4 mL, 11.7 mmol) was added slowly. The reaction mixture was warmed to rt and stirred for 17 h before being diluted with CH₂Cl₂ and then washed with a satd aq NaHCO₃ soln. The organic layer was concentrated and purified by chromatography (8:1 hexanes-EtOAc) to give LAM-91, containing an inseparable impurity, which was carried forward to desilylation. To a solution of LAM-91 in pyridine-THF (1:4, 30 mL) at 0 °C was added HF-pyridine (1.5 mL) dropwise. The reaction mixture was stirred for 16 h while warming to rt before being diluted with EtOAc, poured into a satd aq NaHCO₃ soln and extracted with EtOAc. The organic layer was washed with water, dried (Na₂SO₄), filtered and concentrated to give crude syrup that was purified by column chromatography (3:2, hexanes-EtOAc) to afford LAM-92 (1.35 g, 72% over three steps) as a white foam. $R_f 0.40$ (7:3, hexanes-EtOAc); $[\alpha]_D$ +28.8 (c = 0.4, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.15–8.06 (m, 4 H), 7.65–7.58 (m, 2 H), 7.52–7.45 (m, 4 H), 7.09– 7.04 (m, 2 H), 6.89–6.83 (m, 2 H), 5.83 (s, 1 H, H-1), 5.80 (d, 1 H, J = 1.0 Hz), 5.57 (dd, 1 H, J= 4.0, 1.0 Hz), 4.50 (ddd, 1 H, J = 4.2, 4.0, 3.9 Hz), 4.08-4.01 (m, 2 H), 3.79 (s, 3 H), 2.35-2.30(m, 1 H); 13 C NMR (100 MHz, CDCl₃, δ_{C}) 166.1, 165.2, 155.2, 149.9, 133.6(6), 133.6(2), 129.9, 129.81, 29.1, 128.9, 128.5(7), 128.5(4), 118.3, 114.6, 104.8 (C-1), 84.4, 81.9, 77.6, 62.1, 55.6. HRMS (ESI) calcd for (M+Na) C₂₆H₂₄O₈Na: 487.1363. Found: 487.1366.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)-2-*O*-levulinoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl- α -D-arabinofuranoside (LAM-94). Thioglycoside LAM-93¹ (1.54 g, 3.11 mmol) and alcohol LAM-92 (1.22 g, 2.63 mmol) were dried over P₂O₅ under vacuum for 6 h and then dissolved in CH₂Cl₂ (40 mL) and the resulting solution was cooled to 0 °C. Powdered 4 Å molecular sieves (0.5 g) were added and the suspension was stirred for 30 min at 0 °C before *N*-iodosuccinimide (820 mg, 3.46 mmol) and silver triflate (80 mg, 0.31 mmol) were added. The reaction mixture was stirred for 15 min, neutralized with Et₃N, diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed successively with a satd aq Na₂S₂O₃ soln and water before being dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by chromatography (3:1 hexanes–EtOAc) to afford LAM-94 (2.10 g, 96%) as a white foam. *R*_f0.35 (3:1 hexanes–EtOAc); [α]_D +39.8 (*c* = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ _H) 8.13–8.09 (m, 4 H), 7.62–7.57 (m, 2 H), 7.51–7.46 (m, 4 H), 7.09–7.05 (m, 2 H), 6.87–6.83 (m, 2 H), 5.80 (s, 1 H, H-1), 5.74 (d, 1 H, J = 1.7 Hz), 5.62 (dd, 1 H, J = 4.9, 1.7 Hz), 5.17–5.15 (m, 1 H), 5.01 (d, 1 H, J = 2.1 Hz, H-1), 4.63 (ddd, 1 H, J = 4.9, 4.7, 4.4 Hz), 4.35–4.31 (m, 1 H), 4.10–4.03 (m, 3 H), 3.93–3.89 (m, 2 H), 3.78 (s, 3 H), 2.76–2.72 (m, 2 H), 2.64–2.59 (m, 2 H), 2.21 (s, 3 H), 1.04 (s, 9 H), 0.91 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 206.1, 171.7, 165.5, 165.3, 155.1, 150.3, 133.5, 133.3, 129.9(9), 129.9(3), 129.4, 129.1, 128.5, 128.4, 118.4, 114.6, 106.6 (C-1), 105.1 (C-1), 82.8, 82.2, 81.9, 80.3, 77.3, 73.5, 67.4(8), 67.4(0), 55.6, 37.9, 29.7, 27.8, 27.3, 26.9, 22.6, 20.0. HRMS (ESI) calcd for (M+Na) C₄₄H₅₄O₁₄SiNa: 857.3175. Found: 857.3167.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*benzoyl-α-D-arabinofuranoside (LAM-95). A solution of LAM-94 (2.10 g, 2.45 mmol) and hydrazine monohydrate-HOAc (15 mL 1:2) in THF (25 mL) and CH₃OH (6 mL) was stirred for 1 h. The solvent was removed and the resulting oil was diluted with EtOAc (70 mL). The solution was washed with a satd aq NaHCO₃ soln (70 mL \times 2) and brine (70 mL), dried (Na₂SO₄), filtered and concentrated. The crude residue was purified by cchromatography (4:1 hexanes-EtOAc) to afford LAM-95 (1.72 g, 93%) as a white solid. Rf 0.32 (3:1 hexanes-EtOAc); $[\alpha]_D$ +35.8 (c = 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.14–8.07 (m, 4 H), 7.64–7.59 (m, 2 H), 7.52–7.46 (m, 4 H), 7.10–7.05 (m, 2 H), 6.88–6.84 (m, 2 H), 5.84 (s, 1 H, H-1), 5.72 (d, 1 H, J = 1.5 Hz), 5.68 (dd, 1 H, J = 4.8, 1.5 Hz), 5.02 (d, 1 H, J = 3.3 Hz, H-1), 4.58 (ddd, 1 H, J = 5.0, 4.8, 4.7 Hz), 4.31-4.28 (m, 1 H), 4.17-4.10 (m, 2 H), 4.00-3.96 (m, 2 H),3.92-3.87 (m, 1 H), 3.84 (dd, 1 H, J = 11.3, 5.0 Hz), 3.78 (s, 3 H), 2.90 (d, 1 H, J = 4.0 Hz), 1.06 (s, 9 H), 0.95 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.6, 165.3, 155.2, 150.0, 133.6, 133.5, 129.9, 129.8, 129.2, 129.0, 128.5(7), 128.5(5), 118.3, 114.6, 108.8 (C-1), 104.9 (C-1), 82.3, 82.2, 81.5, 80.3, 81.1, 77.6, 73.8, 68.0, 67.4, 55.6, 27.4, 27.0, 22.6, 20.0. HRMS (ESI) calcd for (M+Na) C₃₉H₄₈O₁₂SiNa: 759.2807. Found: 759.2808.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)-2-*O*-benzyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-*O*-(di-*t*-butylsilanediyl)- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl- α -Darabinofuranoside (LAM-96). To a mixture of LAM-95 (1.81 g, 2.46 mmol), LAM-24¹ thioglycoside (1.49 g, 3.06 mmol), and 4 Å molecular sieves (1.0 g) in CH₂Cl₂ (120 mL) was added *N*-iodosuccinimide (860 g, 3.82 mmol) followed by silver triflate (80 mg, 0.31 mmol) at – 40 °C. After stirring for 30 min, Et₃N was added. The mixture was then diluted with CH₂Cl₂ and

filtered through Celite. The filtrate was washed with a satd aq Na₂S₂O₃ soln, dried (Na₂SO₄), filtered and concentrated to give a crude residue that was purified by chromatography (8:1 hexanes–EtOAc) to afford LAM-96 (1.90 g, 71%) as a white semi-solid. R_f 0.26 (8:1, hexanes-EtOAc); $[\alpha]_D$ -14.1 (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.13-8.06 (m, 4 H), 7.63–7.57 (m, 2 H), 7.50–7.44 (m, 4 H), 7.39–7.36 (m, 2 H), 7.32–7.27 (m, 2 H), 0.5 Hz, 5.64 (dd, 1 H, J = 4.9, 0.5 Hz), 5.08 (d, 1 H, J = 2.8 Hz, H-1), 5.02 (d, 1 H, J = 4.8 Hz, H-1), 4.76–4.74 (m, 2 H), 4.60 (ddd, 1 H, J = 4.9, 4.5, 4.5 Hz), 4.43 (dd, 1 H, J = 9.2, 9.1 Hz), 4.29 (dd, 1 H, J = 9.0, 5.0 Hz), 4.26 (dd, 1 H, J = 9.0, 4.8 Hz), 4.14 (dd, 1 H, J = 7.1, 2.8 Hz), 4.10–4.05 (m, 2 H), 4.02–3.93 (m, 2 H), 3.90–3.85 (m, 2 H), 3.81 (dd, 1 H, J = 9.2, 4.8 Hz), 3.78 (s, 3 H), 3.63 (ddd, 1 H, J = 9.1, 5.0, 4.8 Hz), 1.07 (s, 9 H), 1.04 (s, 9 H), 1.01 (s, 9 H), 0.94 (s, 9 H), 1.01 (s, 9 H), 0.94 (s, 9 H), 0. H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.5, 165.3, 155.2, 150.2, 137.8, 133.5, 133.4, 129.9 (Ar) (×4), 129.3, 129.1, 128.5, 128.4, 128.3, 128.0, 127.6, 118.2, 114.6, 107.4 (C-1'), 105.0, 99.7, 86.6, 82.3, 82.2, 80.6, 80.1, 78.1(6), 78.1(2), 74.1, 74.0, 71.8, 68.6, 67.5, 67.3, 55.6 (OCH₃), 27.5, 27.4, 27.1, 27.0, 22.6, 22.5, 20.1, 20.0. HRMS (ESI) calcd for (M+Na) C₅₉H₇₈O₁₆Si₂Na: 1121.4720. Found: 1121.4724.

2,3,5-tri-O-benzoyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-O*p*-Methoxyphenyl benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (LAM-97). To a solution of LAM-96 (1.90 g, 1.73 mmol) in EtOAc (25 mL) was added 20% Pd(OH)₂-C (100 mg) and the reaction mixture was stirred under H₂ (1 atm) for 12 h. The catalyst was filtered off and the filtrate was concentrated to dryness and redissolved in THF (45 mL). 1M TBAF in THF solution (9 mL) and HOAc (1 mL) was added and the reaction mixture was stirred at rt for 30 h. The resulting mixture was filtered through a short column to remove salts and then benzoylated (20 mL pyridine and 4 mL benzoyl chloride) for 14 h. The reaction mixture was poured into a satd aq NaHCO₃ soln and extracted with CH₂Cl₂. The combined organic layer was washed a satd aq NaHCO₃ soln, dried (Na₂SO₄), filtered and concentrated to give a crude residue that was purified by chromatography (8:1 hexanes-EtOAc) to afford LAM-97 (1.05 g, 48% over three steps) as a white semi-solid. $R_f 0.31$ (2:1 hexanes-EtOAc); $[\alpha]_D + 0.1$ (c = 1.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.10–7.93 (m, 12 H), 7.88–7.85 (m, 2 H), 7.61–7.55 (m, 2 H), 7.52–7.32 (m, 15 H), 7.28–7.20 (m, 4 H), 7.09–7.06 (m, 2 H), 6.86–6.82 (m, 2 H), 5.96 (dd, 1 H, J = 6.6, 5.2 Hz), 5.81 (s, 1 H, H-1), 5.77 (d, 1 H, J = 4.9 Hz, H-1), 5.72 (d, 1 H, J = 1.5 Hz), 5.70 (dd, 1 H, J = 5.1, 4.8 Hz), 5.44–5.39 (m, 2 H), 5.16 (s, 1 H), 4.80 (dd, 1 H, J = 11.7, 4.8 Hz), 4.70 (dd, 1 H, J = 11.7, 7.3 Hz), 4.60–4.55 (m, 3 H), 4.50 (ddd, 1 H, J = 7.3, 5.2, 4.8 Hz), 4.47 (dd, 1 H, J = 11.6, 4.4 Hz), 4.27 (dd, 1 H, J = 11.6, 6.4 Hz), 4.12 (dd, 1 H, J = 11.4, 4.5 Hz), 3.86 (dd, 1 H, J = 11.4, 3.3 Hz), 3.76 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.0, 165.9(5), 165.9(3), 165.6(7), 165.6(1), 165.5, 165.3, 155.1, 150.1, 133.5–128.1, 118.2, 114.6, 105.9 (C-1), 104.9 (C-1), 100.4 (C-), 85.4, 82.4, 82.2, 80.3, 79.3, 78.3, 77.6, 77.1, 76.4, 66.0, 65.8, 64.3, 55.6. HRMS (ESI) calcd for (M+Na) C₇₁H₆₀O₂₁Na: 1271.3519. Found: 1271.3522.

2,3,5-Tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-

arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranose (LAM-98). Prepared from compound LAM-97 (0.4 g, 0.3 mmol) in CH₃CN-H₂O (35 mL 4:1) and CAN (0.9 g, 1.6 mmol) as described for the synthesis of LAM-41, to afford LAM-98 (0.34 g, 92%, 7:3 diastereomeric mixture) as a foam. $R_f 0.18$ (7:3 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10-7.86 (m, 14 H), 7.65–7.33 (m, 17 H), 7.32–7.25 (m, 4 H), 6.00–5.94 (m, 1 H), 5.94–5.91 (m, 0.3 H), 5.81 (d, 0.3 H), 5.76 (d, 0.7 H, J = 4.8 Hz), 5.74–5.70 (m, 0.3 H), 5.60 (d, 0.7 H, J = 3.7 Hz), 5.56 (dd, 0.7 H, J = 1.6, 5.2 Hz), 5.53–5.46 (m, 2 H), 5.45–5.40 (m, 1 H), 5.33–5.32 (m, 0.7 H), 5.19 (s, 0.3 H), 5.16 (s, 0.7 H), 4.79–4.71 (m, 1 H), 4.69–4.45 (m, 6 H), 4.29–4.20 (m, 1.3 H), 4.09-4.03 (m, 1 H), 3.99 (d, 0.3 H, J = 7.4 Hz), 3.87-3.82 (m, 1 H), 3.36 (d, 0.7 H, J = 3.7 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.7, 166.5, 166.3, 166.2, 166.1, 166.0(3), 166.0(0), 165.9(6), 165.9(0), 165.8, 133.9(9), 133.9(4), 133.8(9), 133.8(3), 133.7, 133.5, 133.3, 133.2, 130.3, 130.2(3), 130.2(0), 130.1(4), 130.1(2), 130.0(8), 130.0(4), 129.9(7), 129.9(5), 129.8(6), 129.8(5), 129.7, 129.6(6), 129.6(3), 129.5(7), 129.5(4), 129.5(2), 129.5(0), 129.3, 129.2, 129.1, 128.9, 128.8(9), 128.8(7), 128.7(9), 128.7(0), 128.6(7), 128.6(4), 128.5(6), 128.5(4), 106.7 (C-1), 106.3 (C-1), 101.2 (C-1), 101.1 (C-1), 100.8 (C-1), 95.5 (C-1), 85.9, 85.7, 83.1, 81.9, 81.0, 80.8, 79.9, 79.7, 79.6, 78.7, 78.5, 78.4, 78.2, 78.0, 77.9, 76.8, 76.7(8), 75.7(4), 67.9, 67.1, 66.2, 66.0, 64.7, 64.7. HRMS (ESI) *m/z* calcd for (M+Na) C₆₄H₅₄O₂₀Na: 1165.3100. Found: 1165.3100.

8-Azidooctyl 2,3,5-tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzoyl- α -D-arabinofuranosy

hemiacetal LAM-98 (0.22 g, 0.19 mmol) was prepared using DBU (10 µL) and trichloroacetonitrile (0.1 mL, 1 mmol) as described for the synthesis of LAM-42 (Scheme S7). This was immediately subjected to coupling with alcohol LAM-99¹ (0.25 g, 0.13 mmol) as described for the synthesis of LAM-43, to afford LAM-100 (0.4 g, 92% over two steps) as a foam. $R_f 0.34$ (3:2 hexanes-EtOAc); $[\alpha]_D - 15.3$ (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12–7.99 (m, 18 H), 7.98–7.88 (m, 16 H), 7.88–7.82 (m, 2 H), 7.65–7.57 (m, 3 H), 7.56– 7.21 (m, 46 H), 5.97 (dd, 1 H, J = 5.3, 6.7 Hz), 5.77 (d, 1 H, J = 4.8 Hz), 5.71–5.57 (m, 9 H), 5.55 (d, 1 H, J = 1.5 Hz), 5.52–5.47 (m, 2 H), 5.43–5.38 (m, 5 H), 5.37 (s, 1 H), 5.33–5.31 (m, 1 H), 5.23 (s, 1 H), 5.18–5.14 (m, 1 H), 4.75 (dd, 1 H, J = 4.8, 11.7 Hz), 4.71–4.41 (m, 11 H), 4.28-4.10 (m, 6 H), 4.10-4.02 (m, 1 H), 3.99-3.88 (m, 5 H), 3.85-3.70 (m, 2 H), 3.52 (ddd, 1 H, J = 6.2, 9.4, 12.5 Hz, 3.23 (dd, 2 H, J = 7.0, 7.0 Hz), 1.70–1.49 (m, 4 H), 1.45–1.21 (m, 8 H); ^{13}C NMR (125 MHz, CDCl₃, δ_{C}) 166.3, 166.2(4), 166.2(0), 166.1, 166.0(4), 166.0(0), 165.9(7), 165.9(1), 165.9(0), 165.7, 165.6, 165.5, 134.0, 133.9, 133.8, 133.7, 133.6, 133.5, 133.4, 133.3(2), 133.3(0), 130.4, 130.3(1), 130.3(0), 130.1(7), 130.1(5), 130.1(1), 130.0(7), 130.0(0), 129.9(8), 129.9(1), 129.6(9), 129.6(3), 129.6(0), 129.5(7), 129.5(4), 129.4, 128.9(8), 128.9(1), 128.8, 128.7(9), 128.7(1), 128.6, 106.5 (C-1), 106.3 (C-1), 106.2(7) (C-1), 106.2(4) (C-1), 105.9 (C-1), 100.9 (C-1), 85.7, 82.4, 82.3, 82.2(8), 82.2(0), 82.1, 82.0, 80.9, 79.6, 78.7, 77.9, 77.8, 77.6(3), 77.6(1), 77.6(0), 76.9, 67.7, 66.4, 66.2, 64.7, 51.9, 29.9, 29.7, 29.5, 29.2, 27.1, 26.5. HRMS (ESI) m/z calcd for (M+Na) C₁₆₇H₁₄₉N₃O₅₀Na: 3018.9101. Found: 3018.9145.

8-Azidooctyl β-D-arabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→5)-α-Darabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-Darabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranoside (15 Azide). Prepared from LAM-100 (0.1 g, 0.033 mmol) and 1M sodium methoxide solution as described for the synthesis of 18 Azide, to afford 15 Azide (0.04 g, quantitative) as a fluffy solid. R_f 0.34 (6.5:3.5:0.5 CH₂Cl₂-CH₃OH-water); [α]_D +81.8 (c = 0.1, CH₃OH); ¹H NMR (600 MHz, D₂O, $\delta_{\rm H}$) 5.18 (d, 1 H, J = 2.0 Hz), 5.14 (d, 1 H, J = 4.6 Hz), 5.10–5.07 (m, 5 H), 5.01 (d, 1 H, J = 2.0 Hz), 4.24–4.19 (m, 6 H), 4.19–4.11 (m, 8 H), 4.11–4.03 (m, 4 H), 4.03–3.97 (m, 6 H), 3.94–3.65 (m, 20 H), 3.59 (ddd, 1 H, J = 6.5, 9.9, 13.0 Hz), 3.32 (dd, 2 H, J = 7.0, 7.0 Hz), 1.65–1.58 (m, 4 H), 1.40–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 108.4 (C-1), 108.1 (C-1), 106.6 (C-1), 101.5 (C-1), 87.6, 83.8, 83.2, 83.1, 82.9, 82.6, 81.7, 81.6(9), 77.6(7), 77.6(1), 77.6(0), 77.4, 77.1, 75.7, 75.0, 69.4, 67.8, 67.7, 63.8, 61.5, 52.1, 29.4, 29.1, 29.0, 28.8, 26.7, 25.9. HRMS (ESI) *m/z* calcd for (M+Na) C₄₈H₈₁N₃O₃₃Na: 1250.4644. Found: 1250.4642.

13. Synthesis of 16

Scheme S17. Synthesis of 16 Azide. a) CI_3CCN , DBU, CH_2CI_2 , then LAM-102, TMSOTf, CH_2CI_2 , 69%; b) NaOCH₃, CH_3OH , CH_2CI_2 , quant.

8-Azidooctyl 2,3,5-tri-*O*-benzoyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzoyl-α-Darabinofuranosyl-(1→3)-[2,3,5-tri-*O*-benzoyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*benzoyl-α-D-arabinofuranosyl-(1→5)]-2-*O*-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzoyl-α-D-arabinofuranoside (LAM-103). The trichloroacetimidate derivative of the pentasaccharide hemiacetal LAM-101¹ (0.23 g, 0.13 mmol) was prepared using DBU (10 µL) and trichloroacetonitrile (0.1 mL, 1 mmol) as described for the synthesis of compound LAM-42 (Scheme S7). This was immediately subjected to coupling with LAM-102²³ (0.075 g, 0.09 mmol) using TMSOTf (2 µL) as the activator as described for the synthesis of LAM-43, to afford LAM-103 (0.16 g, 69% over two steps) as a glassy solid. R_f 0.27 (65:35 hexanes–EtOAc); [α]_D–29.9 (c = 0.30, CHCl₃); ¹H NMR (500 MHz,

 $CDCl_3, \delta_H$ 8.08–7.78 (m, 29 H), 7.60–7.10 (m, 46 H), 5.94 (dd, 1 H, J = 5.3, 6.6 Hz), 5.89 (dd, 1 H, J = 5.2, 6.3 Hz), 5.71 (dd, 2 H, J = 5.2, 5.2 Hz), 5.61 (d, 1 H, J = 4.3 Hz, H-1), 5.58 (d, 1 H, J= 1.2 Hz, H-1), 5.55 (d, 1 H, J = 4.7 Hz, H-1), 5.55 (dd, 1 H, J = 4.7, 6.4 Hz), 5.49 (s, 1 H, H-1), 5.43–5.35 (m, 6 H), 5.33–5.29 (m, 1 H), 5.20 (s, 1 H, H-1), 5.09 (s, 1 H, H-1), 4.78–4.70 (m, 2 H), 4.69–4.61 (m, 2 H), 4.58 (dd, 1 H, J = 4.5, 8.1 Hz), 4.56 (d, 1 H, J = 1.3 Hz), 4.52–4.27 (m, 10 H), 4.21 (dd, 1 H, J = 4.6, 11.2 Hz), 4.16–4.02 (m, 3 H), 3.99–3.88 (m, 3 H), 3.76–3.70 (m, 2 H), 3.48 (ddd, 1 H, J = 6.3, 9.5, 12.5 Hz), 3.21 (dd, 2 H, J = 6.9, 6.9 Hz), 1.65–1.52 (m, 4 H), 1.39–1.25 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.9(5), 165.9(3), 165.8, 165.7, 165.6(2), 165.6(4), 165.5, 165.4, 165.3(8), 165.3(3), 165.2, 133.5(2), 133.5(0), 133.4, 133.3(7), 133.3(3), 133.2, 133.1, 133.0, 132.8, 132.7, 129.9, 129.8, 129.7(6), 129.7(4), 129.7(0), 129.6(5), 129.6(0), 129.4, 129.3, 129.2, 129.13, 129.11, 129.07, 129.02, 128.97, 128.8, 128.76, 128.5, 128.4(7), 128.4(4), 128.4(0), 128.3, 128.2(8), 128.2(2), 128.1(7), 128.1(6), 128.1(2), 106.5 (C-1), 105.9 (C-1), 105.8 (C-1), 105.5 (C-1), 105.2 (C-1), 100.3 (C-1), 100.2 (C-1), 84.9, 84.8, 83.4, 82.0, 81.9, 81.8, 81.6, 80.7, 80.6(5), 80.6(2), 79.3, 79.1, 78.1, 78.0, 77.4(8), 77.4(0), 77.3, 77.0, 76.8, 76.5, 67.3, 66.2, 65.8, 65.7, 64.4, 64.2, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₄₈H₁₃₃N₃O₄₄Na: 2678.8154. Found: 2678.8129.

8-Azidooctyl β-D-arabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→3)-[β-Darabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→5)]-α-D-arabinofuranosyl-(1→5)-α-Darabinofuranosyl-(1→5)-α-D-arabinofuranoside (16 Azide). Prepared from compound LAM-103 (0.09 g, 0.03 mmol) and 1M methanolic sodium methoxide solution as described for the synthesis of 18 Azide, to afford 16 Azide (0.037 g, quantitative) as a fluffy solid. $[α]_D$ +53.6 (c =0.2, CH₃OH); ¹H NMR (500 MHz D₂O, δ_H) 5.24 (d, 1 H, J = 1.8 Hz, H-1), 5.17 (d, 1 H, J = 1.7Hz, H-1), 5.14 (d, 1 H, J = 4.6 Hz, H-1), 5.13 (d, 1 H, J = 4.6 Hz, H-1), 5.11 (s, 1 H, H-1), 5.07 (d, 1 H, J = 1.5 Hz, H-1), 5.01 (d, 1 H, J = 2.0 Hz, H-1), 4.32–4.27 (m, 2 H), 4.22–4.17 (m, 3 H), 4.17–3.96 (m, 14 H), 3.96–3.81 (m, 7 H), 3.81–3.75 (m, 5 H), 3.74–3.64 (m, 5 H), 3.60–3.53 (m, 1 H), 3.31 (dd, 2 H, J = 6.9, 6.9 Hz), 1.64–1.56 (m, 4 H), 1.40–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 108.4 (C-1), 108.3 (C-1), 108.1 (C-1), 106.5 (C-1), 106.4 (C-1), 101.6 (C-1), 101.5 (C-1), 87.9, 87.7, 83.8, 83.7, 83.4, 83.1, 82.1, 82.6, 82.5, 81.8, 80.0, 77.5, 77.4, 77.1, 75.7, 75.6, 75.0, 74.9, 69.4, 67.8, 67.3, 67.2, 63.8, 63.7, 61.5, 61.5, 52.1, 29.5, 29.1, 29.0, 28.8, 26.7, 25.9. HRMS (ESI) *m/z* calcd for (M+Na) C₄₃H₇₃N₃O₂₉Na: 1118.4221. Found: 1118.4220.

14. Synthesis of 17

Scheme S18. Synthesis of **17 Azide**. a) TBDMSCI, pyridine; then Ac₂O, pyridine, 91%; b) HF·pyridine, THF, pyridine, 81%; c) TBDPSCI, pyridine, then Ac₂O, pyridine, 96%; d) HF·pyridine, THF, pyridine, 95%; e) **LAM-110**, TMSOTf, CH₂Cl₂, 79% f) NIS, AgOTf, CH₂Cl₂, 86%; g) NaOCH₃, CH₃OH, 86%.

p-Tolyl 2,4-di-*O*-acetyl-3,6-di-*O*-*t*-butyldimethylsilyl-1-thio- α -D-mannopyranoside (LAM-105): To a solution of LAM-104²⁴ (3.0 g, 10.48 mmol) in pyridine (50 mL) was added TBDMSCl (3.47 g, 23.05 mmol). The reaction mixture was stirred at rt for 12 h and then acetic anhydride (1.90 mL, 23.05 mmol) was added and the solution was stirred for another 6 h. The mixture was diluted with CH₂Cl₂ (60 mL), washed with aq HCl (1M, 45 mL), satd aq soln of NaHCO₃, brine and then dried (MgSO₄) and filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (4:1 hexanes–EtOAc) to give LAM-105 (5.70 g, 91%) as a foam. R_f 0.23 (4:1 hexanes–EtOAc); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.41 (d, 2 H, J

= 8.4 Hz), 7.10 (dd, 2 H, J = 0.5, 8.4 Hz), 5.34 (d, 1 H, J = 1.0 Hz, H-1), 5.31 (dd, 1 H, J = 1.5, 3.0 Hz), 5.15 (dd, 1 H, J = 10.0 Hz), 4.26 (ddd, 1 H, J = 3.0, 6.5, 9.5 Hz), 4.06 (dd, 1 H, J = 3.5, 9.0 Hz), 3.75 (dd, 1 H, J = 6.0, 11.0 Hz), 3.68 (dd, 1 H, J = 2.4, 11.0 Hz), 2.32 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 0.89 (s, 9 H), 0.84 (s, 9 H), 0.10 (s, 3 H), 0.09 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H); ¹³C NMR (150.86 MHz, CDCl₃, δ_c) 170.2, 169.6, 138.0, 132.5, 129.9, 129.8, 86.5 (C-1), 73.5, 72.9, 69.9, 69.2, 63.0, 25.9(4), 25.9(1), 25.4, 21.1(1), 21.1(0), 20.9, 18.4, 17.8, -4.8, -5.1, -5.3, -5.4. HRMS (ESI) *m/z* calcd for (M+Na) C₃₉H₅₄O₇SSi₂Na: 745.3128. Found: 745.3127.

p-Tolyl 2,4-di-*O*-acetyl-1-thio-α-D-mannopyranoside (LAM-106). To a solution of LAM-105 (3.5 g, 5.85 mmol) in THF (25 mL) and pyridine (25 mL) at 0 °C was added dropwise 70% HF·pyridine (1.65 mL, 18.38 mmol) over 5 min. The mixture was stirred at rt for 12 h, diluted with EtOAc (70 mL) then a satd aq soln of NaHCO₃ was added. The organic layer was washed with brine, dried (Na₂SO₄) filtered and concentrated to give a residue that was purified by chromatography (1:2 hexanes–EtOAc) to give LAM-106 (1.75 g, 81%) as colorless syrup. R_f 0.19 (1:2 hexanes–EtOAc); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.38–7.35 (m, 2 H), 7.14–7.12 (m, 2 H), 5.48 (d, J = 1.2 Hz, 1 H, H-1), 5.37 (dd, J = 1.2, 3.6 Hz, 1 H), 5.14 (dd, J = 10.2 Hz, 1 H), 4.26 (ddd, J = 2.4, 4.2, 10.2 Hz, 1 H), 4.13 (ddd, J = 3.6, 7.8, 10.2 Hz, 1 H), 3.72–3.63 (m, 2 H), 2.58 (d, J = 7.8 Hz), 2.35 (d, J = 0.6 Hz), 2.33 (s, 3 H), 2.16 (s, 3 H), 2.15 (s, 3 H); ¹³C NMR (150.86 MHz, CDCl₃, δ_c) 171.8, 170.5, 138.4, 132.6, 130.0, 129.0, 128.2, 86.1 (C-1), 73.8, 71.3, 69.8, 68.9, 61.3, 21.1, 20.9, 20.9. HRMS (ESI) *m/z* calcd for (M+Na) C₁₇H₂₂O₇SNa: 393.0983. Found: 393.0975.

8-Azidooctyl 2,3,4-tri-*O*-acetyl-6-*O*-*t*-butyldiphenylsilyl-*a*-D-mannopyranoside (LAM-108). To a solution of LAM-107² (1.05 g, 3.15 mmol) in pyridine (27 mL) was added *t*-butyldiphenylsilyl chloride (0.97 mL, 3.78 mmol). The reaction mixture was stirred at rt for 12 h and then acetic anhydride (1.07 mL, 11.34 mmol) was added and the solution was stirred for another 6 h. The mixture was diluted with EtOAc and washed with aq 1M HCl, a satd aq soln of NaHCO₃, brine dried (MgSO₄) and filtered. After concentration of the filtrate, the resulting residue was purified by chromatography (1:1 hexanes–EtOAc) to give LAM-108 (2.11 g, 96% yield) as a foam. R_f 0.33 (1:1 hexanes–EtOAc); $[\alpha]_D$ +38.2 (c = 0.3, CH₃OH); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.80–7.60 (m, 4 H), 7.50–7.30 (m, 6 H), 5.40–5.27 (m, 2 H), 5.21 (dd, 1 H J = 2.0, 2.8 Hz), 4.82 (d, 1 H, J = 1.6 Hz, H-1), 3.89–3.65 (m, 4 H), 3.43 (ddd, 1 H, J = 6.0, 6.6, 9.6 Hz), 3.24 (dd, 2 H, J = 6.8, 7.2 Hz), 2.12 (s, 3 H), 1.98 (s, 3 H), 1.88 (s, 3 H), 1.66–1.5 (m, 4 H),

1.46–1.24 (m, 8 H), 1.06 (s, 9 H); ¹³C NMR (100.54 MHz, CDCl₃, δ_C) 169.8, 169.7, 169.2, 135.2, 132.5, 132.4, 129.5, 127.4, 96.7 (C-1), 71.0, 69.6, 69.1, 67.6, 66.1, 62.5, 51.0, 28.8, 28.6, 28.4, 26.3, 26.2, 25.6, 20.5, 20.4, 20.2, 18.9. HRMS (ESI) *m/z* calcd for (M+Na) C₃₆H₅₁N₃O₉SiNa: 720.3287. Found: 720.3274.

8-Azidooctyl 2,3,4-tri-*O*-acetyl-α-D-mannopyranoside (LAM-109). To a solution of LAM-108 (1.05 g, 1.51 mmol) in THF (10 mL) and pyridine (10 mL) at 0 °C was added dropwise 70% HF·pyridine (0.32 mL, 3.27 mmol)) over 5 min. The mixture was stirred at rt for 12 h, diluted with EtOAc (25 mL) then a satd aq soln of NaHCO₃ was added carefully. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated. The residue was purified by chromatography (3:1 hexanes–EtOAc) to give LAM-109 (0.66 g, 95%) as a colorless syrup. R_f 0.29 (3:1 hexanes–EtOAc); [α]_D +46.7 (c = 0.9, CDCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 5.40 (dd, 1 H J = 3.6, 10.2 Hz), 5.25–5.21 (m, 2 H), 4.80 (d, 1 H, J = 1.8 Hz, H-1), 3.77 (ddd, 1 H, J = 2.4, 4.2, 9.6 Hz), 3.71–3.58 (m, 3 H), 3.43 (ddd, 1 H, J = 6.6, 6.6, 9.6 Hz), 3.26 (dd, 2 H, J = 6.6, 7.2 Hz), 2.35 (dd, 1 H, J = 6.0, 9.0 Hz), 2.15 (s, 3 H), 2.07 (s, 3 H), 2.00 (s, 3 H), 1.63–1.57 (m, 4 H), 1.39–1.32 (m, 8 H); ¹³C NMR (150.9 MHz, CDCl₃, $\delta_{\rm C}$) 170.8, 170.1, 169.9, 97.6 (C-1), 70.5, 69.8, 68.9, 68.4, 66.6, 61.3, 51.4, 29.2(2), 29.1(7), 29.0, 28.8, 26.6, 26.0, 20.9, 20.7(4), 20.7(2). HRMS (ESI) m/z calcd for (M+Na) C₂₀H₃₃N₃O₉Na: 482.2109. Found: 482.2099.

p-Tolyl 2,3,4,6-tetra-*O*-acetyl-α-D-mannopyranosyl-(1→6)-[2,3,4,6-tetra-*O*-acetyl-α-D-mannopyranosyl-(1→3)]-2,4-di-*O*-acetyl-1-thio-α-D-mannopyranoside (LAM-111). Trichloroacetimidate (LAM-110)²⁴ in CH₂Cl₂ (8 mL) was added to a solution of alcohol LAM-106 (0.36 g, 0.97 mmol) in CH₂Cl₂ (12 mL) containing 4 Å molecular sieves (0.3 g) at –20 °C. A solution of TMSOTF (0.04 mL, 0.21 mmol) in CH₂Cl₂ (1.0 mL) was added dropwise over a period of 5 min. The reaction mixture was then warmed to 15 °C over 45 min and then Et₃N was added. The solution was diluted with CH₂Cl₂ and filtered. The filtrate was concentrated to syrup that was purified by chromatography (1:1 hexanes–EtOAc) to give LAM-111 (1.75 g, 79%) as a foam. R_f 0.21 (4:1 hexanes–EtOAc); [α]_D +73.2 (c = 0.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.34–7.33 (m, 2 H), 7.16–7.13 (m, 2 H), 5.48 (dd, 2 H, J = 1.8, 3.6 Hz), 5.37 (d, 1 H, J = 1.2Hz), 5.31–5.21 (m, 6 H), 5.03–5.02 (m, 2 H), 4.79 (s, 1 H), 4.39 (ddd, 1 H, J = 2.4, 6.0, 9.0 Hz), 4.27–4.23 (m, 2 H), 4.13 (dd, 1 H, J = 3.0, 9.6 Hz), 4.10–3.97 (m, 4 H), 3.80 (dd, 1 H, J = 5.39, 10.8 Hz), 3.52 (dd, 1 H, J = 3.0, 10.54 Hz), 2.31 (s, 3 H), 2.20 (s, 3 H), 2.16 (s, 3 H), 2.15 (s, 3
H), 2.14 (s, 3 H), 2.13 (s, 3 H), 2.08 (s, 3 H), 2.05 (s, 3 H), 2.05 (s, 3 H), 1.98 (s, 3 H), 1.98 (s, 3 H); 13 C NMR (150.86 MHz, CDCl₃, δ_c) 170.7, 170.6, 170.4, 170.0, 169.9, 169.8, 169.7, 169.5(3), 169.5(0), 138.4, 132.5, 130.0, 128.9, 98.9 (C-1), 97.8 (C-1), 86.3 (C-1), 77.0, 76.8, 75.0, 72.3, 70.2, 69.9, 69.9, 69.5, 69.3, 69.1, 69.0, 68.6, 68.4, 68.2, 67.1, 66.0, 62.6, 62.2, 21.1(2), 21.1(0), 20.8(4), 20.8(1), 20.7(2), 20.7(0), 20.7, 20.6(2), 20.5(9). HRMS (ESI) *m/z* calcd for (M+Na) C₄₅H₅₈O₂₅SNa: 1053.288. Found: 1053.2866.

8-Azidooctyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl-(1→6)-[2,3,4,6-tetra-Oacetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$]-2,4-di-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-acetyl-α-D-mannopyranoside (LAM-112). To a solution of LAM-111 (120.01 mg, 0.12 mmol) and LAM-109 (68 mg, 0.15 mmol) in dry CH₂Cl₂ (2.5 ml) was added powdered 4Å MS (500 mg), and the mixture was stirred for 20 min at rt and then cooled to -20 °C. Niodosuccinimide (35.3 mg, 0.16 mmol) and silver triflate (6.31 mg, 0.025 mmol) were added to the mixture. The reaction mixture then slowly warmed to 0 °C over 30 min and then neutralized by the addition of Et₃N. The solids were filtered and washed with CH₂Cl₂. The combined filtrate and washings were successively washed with a satd ag soln of Na₂S₂O₃ and water, dried (Na₂SO₄), filtered and concentrated. The product was purified by chromatography (3:1 hexanes-EtOAc) to give LAM-112 (140.91 mg, 86%) as an oil. $R_f 0.19$ (3:1 hexanes-EtOAc) $[\alpha]_D$ +4.3 (c = 0.60, CDCl₃); ¹H NMR (600 MHz, CDCl₃ $\delta_{\rm H}$) 5.36–5.20 (m, 10 H), 5.06 (dd, 1 H, J = 1.8, 3.0Hz), 5.01 (d, 1 H, J = 1.8 Hz, H-1), 4.90 (d, 1 H, J = 1.8 Hz, H-1), 4.83 (d, 1 H, J = 1.2 Hz, H-1), 4.76 (d, 1 H, J = 1.8 Hz, H-1), 4.31-4.25 (m, 2 H), 4.19 (dd, 1 H, J = 3.0, 9.6 Hz), 4.14-4.06 (m, 2 H), 4.19 (dd, 1 H, J = 3.0, 9.6 Hz), 4.14-4.06 (m, 2 H), 4.14-44 H), 3.98-3.92 (m, 1 H), 3.81-3.74 (m, 3 H), 3.68 (ddd, 1 H, J = 2.39, 4.19, 9.59 Hz), 3.60 (dd, 1 H, J = 2.4, 12.0 Hz), 3.51 (dd, 1 H, J = 3.0, 10.8 Hz), 3.41 (ddd, 1 H, J = 6.6, 6.6, 9.6 Hz), 3.27 (dd, 2 H, J = 6.6, 7.2 Hz), 2.21 (s, 3 H), 2.16 (s, 3 H), 2.15 (s, 3 H), 2.15 (s, 3 H), 2.14 (2.12 (s, 3 H), 2.11 (s, 3 H), 2.05 (s, 6 H), 2.04 (s, 3 H), 2.00 (s, 3 H), 1.99 (s, 3 H), 1.98 (s, 3 H), 1.63–1.57 (m, 5 H), 1.39–1.32 (m, 9 H); ¹³C NMR (150.9 MHz, CDCl₃ δ_C) 170.6, 170.5, 170.3, 170.1, 169.9(9), 169.9(7), 169.9(5), 169.9, 169.8, 169.7(2), 169.6(7), 169.6(2), 169.5(8), 99.1, 97.5, 97.4, 97.3, 75.0, 70.7, 69.9, 69.8, 69.5, 69.4(0), 69.3(9), 69.3, 69.0, 68.6(4), 68.5(7), 68.4, 68.3, 68.1, 66.7, 66.1, 66.0, 65.8, 65.7, 62.3, 62.1, 51.4, 29.6, 29.2(4), 29.2(1), 29.0, 28.8, 26.6, 26.0(0), 25.9(7), 20.9, 20.8(4), 20.7(6), 20.7(4), 20.7(2), 20.7(1), 20.6(8), 20.6(3), 20.5(7). HRMS (ESI) *m/z* calcd for (M+Na) C₅₈H₈₃N₃O₃₄Na: 1388.4750. Found: 1388.4714.

8-Azidooctyl α -D-mannopyranosyl-(1 \rightarrow 6)-[α -D-mannopyranosyl-(1 \rightarrow 3)]- α -Dmannopyranosyl- $(1\rightarrow 6)$ - α -D-mannopyranoside (17 Azide). To a solution of LAM-112 (140.92 mg, 0.103 mmol) in dry CH₃OH (11 mL), was added NaOCH₃ (60 mg, 1.10 mmol) dissolved in 2 mL CH₃OH. The reaction mixture was stirred at rt for 12 h, and then neutralized by the addition of Amberlite IR-120 H⁺ resin. The solution was filtered, concentrated and the resulting residue was purified by chromatography (99:1 EtOAc-CH₃OH) to give 17 Azide (72.6 mg, 86%) as a white solid. $R_f 0.31$ (99:1 EtOAc–CH₃OH); $[\alpha]_D$ +97.7 (c = 0.2, CH₃OH); ¹H NMR (500 MHz, D_2O , δ_H) 5.12 (d, 1 H, J = 1.2 Hz, H-1), 4.92 (d, 1 H, J = 1.2 Hz, H-1), 4.87 (d, 1 H, J = 1.5 Hz, H-1, 4.86 (d, 1 H, J = 1.2 Hz, H-1), 4.10 (dd, 1 H, J = 2.0, 2.0 Hz), 4.04 (dd, 1 HH, J = 1.6, 3.3 Hz), 3.98–3.61 (m, 23 H), 3.54 (ddd, 1 H, J = 5.8, 9.9, 11.6 Hz), 3.29 (dd, 2 H, J = 6.9, 6.9 Hz), 1.65–1.53 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (175 MHz, D₂O, δ_{C}) 103.2 (C-1), 100.6 (C-1), 100.3 (C-1), 100.0 (C-1), 79.5, 74.1, 73.5, 71.7(5), 71.7(1), 71.6, 71.4, 71.2, 70.9, 70.8, 70.4, 68.7, 67.5(9), 67.5(4), 67.5(0), 66.6, 66.5, 66.1, 61.8, 61.7, 52.0, 29.2, 29.0(9), 29.0(3), 28.7, 26.6, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₃₂H₅₇N₃O₂₁Na: 842.3377. Found 842.3380.

15. Synthesis of 18

Scheme S19. Synthesis of pentasaccharide LAM-124, a precursor to 18 Azide. a) FmocCl, pyridine, CH_2Cl_2 , pyridine, 82% (71% LAM-113 and 11% LAM-114); b) LAM-93, NIS, AgOTf, CH_2Cl_2 ; c) H_2NNH_2 ·HOAc, CH_3OH , CH_2Cl_2 90% over two steps; d) LAM-24, NIS, AgOTf, CH_2Cl_2 , 70%; e) Et₃N, CH_2Cl_2 , 81%; f) HF·pyridine, THF, pyridine, 99%; g) Levulinic acid, DCC, DMAP, CH_2Cl_2 , 94%; h) LAM-121, NIS, AgOTf, CH_2Cl_2 , 91%; i) H_2 , Pd(OH)₂–C, EtOAc, CH_2Cl_2 ; then HF·pyridine, THF, pyridine; then BzCl, pyridine, 72%; j) CAN, CH_3CN , H_2O , 91%.

5-O-(9-fluorenylmethoxycarbonyl)-2-O-benzoyl-α-D*p*-Methoxyphenyl arabinofuranoside (LAM-113) and p-Methoxyphenyl 3-O-(9-fluorenylmethoxycarbonyl)-2-**O-benzoyl-α-D-arabinofuranoside (LAM-114)** To a solution of LAM-78¹ (1.8 g, 5.0 mmol) in CH₂Cl₂-pyridine (20:3, 46 mL) at 0 °C under argon was added FmocCl (1.6 g, 6.0 mmol, added in three portions over 90 min). The reaction mixture was maintained at 0-10 °C for 3 h and then warmed to rt and stirred overnight. The reaction mixture was then diluted, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (73:27 hexanes-EtOAc) to yield LAM-113 (2.06 g, 71%) and LAM-114 (0.32 g, 11%) as thick syrups. Data for **LAM-113**: $R_f 0.5$ (3:2 hexanes-EtOAc); $[\alpha]_D$ +68.9 (c = 0.30, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.14–8.03 (m, 3 H), 7.81–7.70 (m, 3 H), 7.64–7.54 (m, 3 H), 7.50–7.36 (m, 4 H), 7.32-7.23 (m, 3 H), 7.11-7.01 (m, 3 H), 6.91-6.77 (m, 3 H), 5.85 (s, 1 H), 5.39 (dd, 1 H, J = 1.2, 3.2 Hz), 4.62–4.49 (m, 3 H), 4.49–4.36 (m, 3 H), 4.31–4.20 (m, 3 H), 3.78 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.9, 155.3, 155.1, 150.2, 143.3, 141.3, 133.9, 129.9, 128.8, 128.6, 127.9, 127.2, 125.2, 120.0, 118.3, 114.7, 104.9 (C-1), 86.4, 81.7, 77.3, 77.0, 76.9, 76.8, 70.2, 66.5, 55.7, 46.7. HRMS (ESI) *m/z* calcd for (M+Na) C₃₄H₃₀O₉Na: 605.1782. Found: 605.1788. Data for LAM-114: $R_f 0.40$ (3:2 hexanes–EtOAc); $[\alpha]_D + 51.2$ (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–8.03 (m, 3 H), 7.82–7.74 (m, 3 H), 7.67–7.57 (m, 3 H), 7.50–7.40 (m, 4 H), 7.37–7.30 (m, 3 H), 7.10–7.04 (m, 3 H), 6.90–6.82 (m, 3 H), 5.77 (s, 1 H), 5.71 (d, 1 H, J= 1.6 Hz), 5.34-5.27 (m, 1 H), 4.56-4.42 (m, 3 H), 4.31 (dd, 1 H, J = 7.3, 7.3 Hz), 4.0 (dd, 1 H, J= 3.3, 12.3 Hz), 3.92 (dd, 1 H, J = 3.7, 12.3 Hz), 3.79 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.3, 155.4, 154.7, 149.9, 143.2, 143.0, 141.3(3), 141.3(2), 133.6(9), 129.9, 128.9, 128.6, 127.9, 127.3, 127.2, 125.2, 125.1, 120.1, 118.5, 114.7, 104.8 (C-1), 83.5, 81.9, 80.2, 77.3, 77.1, 76.8, 70.5, 61.9, 55.7, 46.7. HRMS (ESI) *m/z* calcd for (M+Na) C₃₄H₃₀O₉Na: 605.1782. Found: 605.1784;

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl- α -D-arabinofuranosyl-(1 \rightarrow 3)-5-*O*-(9fluorenylmethoxycarbonyl)-2-*O*-benzoyl- α -D-arabinofuranoside (LAM-116). Alcohol LAM-113 (0.45 g, 0.77 mmol) was glycosylated with LAM-93¹ (0.5 g, 1.0 mmol), powdered 4 Å molecular sieves (0.4 g), *N*-iodosuccinimide (0.25 g, 1.1 mmol) and silver triflate (15 mg, 0.06 mmol) in CH₂Cl₂ (20 mL) as described for the synthesis of LAM-3 to afford the corresponding crude disaccharide (LAM-115) after work up, which was used directly in the next step. *R*_f 0.19 (4:1 hexanes–EtOAc). The crude disaccharide was then dissolved in a solution of CH₂Cl₂– CH₃OH (9:1, 25 mL) and hydrazine acetate (0.25 g, 2.7 mmol) was added. After stirring for 40 min at rt, the reaction mixture was then poured into water and extracted with CH₂Cl₂. The organic layer was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (4:1 hexanes–EtOAc) to yield **LAM-116** (0.66 g, 90% over two steps) as a thick syrup. R_f 0.39 (3:1 hexanes–EtOAc); [α]_D +61.1 (c = 0.40, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.13–8.04 (m, 2 H) 7.80–7.70 (m, 2 H), 7.62–7.50 (m, 3 H), 7.45–7.35 (m, 4 H), 7.35–7.20 (m, 2 H), 7.10–7.01 (m, 2 H), 6.90–6.81 (m, 2 H), 5.78 (s, H), 5.59 (d, 1 H, J = 1.8 Hz, H-1), 5.23 (d, 1 H, J = 3.2 Hz, H-1), 4.60–4.54 (m, 2 H), 4.48–4.28 (m, 6 H), 4.23 (dd, 1 H, J = 7.2, 7.2 Hz), 4.03–3.84 (m, 2 H), 3.92–3.84 (m, 1 H), 3.77 (s, 3 H), 1.06 (s, 9 H), 1.01 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.7, 155.3, 155.1, 150.2, 143.3, 141.3, 133.7, 129.9, 129.0, 128.5, 127.9, 127.2, 125.2, 125.1, 120.0, 118.5, 114.6, 108.4 (C-1), 105.2 (C-1), 83.1, 82.5, 81.5, 81.4, 81.3, 77.3, 77.0, 76.8, 74.0, 70.2, 67.4, 66.2, 55.7, 46.7, 27.5, 27.1, 22.7, 20.1. HRMS (ESI) m/z calcd for (M+Na) C₄₇H₅₄O₁₃SiNa: 877.3225. Found: 877.3225.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)-2-*O*-benzyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-*O*-(Di-*t*-butylsilanediyl)- α -D-arabinofuranosyl-(1 \rightarrow 3)-5-*O*-(9-

fluorenylmethoxycarbonyl)-2-O-benzoyl- α -D-arabinofuranoside (LAM-117) and р-Methoxyphenyl 3,5-O-(Di-*t*-butylsilanediyl)-2-O-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-O-(Di-*t*-butylsilanediyl)- α -D-arabinofuranosyl-(1 \rightarrow 3)-5-O-(9-fluorenylmethoxycarbonyl)-2-O-benzoyl-α-D-arabinofuranoside (LAM-117α). Alcohol LAM-116 (0.63 g, 0.7 mmol) and LAM-24¹ (0.46 g, 0.95 mmol) were dried under vacuum in the presence of P_2O_5 for 6 h. After drying, CH₂Cl₂ (24 mL) was added followed by powdered 4 Å molecular sieves (0.4 g) and the solution was stirred for 20 min at rt. The reaction mixture was then cooled to -40 °C and Niodosuccinimide (0.21 g, 0.95 mmol) and silver triflate (24 mg, 0.09 mmol) were added. After stirring the reaction mixture for 20 min at -40 °C, Et₃N was added until the pH of the solution was slightly basic as determined by wet pH paper. The reaction was diluted with CH₂Cl₂ (20 mL) and filtered through Celite. The filtrate was washed with a satd aq soln of Na₂S₂O₃ (20 mL), water (20 mL) and brine (20 mL). The organic layer was separated, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (9:1 hexanes-EtOAc) to yield **LAM-117** (0.64 g, 80%, 1:7 α : β mixture) as a thick syrup. Data for LAM-117: R_f 0.37 (85:15)

hexanes-EtOAc); $[\alpha]_D + 1.9$ (c = 0.30, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–8.05 (m, 2 H), 7.79–7.74 (m, 2 H), 7.62–7.50 (m, 3 H), 7.47–7.35 (m, 6 H), 7.33–7.19 (m, 6 H), 7.07–7.00 (m, 2 H), 6.86–6.80 (m, 2 H), 5.79 (s, 1 H), 5.54 (d, 1 H, J = 1.0 Hz), 5.36 (d, 1 H, J = 3.0 Hz), 5.20 (d, 1 H, J = 4.8 Hz), 4.87–4.80 (m, 2 H), 4.58–4.47 (m, 3 H), 4.47–4.34 (m, 3 H), 4.34–4.27 (m, 3 H), 4.26–4.19 (m, 2 H), 4.12 (dd, 1 H, J=7.7, 9.3 Hz), 4.03–3.90 (m, 4 H), 3.80–3.70 (m, 4 H), 1.09 (s, 9 H), 1.05 (s, 9 H), 1.01 (s, 9 H), 1.00 (s, 9 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 165.5, 155.2, 155.1, 150.1, 143.3, 141.3, 141.2, 137.9, 133.6, 129.9, 129.1, 128.5, 128.3, 127.9, 127.9, 127.6, 127.2, 125.2, 125.2, 120.1, 120.04, 118.3, 114.6, 106.9 (C-1), 105.0 (C-1), 99.6 (C-1) 1), 85.9, 82.7, 81.8, 81.8, 80.7, 79.9, 78.0, 74.3, 74.2, 71.8, 70.2, 68.8, 67.4, 66.3, 55.7, 46.7, 27.6, 27.5, 27.4, 27.2, 27.1(5), 27.1(1), 22.6(3), 22.6(0), 20.1(5), 20.1(0); HRMS (ESI) *m/z* calcd for (M+Na) C₆₇H₈₄O₁₇Si₂Na: 1239.5139. Found: 1239.5138. Data for LAM-117α: R_f 0.47 (85:15 hexanes-EtOAc); $[\alpha]_D$ +51.4 (c = 0.40, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12-8.06 (m, 2 H), 7.79–7.75 (m, 2 H), 7.63–7.51 (m, 3 H), 7.45–7.35 (m, 8 H), 7.33–7.25 (m, 3 H), 7.08–7.03 (m, 2 H), 6.87–6.81 (m, 2 H), 5.79 (s, 1 H), 5.63 (d, 1 H, J = 1.1 Hz), 5.41 (d, 1 H, J = 1.1 Hz) 2.6 Hz), 5.28 (d, 1 H, J = 2.8 Hz), 4.79 (ABq, 2 H, J = 12.0 Hz), 4.60–4.51 (m, 2 H), 4.47–4.31 (m, 6 H), 4.23 (dd, 1 H, J = 7.4, 7.4 Hz), 4.17–4.04 (m, 5 H), 3.96–3.86 (m, 3 H), 3.78 (s, 3 H), 1.08 (s, 9 H), 1.06 (s, 9 H), 1.02 (s, 9 H), 1.01 (s, 9 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 165.3, 155.1(2), 155.1(0), 150.2, 143.3, 141.3, 137.9, 133.6, 129.9, 129.2, 128.5, 128.4, 127.9(1), 127.9(0), 127.8, 127.7, 127.2, 125.2, 125.2, 120.0(6), 120.0(5), 118.3, 114.6, 107.5 (C-1), 106.2 (C-1), 105.3 (C-1), 87.9, 87.7, 82.0, 81.5, 81.4, 81.1(2), 81.1(0), 74.0, 73.3, 71.9, 70.2, 67.6, 67.5, 66.5, 55.7, 46.7, 27.5(2), 27.5(0), 27.2, 27.1, 22.7, 22.6, 20.1(3), 20.1(1).

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)-2-*O*-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-*O*-(Di-*t*-butylsilanediyl)-α-D-arabinofuranosyl-(1→3)-2-*O*-benzoyl-α-Darabinofuranoside (LAM-118). To a solution of LAM-117 (0.72 g, 0.59 mmol) in CH₂Cl₂ (20 mL) at rt was added Et₃N (0.49 mL, 3.5 mmol) and the solution was stirred overnight. The reaction mixture was then directly concentrated and the residue was purified by chromatography (3:1 hexanes–EtOAc) to yield LAM-118 (0.48 g, 81%) as a foam. R_f 0.30 (3:1 hexanes–EtOAc); [α]_D +6.3 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 8.04–7.98 (m, 2 H), 7.61–7.56 (m, 1 H), 7.46–7.39 (m, 4 H), 7.32–7.19 (m, 3 H), 7.04–6.99 (m, 2 H), 6.85–6.81 (m, 2 H), 5.73 (s, 1 H), 5.51 (s, 1 H), 5.32 (d, 1 H, J = 2.7 Hz), 5.19 (d, 1 H, J = 4.6 Hz), 4.82 (d, 1 H, J = 4.2 Hz), 4.49 (dd, 1 H, J = 9.2, 9.2 Hz), 4.40–4.36 (m, 1 H), 4.35–4.25 (m, 3 H), 4.20 (dd, 1 H, J = 2.6, 7.5 Hz), 4.11 (dd, 1 H, J = 8.1, 8.1 Hz), 4.02–3.87 (m, 6 H), 3.84–3.69 (m, 5 H), 1.08 (s, 9 H), 1.04 (s, 9 H), 1.01 (s, 9 H), 1.0 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 165.4, 155.2, 150.1, 137.9, 133.6, 129.8, 129.1, 128.5, 128.3, 127.9, 127.6, 118.4, 114.6, 106.9 (C-1), 104.9 (C-1), 99.5 (C-1), 85.8, 83.9, 83.3, 81.7, 80.6, 79.8, 78.0, 74.3, 74.2, 71.7, 68.8, 67.4, 61.6, 55.7, 27.6, 27.4, 27.2, 27.1, 27.0(9), 22.6(2), 22.6(0), 20.1, 20.1. HRMS (ESI) *m/z* calcd for (M+Na) C₅₂H₇₄O₁₅Si₂Na: 1017.4458. Found: 1017.4463.

p-Tolyl 2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzoyl-1-thio-α-Darabinofuranoside (LAM-120). Prepared from compound LAM-119²³ (1.45 g, 1.4 mmol) and HF ·pyridine (1.0 mL) in THF–pyridine (35 mL, 2.5:1) as described for the synthesis of LAM-26 to afford LAM-120 (1.1 g, 99%) as a foam. R_f 0.15 (3:1 hexanes–EtOAc); [α]_D +38.3 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 8.12–8.0 (m, 6 H), 7.96–7.91 (m, 3 H), 7.63–7.56 (m, 3 H), 7.54–7.43 (m, 7 H), 7.42–7.36 (m, 3 H), 7.31–7.25 (m, 3 H), 7.12–7.07 (m, 3 H), 5.77–5.69 (m, 3 H), 5.64 (d, 1 H, J = 1.2 Hz), 5.45 (d, 1 H, J = 4.7 Hz), 5.4 (s, 1 H), 4.71 (dd, 1 H, J = 4.2, 7.6 Hz), 4.48 (dd, 1 H, J = 4.0, 8.3 Hz), 4.23 (dd, 1 H, J = 4.3, 11.3 Hz), 4.04–3.88 (m, 3 H), 2.34–2.21 (m, 4 H); ¹³C NMR (125 MHz, CDCl₃, δ _C) 166.1, 165.6, 165.3, 165.1, 137.9, 133.6, 133.5, 133.3, 132.6, 129.9, 129.8(7), 129.8(3), 129.8(1), 129.1(4), 129.1(1), 128.9(8), 128.9(5), 128.5, 128.3, 105.8 (C-1), 91.5 (C-1), 83.7, 82.1, 81.9, 77.7, 77.5, 65.9, 62.3, 21.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₅H₄₀O₁₂SNa: 827.2132. Found: 827.2131.

p-Tolyl 5-*O*-levulinoyl-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl-1-thio-α-D-arabinofuranoside (LAM-121). To a solution of LAM-120 (1.08 g, 1.3 mmol), levulinic acid (0.21 mL, 2.0 mmol), and DMAP (82 mg, 0.67 mmol) in CH₂Cl₂ (32 mL) was added DCC (0.42 g, 2.0 mmol) in one portion and the solution was stirred at rt for 1 h. The reaction mixture was filtered through Celite and the filter cake was washed with a minimum amount of CH₂Cl₂. The filtrate was washed with a satd aq NaHCO₃ soln and brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated to give a residue that was purified by chromatography (7:3, hexane–EtOAc) to afford LAM-121 (1.14 g, 94%) as a white foam. *R*_f 0.21 (7:3, hexane–EtOAc); [α]_D +44.1 (*c* = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12–8.05 (m, 4 H), 8.02–7.99 (m, 3 H), 7.95–7.90 (m, 3 H), 7.63–7.57 (m, 3 H) 7.55–7.42 (m, 8 H), 7.42–7.36 (m, 3 H), 7.30–7.23 (m, 3 H), 7.12–7.06 (m, 3 H), 5.75–5.70 (m, 3 H), 5.60 (d, 1 H, *J* = 1.0 Hz) 5.43–5.39 (m, 3 H), 4.72 (dd, 1 H, *J* = 4.1, 7.6 Hz), 4.62–4.53 (m, 3 H), 4.40 (dd, 1 H, *J* = 5.4, 11.8 Hz), 4.25 (dd, 1 H, *J* = 4.3, 11.3 Hz), 3.98 (dd, 1 H, *J* = 3.1, 11.3 Hz), 2.75–2.69 (m,

3 H), 2.63–2.56 (m, 3 H), 2.30 (s, 3 H), 2.13 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 206.3, 172.4, 165.7, 165.5, 165.3, 165.1, 137.9, 133.6, 133.5(4), 133.5(1), 133.3, 132.6, 130.1, 129.9, 129.8(7), 129.8(3), 129.8(1), 129.1(3), 129.1(1), 128.9, 128.6, 128.5(4), 128.5(2), 128.3, 106.0 (C-1), 91.6 (C-1), 82.1, 81.9, 81.5, 81.2, 77.6, 77.5, 77.3, 77.1, 76.8, 66.0, 63.6, 37.9, 29.8 (6), 27.8(5), 21.12. HRMS (ESI) *m/z* calcd for (M+Na) C₅₀H₄₆O₁₄SNa: 925.2500. Found: 925.2498.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl)-2-*O*-benzyl-β-D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-*O*-(Di-*t*-butylsilanediyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[5-*O*-levulinoyl-2,3-di-*O*benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-Obenzoyl-α-D-arabinofuranoside (LAM-122). Prepared from alcohol LAM-118 (0.44 g, 0.44 mmol), thioglycoside LAM-121 (0.52 g, 0.58 mmol), powdered 4 Å molecular sieves (0.35 g), N-iodosuccinimide (0.13 g, 0.58 mmol) and silver triflate (15 mg, 0.06 mmol) in CH₂Cl₂ (20 mL) as described for the synthesis of LAM-3 to afford LAM-122 (0.71 g, 91%) as a foam. R_f 0.26 (7:3 hexanes-EtOAc); $[\alpha]_D$ +6.3 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.11-8.05 (m, 3 H), 8.03-7.97 (m, 4 H), 7.94-7.88 (m, 4 H), 7.63-7.58 (m, 1 H), 7.54-7.34 (m, 13 H), 7.33-7.20 (m, 7 H), 7.02–6.96 (m, 3 H), 6.79-6.73 (m, 3 H), 5.74 (s, 1 H), 5.64–5.53 (m, 4 H) 5.43 (s, 1 H), 5.41 (d, 1 H, J = 4.4 Hz), 5.36 (s, 1 H), 5.30 (s, 3 H), 5.28 (d, 1 H, J = 3.1 Hz), 5.20 (d, 1 H, J = 4.7 Hz), 4.83 (ABq, 3 H, J = 12.5 Hz), 4.66–4.36 (m, 6 H), 4.30 (dd, 1 H, J = 5.1, 9.0 Hz), 4.25–4.14 (m, 3 H), 4.07–3.94 (m, 4 H), 3.94–3.69 (m, 7 H), 2.74–2.66 (m, 3 H), 2.63–2.55 (m, 3 H), 2.13 (s, 3 H), 1.08 (s, 9 H), 1.02 (s, 9 H), 1.01 (s, 9 H), 0.96 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 206.2, 172.44, 165.6(2), 165.6(0), 165.4, 165.2, 165.1, 155.0, 150.2, 138.0, 133.6, 133.4, 133.3, 133.2(8), 129.9, 129.7(9), 129.7(3), 129.2, 129.0(7), 129.0(6), 128.9, 128.6, 128.5, 128.4(8), 128.3(7), 128.3(1), 128.2(9), 128.2(4), 127.9, 127.6, 118.2, 114.6, 106.5 (C-1), 106.1 (C-1), 106.0 (C-1), 105.1 (C-1), 99.4 (C-1), 85.6, 82.9, 82.6, 82.3, 81.5, 81.4, 81.3, 81.2, 80.6, 79.7, 78.00 77.6, 76.7, 74.3, 74.2, 71.7, 68.8, 67.4, 65.9, 65.3, 63.6, 55.6, 37.9, 29.8, 27.8, 27.6, 27.4, 27.2, 27.1, 22.6, 20.1, 20.0. HRMS (ESI) m/z calcd for (M+Na) C₉₅H₁₁₂O₂₉Si₂Na: 1795.6720. Found: 1795.6723.

p-Methoxyphenyl 2,3,5-tri-*O*-benzoyl-β-D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-*O*-benzoyl-α-D-arabinofuranosyl-(1 \rightarrow 3)-[5-O-levulinoyl-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1 \rightarrow 5)]-2-*O*-benzoyl-α-D-arabinofuranoside (LAM-123). To a solution of LAM-122 (0.68 g, 0.38 mmol) in EtOAc–THF

(3:1, 12 mL) was added 20% Pd(OH)₂-C (70 mg) and the solution was stirred under H₂ (1 atm) for 14 h. The catalyst was then filtered and the filtrate concentrated to a syrup that was dried under vaccum for 2 h. The residue was then dissolved in THF-pyridine (15 mL, 2:1), cooled to 0 °C and 70% HF pyridine (0.3 mL) was added. The reaction mixture was then warmed to rt and stirred for 20 h before being diluted with a solution of DMF-pyridine-EtOAc (25 mL, 15:5:5). Solid NaHCO₃ was added in portions with vigorous stirring until the solution became neutral (~ 2 h). The reaction mixture was then filtered and the solids were washed with DMF-pyridine-EtOAc (20 mL, 15:5:5). The combined organic phase was concentrated under vacuum to give a syrup that was quickly filtered through a short silica gel column (9:1 CH₂Cl₂-CH₃OH). The fractions containing the pentasaccharide were concentrated to give a syrup that was dried under vacuum for 2 h and then dissolved in pyridine (9 mL) and cooled to 0 °C. Benzoyl chloride (0.3 mL, 2.4 mmol) was added and the resulting mixture was stirred at rt for 12 h, before CH₃OH (0.4 mL) was added. The solution was stirred for another 20 min, diluted with CH₂Cl₂ and poured into a satd aq NaHCO₃ soln. The organic layer was washed with water, dried (Na₂SO₄), filtered and concentrated to give a syrup that was purified by chromatography (3:2 hexanes-EtOAc) to afford LAM-123 (0.53 g, 72% over three steps) as a syrup. R_f 0.28 (3:2, hexanes–EtOAc); $[\alpha]_D$ +9.1 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.10–8.02 (m, 4 H), 8.02–7.92 (m, 10 H), 7.92-7.85 (m, 6 H), 7.62-7.56 (m, 3 H), 7.54-7.33 (m, 16 H), 7.31-7.21 (m, 12 H), 6.99-6.94 (m, 3 H), 6.76–6.70 (m, 3 H), 5.95 (dd, 1 H, J = 5.2, 6.4 Hz), 5.81 (d, 1 H, J = 4.8 Hz), 5.72 (s, 1 H), 5.60 (d, 1 H, J = 4.8 Hz), 5.58–5.52 (m, 3 H), 5.49 (d, 1 H, J = 1.6 Hz, H-1), 5.45 (s, 1 H, H-1), 5.43 (dd, 1 H, J = 2.0, 4.4 Hz), 5.38 (d, 1 H, J = 4.3 Hz, H-1), 5.36 (s, 1 H, H-1), 5.29 (s, 1 H, H-1), 4.81 (dd, 1 H, J = 4.5, 11.7 Hz), 4.72 (dd, 1 H, J = 7.6, 11.7 Hz), 4.67 (d, 1 H, J = 1.9 Hz), 4.59–4.41 (m, 7 H), 4.38 (ddd, 3 H, J = 2.7, 4.9, 11.4 Hz), 4.16 (dd, 1 H, J = 6.6, 11.6 Hz), 4.09 (dd, 1 H, J = 4.0, 11.3 Hz), 4.02 (dd, 1 H, J = 4.5, 11.6 Hz), 3.88-3.80 (m, 3 H), 3.72 (s, 3 H),2.75–2.66 (m, 3 H), 2.61–2.53 (m, 3 H), 2.12 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.3, 172.4, 166.0, 165.9, 165.8, 165.6, 165.5, 165.43(C=O), 165.1, 165.0, 155.0, 150.3, 133.6, 133.4, 133.3, 133.2(7), 133.2(4), 132.9, 132.8, 130.0, 129.9, 129.8(6), 129.7(8), 129.7(6), 129.7(3), 129.6(4), 129.6(2), 129.2, 129.1, 129.0(4), 129.0(2), 128.9, 128.8, 128.5(4), 128.5(0), 128.4(7), 128.4(4), 128.4(3), 128.3(7), 128.3(3), 128.2(8), 128.2(1), 128.2(0), 118.4, 114.5, 106.0 (C-1), 105.9 (C-1), 105.3 (C-1), 105.1 (C-1), 100.3 (C-1), 84.8, 83.1, 82.5, 82.3, 81.5, 81.4, 81.1, 80.9,

80.8, 79.5, 78.1, 77.6, 77.5, 76.9, 76.6, 65.8, 65.8, 65.6, 64.3, 63.61, 55.6, 37.8, 29.8, 27.8. HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₇H₉₄O₃₄Na: 1945.5518. Found: 1945.5514.

2,3,5-Tri-O-benzoyl- β -D-arabinofuranosyl- $(1 \rightarrow 2)$ -3,5-di-O-benzoyl- α -Darabinofuranosyl- $(1 \rightarrow 3)$ -[5-O-levulinoyl-2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranose (LAM-124). To a solution of LAM-123 (0.25 g, 0.13 mmol) in CH₃CN-H₂O (18 mL, 8:1) at 0 °C was added CAN (0.36 g, 0.66 mmol) and the solution was stirred for 30 min. The reaction mixture was diluted with EtOAc and brine. The EtOAc layer was separated and the aqueous phase was extracted twice with EtOAc. The combined organic layer was washed with water, satd aq NaHCO₃ soln, dried (Na₂SO₄), and concentrated to give a residue that was purified by chromatography (1:1, hexanes-EtOAc) to afford LAM-124 (0.22 g, 3:2 diastereomeric mixture, 91%) as a syrup. $R_f 0.16$ (3:2 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–7.86 (m, 17 H), 7.63–7.21 (m, 27 H), 5.99–5.89 (m, 0.7 H), 5.82–5.77 (m, 0.6 H), 5.73–5.49 (m, 5 H), 5.47-5.22 (m, 6 H), 5.12 (dd, 0.3 H, J = 4.6, 6.2 Hz) 4.85-4.67 (m, 2.4 H), 4.66-4.35 (m, 10 H),4.22-3.96 (m, 4.3 H), 3.95-3.79 (m, 3 H), 3.31 (s, 0.3 H), 2.74-2.66 (m, 3 H), 2.62-2.54 (m, 3 H), 2.12 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.3, 172.5, 165.9(7), 165.9(4), 165.8(6), 165.8(0), 165.7(7), 165.7(5), 165.7(3), 165.7(2), 165.6(9), 165.6(6), 165.6(3), 165.5(5), 165.5(0), 165.4(1), 165.4(0), 165.1(6), 165.1(4), 165.1(0), 133.6(4), 133.6(1), 133.5, 133.4, 133.3(6), 133.3(1), 133.2, 132.9(9), 132.9(4), 132.8(9), 132.8(7), 129.9, 129.8(8), 129.8(3), 129.7(8), 129.7(5), 129.7(0), 129.6(6), 129.6(4), 129.3, 129.1(9), 129.1(3), 129.1(2), 129.0(9), 129.0(4), 129.0(0), 128.9(5), 128.9(3), 128.8, 128.7(6), 128.7(0), 128.6, 128.5, 128.4(9), 128.4(7), 128.4(4), 128.4(0), 128.3(8), 128.3(2), 128.2(7), 128.2(3), 106.3 (C-1), 106.0 (C-1), 105.9 (C-1), 105.8 (C-1), 105.1 (C-1), 104.9 (C-1), 100.9 (C-1), 100.4 (C-1), 100.2 (C-1), 95.0 (C-1), 84.9, 84.7, 82.9, 82.1, 82.0, 81.9, 81.6, 81.5, 81.2, 81.1, 80.9(6), 80.9(0), 80.6, 79.5, 79.4(7), 79.4(0), 79.2, 78.1, 77.9(8), 77.9(0), 77.8, 77.7, 77.6(5), 77.6(0), 77.0, 76.8, 76.6, 66.7, 66.2, 66.0, 65.9, 65.7(2), 65.7(0), 64.3, 64.2, 63.6, 37.9, 29.8, 27.9. HRMS (ESI) m/z calcd for (M+Na) C₁₀₀H₈₈O₃₃Na: 1839.5100. Found: 1839.5091.

Scheme S20. Synthesis of 18 Azide. a) Cl_3CCN , DBU, CH_2Cl_2 ; then LAM-2, TMSOTf, CH_2Cl_2 , 91%; b) H_2NNH_2 ·HOAc, CH_3OH , CH_2Cl_2 , 90%; c) LAM-119, NIS, AgOTf, CH_2Cl_2 ; d) HF·pyridine, THF, pyridine; 74% over two steps; e) Cl_3CCN , DBU, CH_2Cl_2 ; f) LAM-127, TMSOTf, CH_2Cl_2 , 69% over two steps; g) NaOCH₃, CH_3OH , CH_2Cl_2 , quant.

8-Azidooctyl 2,3,5-tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[5-*O*-levulinoyl-2,3-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -

2,3-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl-a-D-arabinofuranoside (LAM-125). To a solution of alcohol LAM-124 (0.21 g, 0.11 mmol) and trichloroacetonitrile (0.1 mL, 1 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added DBU (10 µL). The reaction mixture was stirred at 0 °C for 30 min and then was warmed to rt over 30 min. The solvent was evaporated and a solution of dry hexane-toluene (2:3, 10 mL) was added. After being stirred for 5 min, this solution was quickly filtered through a short column of silica gel and Na_2SO_4 (~1:1). The resulting solution was then concentrated to yield the trichloroacetimidate derivative, which was dried under vacuum for 1 h and used for glycosylation without any further purification. Alternatively, the syrup obtained after the initial solvent evaporation following the reaction could be quickly filtered through silica gel (3:2 hexanes–EtOAc containing about 0.1 % Et_3N). The fractions containing the trichloroacetimidate derivative were concentrated, dried under vacuum for 1 h and used immediately without any further purification. The trichloroacetimidate derivative in CH₂Cl₂ (4 mL) was added to a solution of alcohol LAM-2¹ (0.07 g, 0.13 mmol) in CH₂Cl₂ (4 mL) containing 4 Å molecular sieves (0.07 g; stirred already for about 30 min) at -30 °C. A solution of TMSOTf (2 μ L, 0.01 mmol) in CH₂Cl₂ (0.06 mL) was added dropwise over 5 min. The reaction mixture was then warmed to -5 °C over 20 min and then Et₃N (0.05 mL) was added. The solution was diluted with CH₂Cl₂ and filtered and the filtrate was concentrated to a syrup that was purified by column chromatography (3:2 hexanes-EtOAc) to afford LAM-125 (0.24 g, 91% over two steps) as a thick syrup: $R_f 0.37$ (3:2 hexanes-EtOAc); $[\alpha]_D + 0.9$ (c = 0.3, CHCl₃); ¹H NMR (500 MHz, $CDCl_3$, δ_H) 8.08–7.83 (m, 23 H), 7.62–7.20 (m, 37 H), 5.90 (dd, 1 H, J = 5.9, 5.9 Hz), 5.67 (d, 1 H, J = 4.8 Hz), 5.60 (d, 1 H, J = 4.7 Hz), 5.60–5.47 (m, 4 H), 5.43 (s, 1 H), 5.41 (s, 1 H), 5.40– 5.32 (m, 5 H), 5.29 (s, 1 H), 5.19 (s, 1 H), 4.75 (dd, 1 H, J = 4.7, 11.7 Hz), 4.66 (dd, 1 H, J = 7.4, 1.2 Hz)11.6 Hz), 4.58 (d, 1 H, J = 1.1 Hz), 4.56–4.33 (m, 10 H), 4.18–4.05 (m, 3 H), 4.0 (dd, 1 H, J = 4.2, 11.7 Hz), 3.92 (dd, 1 H, J = 3.2, 11.4 Hz), 3.90–3.80 (m, 3 H), 3.74 (ddd, 1 H, J = 6.7, 9.5, 13.2 Hz), 3.47 (ddd, 1 H, J = 6.3, 9.5, 13.2 Hz), 3.20 (dd, 3 H, J = 7.0, 7.0 Hz), 2.72–2.67 (m, 3 H), 2.60–2.53 (m, 3 H), 2.11 (s, 3 H), 1.65–1.51 (m, 4 H), 1.40–1.22 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 206.2, 172.4, 165.9, 165.7(3), 165.7(0), 165.6, 165.5(4), 165.5(0), 165.4, 165.3(9), 165.3(7), 165.0, 164.9, 133.6, 133.5 (4), 133.5(1), 133.3(4), 133.3(0), 133.2, 133.1(8), 133.1(2), 132.9, 132.8, 129.9, 129.8(5), 129.8(2), 129.7(9), 129.7(4), 129.7(0), 129.6(5), 129.6(2), 129.4, 129.2, 129.1, 129.0(9), 129.0(8), 128.9, 128.8, 128.6, 128.5, 128.4(9), 128.4(5),

128.4(0), 128.3, 128.1(9), 128.1(6), 105.9(5) (C-1), 105.9(2) (C-1), 105.8 (C-1), 105.5 (C-1), 105.4 (C-1), 100.3 (C-1), 84.9, 83.3, 82.2, 81.8, 81.7, 81.5, 81.4, 81.3(6), 81.3(2), 81.1, 80.6, 79.4, 78.2, 77.6, 77.4, 77.3, 76.9, 76.8, 76.7, 67.4, 66.1, 65.8, 65.7, 65.3, 64.2, 63.6, 51.4, 37.9, 29.8, 29.5, 29.3, 29.1, 28.8, 27.8, 26.6, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₇H₁₁₉N₃O₃₉Na: 2332.7312. Found: 2332.7304.

8-Azidooctyl 2,3,5-tri-O-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-O-benzoyl- α -Darabinofuranosyl- $(1 \rightarrow 3)$ -[2,3-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzoyl- $(1 \rightarrow 5)$ -2,3-di-*O*-ben α -D-arabinofuranosyl- $(1 \rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoylα-D-arabinofuranoside (LAM-126). Prepared from compound LAM-125 (0.24 g, 0.1 mmol) and hydrazine acetate (0.1 g, 1 mmol) in CH₂Cl₂-CH₃OH (15 mL, 9:1) as described for the synthesis of compound LAM-116 to give LAM-126 (0.2 g, 90%) as a foam. R_f 0.22 (62:38 hexanes-EtOAc); $[\alpha]_D$ -4.0 (c = 0.3, CHCl₃); ¹H NMR (500 MHz CDCl₃, δ_H) 8.11-7.94 (m, 14) H), 7.94–7.85 (m, 10 H), 7.62–7.30 (m, 23 H), 7.30–7.20 (m, 13 H), 5.92 (dd, 1 H, J = 5.3, 6.3 Hz), 5.71 (d, 1 H, J = 4.8 Hz), 5.62 (d, 1 H, J = 4.7 Hz), 5.60 (d, 1 H, J = 1.3 Hz), 5.57–5.54 (m, 3 H), 5.51 (dd, 1 H, J = 4.8, 6.4 Hz), 5.48–5.29 (m, 9 H), 5.21 (s, 1 H), 4.77 (dd, 1 H, J = 4.6, 11.6 Hz), 4.68 (dd, 1 H, J = 7.4, 11.6 Hz), 4.61 (d, 1 H, J = 2.1 Hz), 4.55–4.35 (m, 9 H), 4.19 (dd, 1 H, J = 6.3, 11.6 Hz), 4.12 (dd, 1 H, J = 5.0, 11.4 Hz), 4.08-4.00 (m, 3 H), 3.99-3.82 (m, 5)H), 3.76 (ddd, 1 H, J = 6.7, 9.5, 13.2 Hz), 3.49 (ddd, 1 H, J = 6.3, 9.5, 13.2 Hz), 3.21 (dd, 3 H, J = 7.0, 7.0 Hz), 1.69–1.50 (m, 4 H), 1.42–1.22 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.0, 165.9, 165.8, 165.7(4), 165.7(3), 165.5(7), 165.5(2), 165.4(6), 165.4(3), 165.3, 165.1, 133.5, 133.4, 133.3(8), 133.3(2), 133.2(5), 133.2(0), 133.1, 132.9, 132.8, 129.9, 129.8(6), 129.8(3), 129.8(0), 129.7(2), 129.7(1), 129.6, 129.4, 129.2, 129.1(8), 129.1(3), 129.0(7), 129.0, 128.9, 128.6, 128.5, 128.4(5), 128.4(0), 128.3, 128.2, 128.1, 105.9 (3 × C-1), 105.6 (C-1), 105.4 (C-1), 100.3 (C-1), 84.9, 83.6, 83.7, 82.2, 81.8(3), 81.8(1), 81.7, 81.5, 81.4, 81.3, 80.6, 79.4, 78.2, 77.7, 77.4, 77.3(6), 77.3(3), 77.1, 76.9, 76.8, 76.7, 67.4, 66.1, 65.9, 65.8, 65.3, 64.2, 62.3, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₂H₁₁₃N₃O₃₇Na: 2234.6945. Found: 2234.6949.

 $\begin{array}{l} 8\mbox{-}Azidooctyl~2,3,5\mbox{-}tri\mbox{-}O\mbox{-}benzoyl\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}2)\mbox{-}3,5\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}\alpha\mbox{-}D\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}O\mbox{-}benzoyl\mbox{-}arabinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}benzoyl\mbox{-}arbinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}benzoyl\mbox{-}arbinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}benzoyl\mbox{-}arbinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}benzoyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}(1\mbox{-}5)\mbox{-}2,3\mbox{-}di\mbox{-}di\mbox{-}benzoyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofuranosyl\mbox{-}arbinofurano$

benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-Obenzoyl-α-D-arabinofuranoside (LAM-129). Alcohol LAM-126 (0.2 g, 0.09 mmol), was glycosvlated with thioglycoside LAM-119²³ (0.14 g, 0.13 mmol), powdered 4 Å molecular sieves (0.1 g), N-iodosuccinimide (30 mg, 0.13 mmol) and silver triflate (5 mg, 0.02 mmol) in CH₂Cl₂ (9 mL) as described for the synthesis of compound LAM-3. After work up, the crude material was quickly filtered through a short silicagel column (3:2; hexane-EtOAc) and the fractions containing the octasaccharide were combined, concentrated and dried under vacuum for 2h. The vacuum-dried crude octasaccharide LAM-128 was dissolved in THF-pyridine (5 mL, 4:1) and treated with 70% HF pyridine (0.1 mL) as described for the synthesis of LAM-26 to afford LAM-129 (0.19 g, 74% over two steps) as a glassy solid. R_f 0.2 (3:2 hexanes-EtOAc); $[\alpha]_{\rm D}$ +3.0 (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.09–7.81 (m, 33 H), 7.61–7.17 (m, 48 H), 5.93-5.90 (m, 1 H), 5.70 (d, 1 H, J = 4.8 Hz), 5.66-5.60 (m, 6 H), 5.56 (s, 1 H), 5.54 (d, 1 H, J = 4.8 Hz), 5.51 (dd, 1 H, J = 4.9, 6.3 Hz), 5.45–5.32 (m, 9 H), 5.30 (s, 1 H), 5.21 (s, 1 H), 4.77 (dd, 1 H, J = 4.6, 11.7 Hz), 4.67 (dd, 1 H, J = 7.5, 11.6 Hz), 4.62–4.53 (m, 3 H), 4.53–4.35 (m, 8 H), 4.19-4.05 (m, 5 H), 4.04-3.71 (m, 10 H), 3.48 (ddd, 1 H, J = 6.3, 9.5, 13.2 Hz), 3.21(dd, 3 H, J = 7.0, 7.0 Hz), 1.69–1.46 (m, 4 H), 1.42–1.21 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 165.9, 165.8, 165.7, 165.6, 165.5(9), 165.5(6), 165.4(9), 165.4(6), 165.4(2), 165.4(0), 165.1, 165.0(9), 165.0(5), 165.0(3), 133.5(3), 133.5(1), 133.4, 133.3, 133.2(9), 133.2(1), 133.1(9), 133.1(3), 133.1(0), 132.9, 132.8, 129.8(9), 129.8(6), 129.8(2), 129.7, 129.6(5), 129.6(3), 129.4, 129.1(8), 129.1(6), 129.1(4), 129.1, 129.0(4), 129.0, 128.9, 128.8(7), 128.6, 128.5, 128.4, 128.3, 128.2(4), 128.2(1), 128.1(7), 105.9(7) (C-1), 105.9(4) (C-1), 105.8(6) (3 × C-1), 105.6 (C-1), 105.4 (C-1), 100.3 (C-1), 84.9, 83.7, 83.3(0), 82.3(4), 82.1, 81.9, 81.8(3), 81.8(0), 81.7, 81.6, 81.5, 81.4(6), 81.4(1), 81.3, 80.6, 79.4, 78.2, 77.7, 77.4, 77.2, 76.9, 76.7, 67.4, 66.1, 65.8, 65.7(8), 65.6, 64.2, 62.3, 51.4, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₆₀H₁₄₅N₃O₄₉Na: 2914.8838. Found: 2914.8839.

8-Azidooctyl 2,3,5-tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3,5-tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzoyl- α -D-

arabinofuranoside (LAM-130). Trichloroacetimidate LAM-127 was prepared from hemiacetal LAM-98 (0.1 g, 0.09 mmol) using DBU (10 µL) and trichloroacetonitrile (0.05 mL, 0.5 mmol) as described for the synthesis of LAM-42 (Scheme S7). This intermediate was immediately subjected to coupling with alcohol LAM-129 (0.175 g, 0.06 mmol) as described for the synthesis of LAM-43, to afford LAM-130 (0.17 g, 69% over two steps) as a syrup. R_f 0.19 (3:2 hexanes-EtOAc); $[\alpha]_D -23.2$ (c = 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.09–7.80 (m, 45 H), 7.61–7.15 (m, 70 H), 5.96 (dd, 1 H, J = 5.8, 5.8 Hz), 5.91 (dd, 1 H, J = 5.6, 5.6, Hz), 5.76 (d, 1 H, J = 4.7 Hz), 5.71–5.27 (m, 24 H), 5.20 (s, 1 H), 5.14 (s, 1 H), 4.80–4.74 (m, 3 H), 4.72–4.62 (m, 3 H), 4.61-4.34 (m, 15 H), 4.25 (dd, 1 H, J = 6.2, 11.6 Hz), 4.2-4.04 (m, 8 H), 4.01 (dd, 1 H, J = 3.8, 11.4 Hz), 3.96–3.70 (m, 9 H), 3.47 (ddd, 1 H, J = 6.2, 9.1, 13.2 Hz), 3.21 (dd, 3 H, J = 6.9, 6.9 Hz), 1.66–1.47 (m, 4 H), 1.43–1.19 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.1, 166.0, 165.9(6), 165.9(3), 165.7(4), 165.7(1), 165.6(7), 165.5(7), 165.5(4), 165.5(1), 165.4(9), 165.4(7), 165.4(1), 165.4(0), 165.0(8), 165.0(5), 165.0(2), 133.6, 133.5(5), 133.5(2), 133.4(6), 133.4(2), 133.4(0), 133.3(9), 133.3(0), 133.2(4), 133.2(0), 133.1(7), 133.1(2), 133.0(8), 133.0(0), 132.8(7), 132.8(2), 132.8(0), 130.1(2), 130.1(0), 130.0(7), 130.0(4), 130.0(3), 130.0(1), 129.8(9), 129.8(9), 129.129.8(5), 129.8(2), 129.7, 129.6(4), 129.6(2), 129.4 (4), 129.4(0), 129.1(3), 129.0(8), 129.0(5), 128.8(6), 128.8(1), 128.6, 128.5, 128.4(8), 128.4(7), 128.4(0), 128.3, 128.2, 128.1(9), 128.1(8), 128.1(7), 105.9(7) (3 × C-1), 105.8(7) (4 × C-1), 105.6 (C-1), 105.4 (C-1), 100.5 (C-1), 100.3 (C-1), 85.5, 84.9, 83.3, 82.3, 82.1, 81.8, 81.7, 81.5, 81.4(7), 81.4(4), 81.4(1), 81.3, 80.5, 80.4, 79.4, 79.3, 78.3, 78.2, 77.6, 77.4, 77.2, 76.9, 76.5, 67.4, 66.1, 65.9, 65.8, 65.7(7), 65.7(2), 65.7(1), 65.6, 64.3, 64.2, 51.4, 36.6, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1, 24.7. HRMS (ESI) m/z calcd for (M+Na) C₂₂₄H₁₉₇N₃O₆₈Na: 4039.1941. Found: 4039.1956.

8-Azidooctyl β -D-arabinofuranosyl- $(1\rightarrow 2)-\alpha$ -D-arabinofuranosyl- $(1\rightarrow 3)-[\beta$ -Darabinofuranosyl- $(1\rightarrow 2)-\alpha$ -D-arabinofuranosyl- $(1\rightarrow 5)-\alpha$ -D-arabinofuranos concentrated to give syrup that was dissolved in distilled water (10 mL). The aqueous phase was repeatedly washed with EtOAc, CH₂Cl₂ and the separated aqueous phase was lyophilized to give **18 Azide** (0.041 g, quantitative) as a fluffy solid. $[\alpha]_D$ +85.7 (c = 0.2, CH₃OH); ¹H NMR (500 MHz, D₂O, δ_H) 5.23 (d, 1 H, J = 1.1 Hz, H-1), 5.16 (d, 1 H, J = 1.0 Hz, H-1), 5.14–5.04 (m, 8 H, 8 × H-1), 4.99 (d, 1 H, J = 1.6 Hz, H-1), 4.33–4.25 (m, 2 H), 4.25–4.17 (m, 7 H), 4.17–3.95 (m, 23 H), 3.95–3.62 (m, 25 H), 3.58 (dd, 1 H, J = 6.5, 9.9, 13.0 Hz), 3.31 (d, 3 H, J = 6.9, 6.9 Hz), 1.65–1.56 (m, 4 H), 1.43–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 108.4(0) (4 × C-1), 108.3 (2 × C-1), 108.0 (C-1), 106.6 (C-1), 106.3 (C-1), 101.6 (C-1), 101.5 (C-1), 87.9, 87.6, 83.8, 83.6, 83.4, 83.3, 83.2, 83.1, 82.9, 82.6, 82.4, 81.8, 81.7(3), 81.7(0), 79.9, 77.7, 77.6, 77.5, 77.2, 77.1(8), 77.1(2), 75.7, 75.5, 75.0, 74.9, 69.5, 67.8, 67.7, 67.6, 67.4, 67.2, 63.8, 63.7, 61.5, 61.4, 52.1, 29.5, 29.1, 29.0, 28.8, 26.8, 25.9. HRMS (ESI) *m/z* calcd for (M+Na) C₆₃H₁₀₅N₃O₄₅Na: 1646.5912. Found: 1646.5912.

16. Synthesis of 19

Scheme S21. Synthesis of 19 Azide. a) LAM-119, NIS, AgOTf, CH_2CI_2 , 83%; b); HF·pyridine, THF, pyridine, 94%; c) NaOCH₃, CH₃OH, CH₂CI₂, 98%.

8-Azidooctyl 2,3-di-*O*-benzoyl-5-*O*-(*t*-butyldiphenylsilyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-*O*-benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,

di-O-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl-α-D-arabinofuranoside (LAM 132). Diol LAM-131¹ (0.1 g, 0.024 mmol) and thioglycoside LAM-119²³ (0.08 g, 0.076 mmol) were dried under vacuum in the presence of P₂O₅ for 14 h. After drying, CH₂Cl₂ (3 mL) was added, followed by powdered 4 Å molecular sieves (0.05 g) and the mixture was stirred for 20 min at rt. The reaction mixture was then cooled to 0 °C and N-iodosuccinimide (0.03 g, 0.13 mmol) and silver triflate (5 mg, 0.02 mmol) were added. After stirring for 20 min at 0 °C, Et₃N was added until the pH of the solution was slightly basic as determined with wet pH paper. The reaction mixture was diluted with CH₂Cl₂ and filtered through Celite. The filtrate was washed with a satd aq soln of Na₂S₂O₃, water, and brine. The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:2 hexanes-EtOAc) to yield LAM-132 (0.12 g, 83%) as a thick syrup. Rf 0.30 (3:2 hexane-EtOAc), $[\alpha]_D$ +14.4 (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–7.80 (m, 61 H), 7.76–7.64 (m, 7 H), 7.60–7.10 (m, 107 H), 5.70–5.50 (m, 32 H), 5.46–5.22 (m, 1 5H), 4.66-4.36 (m, 17 H), 4.26-4.10 (m, 13 H), 4.06-3.74 (m, 20 H), 3.53 (ddd, 1 H, J = 6.1, 9.1, 9.1) 12.3 Hz), 3.23 (dd, 2 H, J = 6.9, 6.9 Hz), 1.70–1.50 (m, 4 H), 1.50–1.20 (m, 8 H), 1.03 (s, 18 H); 13 C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.7, 165.6(1), 165.5(8), 165.5(5), 165.5, 165.3, 165.2, 165.1, 165.0(3), 165.0, 164.8, 135.7, 135.6, 133.4, 133.3, 133.2(2), 133.2, 133.1, 133.0, 130.0, 129.9, 129.8(3), 129.8, 129.7, 129.6, 129.4, 129.3(2), 129.3, 129.1, 129.0, 128.5, 128.4(3), 128.4, 128.2, 127.7, 106.0, 105.9(2), 105.9, 105.8, 105.6, 83.2, 82.7, 82.5, 82.1, 81.9, 81.8, 81.7, 81.6, 81.5, 77.2, 76.9, 67.4, 66.0, 65.8, 63.4, 51.4, 29.5(4), 29.5, 29.3, 29.1, 28.8, 26.8, 26.7, 26.1, 19.3. HRMS (ESI) *m/z* calcd for (M+Na) C₃₃₇H₃₀₅N₁O₉₆Si₂Na: 5979.8445 (loss of N₂), found 5979.8401 (loss of N₂).

8-Azidooctyl 2,3-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzoyl- α -D-

arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranoside (LAM-133). To a solution of LAM-132 (0.1 g, 0.02 mmol) in THF-pyridine (4 mL, 3:1) at 0 °C was added 70% HF pyridine (0.1 mL) dropwise. The solution was then stirred overnight while warming to rt and then poured into a satd aq soln of NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (1:1 hexanes-EtOAc) to yield LAM-133 (0.09 g, 94%) as a thick syrup. Rf0.17 (55:45 hexane–EtOAc), $[\alpha]_D$ +23.6 (c = 0.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.10–7.80 (m, 61 H), 7.60–7.14 (m, 94 H), 5.70–5.58 (m, 25 H), 5.58–5.50 (m, 6 H), 5.44–5.22 (m, 16 H), 4.66-4.36 (m, 18 H), 4.24-4.10 (m, 13 H), 4.06-3.73 (m, 21 H), 3.52 (ddd, 1 H, J = 6.1, 9.1, 9.112.3 Hz), 3.22 (dd, 2 H, J = 6.9, 6.9 Hz), 1.70–1.50 (m, 4 H), 1.40–1.20 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.0, 165.7, 165.6(2), 165.6(0), 165.5(8), 165.5(5), 165.5(3), 165.5(2), 165.5, 165.4, 165.3, 165.2, 165.1(4), 165.1(2), 165.0(9), 165.0(8), 165.0(6), 165.0(2), 165.0, 133.5, 133.3(9), 133.3(6), 133.3(3), 133.3, 133.1(4), 133.1, 133.0, 130.0, 129.9, 129.8, 129.7, 129.4, 129.3, 129.2, 129.1(2), 129.1, 129.0(5), 128.9(9), 128.9(7), 128.5, 128.4(2), 128.4, 128.3(3), 128.3, 128.2, 105.9(0), 105.9, 105.7, 105.6, 83.7, 82.6, 82.2, 82.1, 82.0, 81.9, 81.8, 81.7, 81.6, 81.5, 77.7, 76.9, 76.8, 67.3, 66.1, 66.0(3), 66.0, 65.8, 65.7, 62.3, 51.4, 36.6, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1.

8-Azidooctyl α-D-arabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranosyl-(1 \rightarrow 5)-α-Darabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranosyl-(1 \rightarrow 5)-(α-Darabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranosyl-(1 \rightarrow 5)-α-D-arabinofuranosyl-(1 \rightarrow 5)-α-Darabinofuranosyl-(1 \rightarrow 1H, J = 2.0 Hz), 4.32–4.27 (m, 3 H), 4.24–4.18 (m, 13 H), 4.18–4.10 (m, 17 H), 4.10–3.96 (m, 17 H), 3.96–3.68 (m, 33 H), 3.61–3.54 (m, 1 H), 3.32 (dd, 2 H, J = 6.9, 6.9 Hz), 1.65–1.57 (m, 4H), 1.42–1.32 (m, 8H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 108.4, 108.3, 108.1, 108.0, 84.8, 83.2, 83.1, 82.6, 82.0, 81.8, 81.7(3), 81.7, 79.9, 77.6, 77.4, 69.5, 67.7(8), 67.7, 67.5, 67.2, 62.1, 52.1, 29.4, 29.1, 29.0, 28.8, 26.7, 25.9; HRMS (ESI) *m/z* calcd for (M+Na₂)²⁺ C₈₈H₁₄₅N₃O₆₅Na₂: 1164.8959. Found: 1164.8956.

.

17. Synthesis of 20

Scheme S22. Synthesis of pentasaccharide LAM-140, a precursor to 20 Azide. a) LAM-93, NIS, AgOTf, CH_2CI_2 ; b) H_2NNH_2 ·HOAc, CH_3OH , CH_2CI_2 91% over two steps; c) LAM-24, NIS, AgOTf, CH_2CI_2 , 59%; d) Et₃N, CH_2CI_2 , 79%; e) LAM-119, NIS, AgOTf, CH_2CI_2 , 90%; f) H_2 , $Pd(OH)_2$ –C, EtOAc, CH_2CI_2 ; then HF·pyridine, THF, pyridine; then BzCl, pyridine, 91%; g) CAN, CH_3CN , H_2O , 87%.

p-Methoxyphenyl 3,5-*O*-(di-*t*-butylsilanediyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-3-*O*-(9-fluorenylmethoxycarbonyl)-2-*O*-benzoyl- α -D-arabinofuranoside (LAM-135). Alcohol LAM-114 (0.60 g, 1 mmol) was glycosylated with thioglycoside LAM-93¹ (0.66 g, 1.3 mmol), powdered 4 Å molecular sieves (0.45 g), *N*-iodosuccinimide (0.3 g, 1.3 mmol) and silver triflate (16 mg, 0.06 mmol) in CH₂Cl₂ (24 mL) as described for the synthesis of LAM-3 to afford the corresponding crude disaccharide LAM-134, which, after work up, was used directly in the next step. The crude disaccharide was dissolved in a solution of CH₂Cl₂-CH₃OH (9:1, 26 mL), hydrazine acetate (0.3 g, 3.2 mmol) was added and the solution was stirred for 40 min at rt. The

reaction mixture was then poured into water and extracted with CH₂Cl₂. The organic layer was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:1 hexanes–EtOAc) to yield **LAM-135** (0.8 g, 91% over two steps) as a thick syrup. R_f 0.27 (3:1 hexanes–EtOAc); $[\alpha]_D$ +43.3 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.09–8.04 (m, 3 H), 7.80–7.75 (m, 3 H), 7.68–7.58 (m, 3 H), 7.49–7.40 (m, 4 H), 7.37–7.31 (m, 3 H), 7.09–7.05 (m, 3 H), 6.89–6.83 (m, 3 H), 5.79 (s, 1 H, H-1), 5.66 (d, 1 H, J = 1.7 Hz, H-1), 5.35 (dd, 1 H, J = 1.6, 5.3 Hz), 5.00 (d, 1 H, J = 3.2 Hz), 4.58–4.48 (m, 3 H), 4.42 (dd, 1 H, J = 7.5, 10.4 Hz), 4.34–4.27 (m, 3 H), 4.14 (dd, 1 H, J = 3.4, 6.9 Hz), 4.07 (dd, 1 H, J = 4.3, 11.2 Hz), 4.00–3.94 (m, 3 H), 3.91–3.85 (m, 1 H), 3.83–3.76 (m, 4 H), 1.05 (s, 9 H), 0.93 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.3, 155.3, 154.5, 150.1, 143.2, 143.1, 141.3, 141.3, 133.7, 129.9, 128.6, 127.9, 127.3, 127.2, 125.2, 125.1, 120.1, 118.4, 114.6, 108.6 (C-1), 104.8 (C-1), 82.3, 81.6, 81.5, 81.3, 80.5, 73.9, 70.5, 67.5, 67.4, 55.7, 46.7, 27.4, 27.1, 22.6, 20.1. HRMS (ESI) m/z calcd for (M+Na) C₄₇H₅₄O₁₃SiNa: 877.3225. Found: 877.3224.

 $p-\text{Methoxyphenyl} \qquad 3,5-O-(\text{di-}t-\text{butylsilanediyl})-2-O-\text{benzyl-}\beta-D-\text{arabinofuranosyl-} (1\rightarrow 2)-3,5-O-(\text{Di-}t-\text{butylsilanediyl})-\alpha-D-\text{arabinofuranosyl-} (1\rightarrow 5)-3-O-(9-1)-\alpha-D-\alpha-D-\alpha-2)-\alpha-D-\alpha-2$

fluorenylmethoxycarbonyl)-2-*O*-benzoyl-α-D-arabinofuranoside (LAM-136) and р-Methoxyphenyl 3,5-O-(Di-*t*-butylsilanediyl)-2-O-benzyl- α -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-O-(Di-*t*-butylsilanediyl)- α -D-arabinofuranosyl-(1 \rightarrow 5)-3-O-(9-fluorenylmethoxycarbonyl)-2-O-benzoyl-α-D-arabinofuranoside (LAM-136α). Prepared from alcohol LAM-135 (0.75 g. 0.87 mmol), thioglycoside LAM-24¹ (0.56 g, 1.1 mmol), powdered 4 Å molecular sieves (0.5 g), *N*-iodosuccinimide (0.28 g, 1.2 mmol) and silver triflate (44 mg, 0.17 mmol) in CH₂Cl₂ (30 mL) as described for the synthesis of LAM-96 to afford LAM 136 (0.83 g, 78%, α : β = 1:3) as a foam. Data for LAM-136: $R_f 0.30$ (85:15 hexanes–EtOAc). $[\alpha]_D$ +4.3 (c = 0.30, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.07–8.02 (m, 3 H), 7.80–7.76 (m, 3 H), 7.67–7.62 (m, 3 H), 7.60– 7.55 (m, 1 H), 7.47–7.39 (m, 4 H), 7.38–7.21 (m, 7 H), 7.08–7.03 (m, 3 H), 6.86–6.81 (m, 3 H), 5.73 (s, 1 H, H-1), 5.66 (d, 1 H, J = 1.7 Hz, H-1), 5.33 (dd, 1 H, J = 1.6, 5.5 Hz), 5.06 (d, 1 H, J = 2.8 Hz, 5.00 (d, 1 H, J = 4.9 Hz, H-1), 4.78–4.66 (m, 3 H), 4.54 (dd, 1 H, J = 4.1, 9.3 Hz), 4.49 (dd, 1 H, J = 7.4, 10.4 Hz), 4.46–4.37 (m, 3 H), 4.30 (dd, 3 H, J = 5.6, 8.4 Hz), 4.24 (dd, 1 H, J = 5.1, 9.0 Hz), 4.13 (dd, 1 H, J = 2.8, 7.2 Hz), 4.08 (dd, 1 H, J = 7.4, 9.3 Hz), 4.04–3.92 (m, 3 H), 3.90–3.75 (m, 6 H), 3.64–3.56 (m, 1 H), 1.07 (s, 9 H), 1.03 (s, 9 H), 1.00 (s, 9 H), 0.92 (s, 9

H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.4, 155.2, 154.5, 150.1, 143.2, 143.1, 141.3, 137.7, 133.6, 129.9, 129.0, 128.6, 128.4, 128.1, 127.9, 127.8, 127.3, 127.2, 125.2, 125.2, 120.1, 118.3, 114.6, 107.4 (C-1), 104.9 (C-1), 99.7 (C-1), 86.6, 82.4, 81.4, 80.6, 80.3, 80.2, 78.1, 74.1, 74.0, 71.8, 70.5, 68.7, 67.5, 66.9, 55.7, 46.7, 27.6, 27.4, 27.2, 27.1, 27.0(5), 27.0(1), 26.9, 22.6, 22.5, 20.2, 20.0. HRMS (ESI) *m/z* calcd for (M+Na) C₆₇H₈₄O₁₇Si₂Na: 1239.5139. Found: 1239.5135. **Data for 136a**: $R_f 0.40$ (85:15 hexanes–EtOAc). $[\alpha]_D$ +50.6 (c = 0.32, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–8.04 (m, 3 H), 7.81–7.74 (m, 3 H), 7.68–7.62 (m, 3 H), 7.60–7.55 (m, 1 H), 7.49–7.27 (m, 11 H), 7.10–7.05 (m, 3 H), 6.90–6.83 (m, 3 H), 5.75 (s, 1 H, H-1), 5.68 (d, 1 H, J = 1.3 Hz, H-1), 5.30–5.24 (m, 3 H), 5.04 (d, 1 H, J = 2.5 Hz, H-1), 4.77 (d, 1 H, J = 12.1Hz), 4.69 (d, 1 H, J = 12.1 Hz), 4.58 (dd, 1 H, J = 4.7, 9.1 Hz), 4.50 (dd, 1 H, J = 7.5, 10.5 Hz), 4.41 (dd, 1 H, J = 7.5, 10.5 Hz), 4.36–4.28 (m, 3 H), 4.25 (dd, 1 H, J = 4.7, 8.7 Hz), 4.18 (dd, 1 H, J = 2.5, 6.9 Hz), 4.10–3.86 (m, 8 H), 3.84–3.76 (m, 4 H), 1.05 (s, 9 H), 1.04 (s, 9 H), 0.98 (s, 9 H), 0.91 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.3, 155.2, 154.4, 150.2, 143.2, 143.1, 141.3, 137.9, 133.6, 129.9, 129.0, 128.6, 128.3, 127.9, 127.7, 127.6, 127.3, 127.2, 125.2(4), 125.2(1), 120.1, 118.5, 114.6, 107.2 (C-1), 106.7 (C-1), 104.9 (C-1), 87.7, 86.9, 81.9, 81.7, 81.6, 81.1, 80.4, 74.0, 73.4, 71.8, 70.4, 67.5, 67.4, 67.3, 55.7, 46.7, 27.6, 27.5, 27.4, 27.1, 27.0, 22.6, 20.1, 20.0.

p-Methoxyphenyl 3,5-O-(Di-t-butylsilanediyl)-2-O-benzyl-β-D-arabinofuranosyl-(1→2)-3,5-O-(Di-t-butylsilanediyl)- α -D-arabinofuranosyl-(1→5)-2-O-benzoyl- α -D-

arabinofuranoside (LAM-137). Prepared from compound **LAM-136** (0.56 g, 0.46 mmol) and Et₃N (0.4 mL, 2.7 mmol) in CH₂Cl₂ (12 mL) as described for the synthesis of **LAM-118** to afford **LAM-137** (0.36 g, 79%) as a thick syrup. R_f 0.43 (3:1 hexanes–EtOAc); $[\alpha]_D$ +58.2 (c = 0.20, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.01–7.97 (m, 3 H), 7.62–7.56 (m, 1 H), 7.46–7.41 (m, 3 H), 7.41–7.37 (m, 3 H), 7.34–7.29 (m, 3 H), 7.28–7.23 (m, 1 H), 7.05–7.00 (m, 3 H), 6.84–6.79 (m, 3 H), 5.77 (s, 1 H, H-1), 5.33 (dd, 1 H, J = 1.2, 3.3 Hz), 5.05 (d, 1 H, J = 2.8 Hz, H-1), 4.98 (d, 1 H, J = 4.9 Hz, H-1), 4.77 (ABq, 3 H, J = 12.3 Hz), 4.44 (dd, 1 H, J = 9.2, 9.2 Hz), 4.38 (ddd, 1 H, J = 4.2, 6.8, 8.6 Hz), 4.33–4.27 (m, 1 H), 4.26–4.21 (m, 3 H), 4.10–4.03 (m, 3 H), 3.96–3.84 (m, 5 H), 3.79–3.72 (m, 4 H), 3.60 (ddd, 1 H, J = 5.1, 9.2, 10.6 Hz), 3.36 (d, 1 H, J = 4.3 Hz), 1.07 (s, 9 H), 1.02 (s, 9 H), 1.0 (s, 9 H), 0.94 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.90, 155.2, 150.3, 137.8, 133.7, 129.8, 128.9, 128.6, 128.4, 128.2, 127.8, 118.1, 114.6, 107.4 (C-1), 104.7 (C-1), 99.7 (C-1), 87.0, 86.4, 82.7, 80.4, 80.0, 78.1, 77.2, 74.2, 74.0,

71.8, 68.7, 67.5, 67.3, 55.6, 27.6, 27.4, 27.2, 27.1, 22.6 (4), 22.6, 20.1, 20.0. HRMS (ESI) *m/z* calcd for (M+Na) C₅₃H₇₄O₁₅Si₂Na: 1017.4458. Found: 1017.4456.

p-Methoxyphenyl 5-*O*-levulinoyl-2,3-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3di-O-benzoyl-α-D-arabinofuranosyl-(1→3)-[3,5-O-(Di-t-butylsilanediyl)-2-O-benzyl-β-Darabinofuranosyl- $(1\rightarrow 2)$ -3,5-O-(Di-*t*-butylsilanediyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$)-2-Obenzoyl-α-D-arabinofuranoside (LAM-138). Prepared from alcohol LAM-137 (0.35 g, 0.35 mmol), thioglycoside LAM-119²³ (0.41 g, 4.5 mmol), powdered 4 Å molecular sieves (0.25 g), *N*-iodosuccinimide (0.1 g, 0.44 mmol) and silver triflate (12 mg, 0.05 mmol) in CH₂Cl₂ (12 mL) as described for the synthesis of LAM-3 to afford LAM-138 (0.56 g, 90%) as a foam. R_f 0.25 (7:3 hexanes–EtOAc); $[\alpha]_D$ +10.0 (c = 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.11–7.98 (m, 8 H), 7.92–7.87 (m, 3 H), 7.64–7.35 (m, 13 H), 7.35–7.19 (m, 7 H), 7.06–6.99 (m, 3 H), 6.81–6.73 (m, 3 H), 5.71 (s, 3 H), 5.67 (d, 1 H, J = 1.1 Hz, H-1), 5.64–5.59 (m, 3 H), 5.58 (d, 1 H, J = 0.9 Hz, H-1), 5.45–5.36 (m, 3 H), 5.02 (d, 1 H, J = 2.9 Hz, H-1), 4.97 (d, 1 H, J = 4.8 Hz, H-1), 4.67 (s, 3 H), 4.60 (dd, 1 H, J = 4.5, 8.9 Hz), 4.56–4.49 (m, 3 H), 4.49–4.36 (m, 4 H), 4.28-4.18 (m, 3 H Hz), 4.07 (dd, 1 H, J = 2.9, 7.4 Hz), 4.03-3.85 (m, 5 H), 3.84-3.68 (m, 6 H),3.58 (ddd, 1 H, J = 5.0, 9.1, 10.5 Hz), 2.75-2.67 (m, 3 H), 2.64-2.53 (m, 3 H), 2.13 (s, 3 H), 1.06(s, 9 H), 1.00 (s, 9 H), 0.99 (s, 9 H), 0.90 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.2, 172.7, 165.6(1), 165.6(0), 165.5, 165.2, 165.0, 155.1, 150.3, 137.7, 133.5, 133.4(3), 133.4(1), 133.4(0), 133.3, 129.9, 129.8, 129.7(6), 129.7(2), 129.2, 129.1(5), 129.1(3), 128.9(5), 128.9(0), 128.4(8), 128.4(6), 128.3(4), 128.3(2), 128.1, 127.7, 118.3, 114.5, 107.3 (C-1), 106.0 (C-1), 105.4 (C-1), 105.3 (C-1), 99.6 (C-1), 86.2, 83.2, 82.9, 82.1, 81.5, 81.4, 81.2, 80.5, 80.4(8), 80.4(4), 80.0, 79.9, 78.1, 77.6, 74.2, 74.0, 71.7, 68.7, 67.5, 66.6, 65.9, 63.6, 55.6, 37.9, 29.8, 27.8, 27.5, 27.4, 27.2, 27.0, 22.6, 22.5(5), 20.1(4), 20.1(0), 19.98. HRMS (ESI) *m/z* calcd for (M+Na) C₉₅H₁₁₂O₂₉Si₂Na: 1795.6720. Found: 1795.6717.

p-Methoxyphenyl 5-O-levulinoyl-2,3-di-O-benzoyl-α-D-arabinofuranosyl-

(1→5)-2,3-di-O-benzoyl-α-D-arabinofuranosyl-(1→3)-[2,3,5-tri-O-benzoyl-β-D--

arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzoyl- α -Darabinofuranoside (LAM-139). Prepared from compound LAM-138 (0.55 g, 0.3 mmol), 20% Pd(OH)₂-C (60 mg) in EtOAc-THF (12 mL, 3:1), then 70% HF·pyridine (0.3 mL) in THF– pyridine (10:5), 15 mL and then BzCl (0.25 mL) in pyridine (6 mL) as described for the synthesis of LAM-123 to afford LAM-139 (0.54 mg, 91% over three steps) as a foam. R_f 0.31

(3:2 hexanes-EtOAc); $[\alpha]_D$ -9.9 (c = 0.30, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.06-8.00 (m, 6 H), 8.00–7.95 (m, 4 H), 7.93–7.85 (m, 8 H), 7.85–7.81 (m, 3 H), 7.62–7.52 (m, 3 H), 7.51– 7.34 (m, 13 H), 7.34–7.28 (m, 7 H), 7.28–7.15 (m, 7 H), 7.08–7.03 (m, 3 H), 6.82–6.76 (m, 3 H), 5.93 (dd, 1 H, J = 5.4, 6.4 Hz), 5.78 (s, 1 H), 5.71 (dd, 3 H, J = 4.6, 9.9 Hz), 5.65 (d, 1 H, J = 0.8 Hz), 5.61 (d, 1 H, J = 1.5 Hz), 5.56–5.51 (m, 3 H), 5.38–5.32 (m, 4 H), 5.30 (d, 1 H, J = 2.5 Hz), 5.13 (s, 1 H), 4.75 (dd, 1 H, J = 4.8, 11.7 Hz), 4.66 (dd, 1 H, J = 7.3, 11.6 Hz), 4.60–4.57 (m, 1 H), 4.56–4.52 (m, 3 H), 4.50–4.39 (m, 8 H), 4.35 (dd, 1 H, J = 5.3, 11.9 Hz), 4.21 (dd, 1 H, J =6.3, 11.5 Hz), 4.17 (dd, 1 H, J = 3.6, 11.2 Hz), 3.97 (dd, 1 H, J = 3.9, 11.8 Hz), 3.85–3.79 (m, 3 H), 3.75 (s, 3 H), 2.70–2.65 (m, 3 H), 2.58–2.53 (m, 3 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 206.2, 172.4, 166.0, 165.9, 165.8, 165.6(5), 165.5(8), 165.5(5), 165.4, 165.2, 165.0, 155.1, 150.3, 133.6, 133.5, 133.4(7), 133.4(1), 133.3(4), 133.3(0), 133.1, 132.9, 132.8, 129.9, 129.8, 129.7(5), 129.7(1), 129.7(0), 129.2, 129.1(4), 129.1(0), 129.0, 128.9(8), 128.9(7), 128.8(7), 128.7, 128.5(1), 128.5(0), 128.4, 128.3, 128.2, 128.1(7), 118.4, 114.6, 106.1 (C-1), 106.0 (C-1), 105.4 (C-1), 105.2 (C-1), 100.3 (C-1), 85.1, 83.1, 82.9, 82.4, 81.5, 81.4, 81.1, 80.6, 80.2, 79.2, 78.2, 77.6, 76.9, 76.4, 65.9, 65.8, 65.6, 64.3, 63.6, 55.7, 37.9, 29.8, 27.8. HRMS (ESI) m/z calcd for (M+Na) C₁₀₇H₉₄O₃₄Na: 1945.5518. Found: 1945.5512.

5-O-Levulinoyl-2,3-di-O-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-O-benzoyl-α-D-arabinofuranosyl- $(1\rightarrow 3)$ -[2,3,5-tri-O-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-Obenzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranose (LAM-140). Prepared from compound LAM-139 (0.25 g, 0.13 mmol) in CH₃CN-H₂O (18 mL, 8:1) and CAN (0.36 g, 0.66 mmol) as described for the synthesis of LAM-41 to afford LAM-140 (0.21 g, 3:2 diasteromeric ratio, 87%) as a foam. R_f 0.21 (3:2 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–7.84 (m, 19 H), 7.63–7.16 (m, 31 H), 5.98–5.91 (m, 3 H), 5.80–5.69 (m, 2.3 H), 5.61– 5.48 (m, 3.4 H), 5.43–5.23 (m, 5 H), 5.16 (s, 0.4 H), 5.11 (s, 0.6 H), 4.86–4.72 (m, 1.4 H), 4.71– 4.32 (m, 9 H), 4.28–4.04 (m, 3.4 H), 3.98–3.55 (m, 4.6 H), 2.73–2.65 (m, 3 H), 2.61–2.52 (m, 3 H), 2.11 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.4, 206.3, 172.4(2), 166.5, 166.2, 165.9, 165.7, 165.6, 165.5, 165.4, 165.2, 165.0, 133.7, 133.6, 133.4, 133.3, 133.2, 133.1, 132.9, 132.8(7), 130.5, 130.4, 130.3, 129.9, 129.8, 129.7, 129.4, 129.3, 129.1, 129.0, 128.9(7), 128.8(9), 128.8, 128.7, 128.5, 128.3, 128.2, 127.9, 127.8, 127.8, 106.6 (C-1), 106.1 (C-1), 105.9 (C-1), 105.8 (C-1), 105.2 (C-1), 101.2 (C-1), 100.6 (C-1), 100.3 (C-1), 94.7 (C-1), 85.5, 85.1, 82.7, 82.5, 82.3, 81.9, 81.8, 81.4, 81.1(4), 81.0(6), 80.6, 80.4, 80.2, 79.3, 79.2, 79.0, 78.3, 78.1, 77.9, 77.7, 77.6(3), 76.6(1), 76.4(6), 76.4(1), 66.7, 65.9, 65.8, 65.7, 64.3, 63.7, 37.9, 29.7(9), 27.8(2). HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₀H₈₈O₃₃Na: 1839.5100. Found: 1839.5093.

Scheme S23. Synthesis of trisaccharide LAM-146, a precursor to 20 Azide. a) TBDPSCI, pyridine, 93%; b) LAM-93, NIS, AgOTf, CH_2CI_2 , 90%; c) H_2NNH_2 , HOAc, CH_3OH , CH_2CI_2 , 91%; d) LAM-24, NIS, AgOTf, CH_2CI_2 , 76%; e) ₂, Pd(OH)₂–C, EtOAc; then *n*-Bu₄NF, THF, HOAc; then BzCI, pyridine, 47%; f) CAN, CH_3CN , H_2O , 86%.

p-Methoxyphenyl 2-*O*-benzoyl-5-*O*-(*t*-butyldiphenylsilyl)- α -D-arabinofuranoside (LAM-141). LAM-78¹ (2.0 g, 5.55 mmol) was dissolved in pyridine (35 mL) and TBDPSCI (2.13 mL, 8.3 mmol) was added to it dropwise at 0 °C. The reaction mixture was allowed to warm to rt and stirred at 40 °C for 30 h before CH₃OH (2 mL) was added. The reaction mixture was poured into a satd aq NaHCO₃ soln and extracted with CH₂Cl₂. The organic phase was washed with water, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by

chromatography (6:1 hexanes–EtOAc) to yield LAM-141 (3.09 g, 93%) as a semi solid. $R_f 0.5$ (7:3 hexanes–EtOAc).

p-Methoxyphenyl 3,5-O-(di-*t*-butylsilanediyl)-2-O-levulinoyl-α-D-arabinofuranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-5-O-t-butyldiphenylsilyl- α -D-arabinofuranoside (LAM-142). Prepared from thioglycoside LAM-93¹ (690 mg, 1.40 mmol), alcohol LAM-141 (760 mg, 1.27 mmol), 4 Å molecular sieves (0.3 g), N-iodosuccinimide (400 g, 1.68 mmol) and silver triflate (40 mg, 0.29 mmol) in CH₂Cl₂ (20 mL) as described for the synthesis of LAM-3, to afford LAM-142 (1.11 g, 90%) as a white foam. $R_f 0.29$ (4:1 hexanes-EtOAc); $[\alpha]_D$ +64.1 (c = 0.9, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.02–7.99 (m, 2 H), 7.71–7.67 (m, 4 H), 7.59–7.56 (m, 1 H), 7.44– 7.30 (m, 8 H), 7.09–7.05 (m, 2 H), 6.86–6.83 (m, 2 H), 5.74 (s, 1 H, H-1), 5.57 (d, 1 H, J = 1.8Hz), 5.33 (d, 1 H, J = 2.4 Hz, H-1), 5.24 (dd, 1 H, J = 7.0, 2.4 Hz), 4.58 (dd, 1 H, J = 5.6, 1.8 Hz), 4.44 (ddd, 1 H, J = 5.6, 4.2, 4.2 Hz), 4.25 (dd, 1 H, J = 8.8, 4.5 Hz), 4.15 (dd, 1 H, J = 9.3, 7.0 Hz), 4.01–3.89 (m, 4 H), 3.78 (s, 3 H), 2.83–2.79 (m, 2 H), 2.73–2.68 (m, 2 H), 2.16 (s, 3 H), 1.07 (s, 9 H), 1.03 (s, 9 H), 1.00 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.3, 171.9, 165.4, 154.9, 150.5, 135.6, 135.5, 133.3, 133.2(9), 133.2(7), 129.8, 129.7, 129.6, 129.3, 128.4, 127.6(8), 127.6(2), 118.3, 114.4, 105.7 (C-1), 105.2 (C-1), 83.6, 82.9, 82.5, 81.0, 79.9, 73.7, 67.4, 62.5, 55.6, 38.1, 36.6, 29.7, 28.0, 27.4, 27.0, 26.7, 20.0, 19.3. HRMS (ESI) m/z calcd for (M+Na) C₅₃H₆₈O₁₃Si₂Na: 991.4090. Found: 991.4090.

p-Methoxyphenyl **3,5-***O*-(Di-*t*-butylsilanediyl)-α-D-arabinofuranosyl-(1→3)-2-*O*-benzoyl-5-*O*-*t*-butyldiphenylsilyl-α-D-arabinofuranoside (LAM-143). Prepared from LAM-142 (1.08 g, 1.11 mmol), hydrazine monohydrate–HOAc (7 mL, 1:2), THF (12 mL), and CH₃OH (3 mL) at rt for 1 h as described for the synthesis of LAM-95 to give LAM-143 (880 mg, 91%) as a white foam. R_f 0.53 (4:1, hexanes–EtOAc); $[\alpha]_D$ +78.2 (c = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.02–7.99 (m, 2 H), 7.71–7.66 (m, 4 H), 7.60–7.56 (m, 1 H), 7.44–7.31 (m, 8 H), 7.08–7.03 (m, 2 H), 6.86–6.82 (m, 2 H), 5.74 (s, 1 H, H-1), 5.59 (d, 1 H, J = 2.0 Hz), 5.20 (d, 1 H, J = 3.4 Hz, H-1), 4.53 (dd, 1 H, J = 5.8, 2.0 Hz), 4.40 (ddd, 1 H, J = 5.8, 3.9, 3.8 Hz), 4.28 (ddd, 1 H, J = 7.6, 4.0, 3.4 Hz), 4.22–4.18 (m, 1 H), 4.02–3.98 (m, 1 H), 3.95–3.89 (m, 4 H), 3.78 (s, 3 H), 2.86 (d, 1 H, J = 4.0 Hz), 1.08 (s, 9 H), 1.03 (s, 9 H), 1.01 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 165.7, 155.1, 150.4, 135.6, 135.5, 133.5, 133.3, 129.9, 129.6(9), 129.6(4), 129.1, 128.4, 127.6(6), 127.6(2), 118.3, 114.4, 108.1 (C-1), 105.3 (C-1), 83.8, 83.6, 82.0, 81.6,

81.2, 73.9, 67.5, 62.3, 55.6, 27.4, 27.1, 26.7, 22.5, 20.1, 19.3. HRMS (ESI) *m/z* calcd for (M+Na) C₄₈H₆₂O₁₁Si₂Na: 893.3722. Found: 893.3733.

3,5-O-(Di-t-butylsilanediyl)-2-O-benzyl-B-D-arabinofuranosyl*p*-Methoxyphenyl $(1\rightarrow 2)$ -3,5-*O*-(di-*t*-butylsilanediyl)- α -D-arabinofuranosyl- $(1\rightarrow 3)$ -2-*O*-benzoyl-5-*O*-(*t*butyldiphenylsilyl)-α-D-arabinofuranoside (LAM-144). Prepared from thioglycoside LAM-24¹ (536 mg, 1.10 mmol), alcohol LAM-143 (800 mg, 0.92 mmol), 4 Å molecular sieves (0.2 g), *N*-iodosuccinimide (315 g, 1.33 mmol) and silver triflate (30 mg, 0.22 mmol) in CH₂Cl₂ (40 mL) as described for the synthesis of LAM-96, to afford LAM-144 (860 g, 76%) as a white foam. R_f 0.39 (8:1 hexanes-EtOAc); $[\alpha]_{D}$ +13.3 (c = 1.6, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, δ_{H}) 7.98-7.95 (m, 2 H), 7.70–7.67 (m, 4 H), 7.59–7.55 (m, 1 H), 7.45–7.27 (m, 12 H), 7.24–7.20 (m, 1 H), 7.03–7.00 (m, 2 H), 6.84–6.80 (m, 2 H), 5.72 (s, 1 H, H-1), 5.53 (d, 1 H, J = 0.5 Hz), 5.38 (d, 1 H, J = 3.0 Hz, H-1), 5.23 (d, 1 H, J = 4.7 Hz, H-1), 4.87 (d, 1 H, J = 12.5 Hz), 4.81 (d, 1 H, J = 12.5 Hz), 4.55 (dd, 1 H, J = 5.1, 0.5 Hz), 4.52 (dd, 1 H, J = 9.2, 9.1 Hz), 4.44–4.40 (m, 1 H), 4.31 (dd, 1 H, J = 9.1, 5.2 Hz), 4.23 (dd, 1 H, J = 7.6, 3.0 Hz), 4.20–4.17 (m, 1 H), 4.12 (dd, 1 H, J = 7.9, 7.6 Hz), 4.02–3.96 (m, 2 H), 3.93–3.85 (m, 4 H), 3.78 (s, 3 H), 3.76 (m, 1 H), 1.09 (s, 9 H), 1.06 (s, 9 H), 1.02 (s, 18 H), 0.99 (s, 9 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 165.3, 155.0, 150.3, 138.0, 135.6, 135.5, 133.3(9), 133.3(0), 133.2, 129.8, 129.6(9), 129.6(3), 129.2, 128.4, 128.2, 127.8, 127.6(6), 127.6(1), 127.5, 118.3, 114.5, 106.3 (C-1), 105.2 (C-1), 99.4 (C-1), 85.7, 84.3, 82.8, 81.0, 80.5, 79.8, 78.0, 74.3, 74.1, 71.6, 68.8, 67.5, 62.6, 55.6, 27.5, 27.4, 27.2, 27.1, 26.6, 22.6(2), 22.6(0), 20.1, 20.0, 19.3. HRMS (ESI) m/z calcd for (M+Na) C₆₈H₉₂O₁₅Si₃Na: 1255.5636. Found: 1255.5634.

p-Methoxyphenyl 2,3,5-Tri-*O*-benzoyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzoyl-α-D-arabinofuranosyl-(1→3)-2,5-di-*O*-benzoyl-α-D-arabinofuranoside (LAM-145). Prepared from LAM-144 (710 mg, 0.58 mmol), 10% Pd(OH)₂–C (30 mg) in EtOAc (30 mL), then 1M TBAF in THF solution (1 mL), HOAc (0.3 mL) in THF (20 mL), and then pyridine (4 mL) and benzoyl chloride (1 mL) as described for the synthesis of LAM-139, to afford LAM-145 (343 mg, 47% over three steps) as a white foam. R_f 0.28 (2:1 hexanes–EtOAc); [α]_D +4.3 (c = 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.13–7.91 (m, 14 H), 7.63–7.56 (m, 2 H), 7.52–7.20 (m, 19 H), 7.04–7.00 (m, 2 H), 6.83–6.79 (m, 2 H), 5.97 (dd, 1 H, J = 6.6, 5.2 Hz), 5.88 (d, 1 H, J = 4.7 Hz, H-1), 5.76 (s, 1 H, H-1), 5.59 (dd, 1 H, J = 6.6, 4.7 Hz), 5.47 (s, 1 H, H-1), 5.46–5.43 (m, 2 H), 4.82 (dd, 1 H, J = 11.8, 4.4 Hz), 4.76–4.67 (m, 3 H), 4.59–4.52 (m, 3 H), 4.49–4.42 (m, 3 H), 4.18 (dd, 1 H, J = 11.3, 6.6 Hz), 3.78 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.0(8), 166.0(0), 165.9, 165.8, 165.7, 165.4, 165.3, 155.2, 150.1, 133.6–128.2, 118.5, 114.5, 105.5 (C-1), 105.1 (C-1), 100.4 (C-1), 85.0, 83.2, 81.8, 81.5, 81.0, 79.5, 78.0, 77.5, 76.4, 65.6, 64.3, 63.0, 55.6. HRMS (ESI) *m*/*z* calcd for (M+Na) C₇₁H₆₀O₂₁Na: 1271.3519. Found: 1271.3508.

2,3,5-Tri-O-benzoyl-β-D-arabinofuranosyl-(1→2)-3,5-di-O-benzoyl-α-D-

arabinofuranosyl- $(1\rightarrow 3)$ -2,5-di-O-benzoyl- α -D-arabinofuranose (LAM-146). Prepared from compound LAM-145 (0.27 g, 0.22 mmol) in CH₃CN-H₂O (20 mL, 4:1) and CAN (0.59 g, 1.1 mmol) as described for the synthesis of LAM-41, to afford LAM-146 (0.21 g, 7:3 diastereomeric mixture, 86%) as a foam. Rf 0.18 (7:3 hexanes-EtOAc); ¹H NMR (500 MHz, $CDCl_3, \delta_H$) 8.14–7.88 (m, 14 H), 7.66–7.21 (m, 21 H), 5.97–5.90 (m, 1 H), 5.82 (d, 0.7 H, J =4.8 Hz) 5.75 (d, 0.3 H, J = 4.7 Hz) 5.68 (dd, 0.3 H, J = 4.4, 5.5 Hz), 5.60–5.54 (m, 1.4 H), 5.48– 5.42 (m, 1.7 H), 5.40–5.38 (m, 0.6 H), 5.32–5.31 (m, 0.3 H), 5.20 (d, 0.7 H, J = 1.1), 5.14 (dd, 0.3 H, J = 4.3, 6.0 Hz, 4.79-4.72 (m, 1 H), 4.71-4.58 (m, 4 H), 4.57-4.39 (m, 5 H), 4.26 (ddd, 1)0.3 H, J = 4.0, 6.1, 6.1 Hz), 4.20–4.10 (m, 1.3 H), 3.39 (d, 0.3 H, J = 5.8 Hz), 3.23 (d, 0.7 H, J = 4.8 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.4, 166.3(4), 166.3(2), 166.2(5), 166.2(2), 166.1(8), 166.1(6), 166.1(4), 165.9, 165.8, 133.9, 133.8(9), 133.8(7), 133.8(2), 133.7, 133.5, 133.4, 133.3(2), 133.3(0), 130.3, 130.2, 130.1(7), 130.1(6), 130.1(5), 130.0(9), 130.0(7), 130.0, 129.9(6), 129.9(0), 129.7(1), 129.7(0), 129.6, 129.5(3), 129.5(1), 129.3, 129.0, 128.9(4), 128.9(1), 128.9(0), 128.8(8), 128.8(4), 128.7(8), 128.7(3), 128.7(0), 128.6(8), 128.6(6), 105.7 (C-1), 105.6 (C-1), 101.4 (C-1), 100.9 (C-1), 100.7 (C-1), 95.6 (C-1), 85.5, 85.1, 83.2, 82.0, 81.6, 81.5, 81.4, 79.8, 79.1, 79.0, 78.9, 78.4(1), 78.4(0), 78.1, 77.9, 76.8, 76.8, 66.1, 66.0, 65.5, 64.7, 64.6, 63.8. HRMS (ESI) *m/z* calcd for (M+Na) C₆₄H₅₄O₂₀Na: 1165.3100. Found: 1165.3099.

Scheme S24. Synthesis of 20 Azide. a) CCI_3CN , DBU, CH_2CI_2 ; then TMSOTf, CH_2CI_2 , 87%; b) H_2NNH_2 ·HOAc, CH_3OH , CH_2CI_2 , 95% c) LAM-2, NIS, AgOTf, CH_2CI_2 ; d) HF·pyridine, THF, pyridine; 72% over two steps; e) CCI_3CN , DBU, CH_2CI_2 ; f) LAM-151, TMSOTf, CH_2CI_2 , 68% over two steps; g) $NaOCH_3$, CH_3OH , CH_2CI_2 , quant.

8-Azidooctyl 5-O-levulinoyl-2,3-di-O-benzoyl-a-D-arabinofuranosyl-

(1→5)-2,3-di-O-benzoyl-α-D-arabinofuranosyl-(1→3)-[2,3,5-tri-O-benzoyl-β-Darabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-*O*-benzoyl- α -Darabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-*O*-benzoyl- α -D-arabinofuranoside (LAM-147). The trichloroacetimidate derivative of pentasaccharide LAM-140 (0.2 g, 0.1 mmol) was prepared using DBU (10 µL) and trichloroacetonitrile (0.1 mL, 1 mmol) as described for the synthesis of LAM-42 (Scheme S7). This was immediately subjected to coupling with alcohol LAM-2¹ (0.067) g, 0.13 mmol) as described for the synthesis of LAM-43, to afford LAM-147 (0.22 g, 87% over two steps) as a syrup. $R_f 0.36$ (3:2 hexanes–EtOAc); $[\alpha]_D - 8.4$ (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.10–7.80 (m, 23 H), 7.60–7.16 (m, 37 H), 5.95 (dd, 1 H, J = 5.9, 5.9 Hz), 5.73 (d, 1 H, J = 4.8 Hz), 5.60 (d, 1 H, J = 4.8 Hz), 5.58 (d, 1 H, J = 4.6 Hz), 5.53–5.45 (m, 5 H), 5.43–5.36 (m, 3 H), 5.36–5.30 (m, 3 H), 5.26 (s, 1 H), 5.21 (s, 1 H), 5.12 (s, 1 H), 4.74 (dd, 1 H, J = 4.9, 11.8 Hz, 4.63 (dd, 1 H, J = 7.1, 11.4 Hz), 4.60–4.36 (m, 10 H), 4.31 (dd, 1 H, J = 5.1, 1.4 Hz) 11.8 Hz), 4.24–4.10 (m, 3 H), 4.0–3.90 (m, 3 H), 3.85-3.72 (m, 3 H), 3.50 (ddd, 1 H, J = 6.2, 9.5, 12.5 Hz), 3.20 (dd, 3 H, J = 6.9, 6.9 Hz), 2.70–2.63 (m, 3 H), 2.59–2.51 (m, 3 H), 2.09 (s, 3 H), 1.70–1.52 (m, 4 H), 1.45–1.20 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.2, 172.4, 165.9(9), 165.9(2), 165.8, 165.6, 165.5(8), 165.5(5), 165.5(3), 165.5, 165.4, 165.3, 164.9, 164.8, 133.6, 133.5, 133.4(5), 133.4(1), 133.3, 133.2(9), 133.2(3), 133.2(0), 133.1, 132.9, 132.9, 129.9, 129.8, 129.7(5), 129.7(4), 129.6(9), 129.6(5), 129.4, 129.1(7), 129.1(5), 129.0(6), 129.0(1), 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 128.1, 106.4 (C-1), 105.9(6) (C-1), 105.9 (C-1), 105.5 (C-1), 105.2 (C-1), 100.3 (C-1), 85.1, 82.9, 82.6, 81.9, 81.8, 81.7, 81.6, 81.4, 80.9, 80.8, 80.3, 79.2(3), 78.1(9), 77.5(8), 77.5(6), 77.3(4), 77.3(0), 77.2, 77.1, 76.8, 76.5, 67.4, 66.1, 65.8, 65.7, 64.3, 63.5, 51.4, 37.9, 29.8, 29.5, 29.3, 29.1, 28.8, 27.8, 26.7, 26.1. HRMS (ESI) m/z calcd for (M+Na) C₁₂₇H₁₁₉N₃O₃₉Na: 2332.7312. Found: 2332.7306.

8-Azidooctyl 2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -Darabinofuranosyl- $(1\rightarrow 3)$ -[2,3,5-tri-O-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-Obenzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-Obenzoyl- α -D-arabinofuranoside (LAM-148). Prepared from LAM-147 (0.22 g, 0.1 mmol) and hydrazine acetate (0.2 g, 2.1 mmol) in CH₂Cl₂-CH₃OH (15 mL, 9:1) as described for the synthesis of LAM-116 to give LAM-148 (0.2 g, 95%) as a foam. R_f 0.24 (62:38 hexanesEtOAc); $[\alpha]_D -21.3$ (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.10–7.80 (m, 24 H), 7.62–7.14 (m, 36 H), 5.97 (dd, 1 H, J = 5.3, 5.3 Hz), 5.76 (d, 1 H, J = 4.8 Hz) 5.60 (d, 3 H, J =4.9 Hz) 5.52–5.46 (m, 5 H) 5.43 (dd, 1 H, J = 4.8, 5.6 Hz), 5.38 (s, 1 H), 5.36 (d, 3 H, J =4.9 Hz), 5.24 (s, 1 H), 5.22 (s, 1 H), 5.15 (s, 1 H), 4.76 (dd, 1 H, J = 4.9, 11.7 Hz), 4.70 (dd, 1 H, J =7.2, 11.7 Hz), 4.58–4.34 (m, 9 H), 4.25–4.15 (m, 3 H), 4.10–4.04 (m, 1 H), 4.04–3.74 (m, 7 H), 3.50 (ddd, 1 H, J = 6.2, 9.5, 12.5 Hz), 3.20 (dd, 3 H, J = 6.9, 6.9 Hz), 2.46 (br.s, H), 1.68–1.50 (m, 4 H), 1.42–1.25 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.1, 165.9(5), 165.9(3), 165.6(6), 165.6(1), 165.5(3), 165.5(1), 165.4, 165.3, 165.0, 164.9, 133.6, 133.5, 133.4(2), 133.4(1), 133.3, 133.2(4), 133.2(1), 133.1, 132.9, 132.8, 129.8(9), 129.8(4), 129.8(1), 129.7(5), 129.7(1), 129.6(9), 129.6(7), 129.4, 129.2, 129.1(4), 129.1(2), 129.1(0), 129.0, 128.9(9), 128.9(6), 128.8, 128.5(2), 128.5(0), 128.4(8), 128.4(5), 128.4(3), 128.3(8), 128.3(2), 128.3(0), 128.2, 128.1(9), 128.1(8), 106.1(1) (C-1), 105.9 (C-1), 105.8 (C-1), 105.5 (C-1), 105.3 (C-1), 100.3 (C-1), 85.1, 83.6, 82.9, 82.6, 81.9, 81.8, 81.7, 81.6, 80.8, 80.3, 79.2, 78.3, 77.6, 77.4, 77.3, 77.1(4), 77.1(0), 76.8, 76.5, 67.4, 66.1, 65.8, 65.7, 65.6, 64.3, 62.2, 51.42 29.5, 29.3, 29.1, 28.8, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₂₂H₁₁₃N₃O₃₇Na: 2234.6945. Found: 2234.6946.

8-Azidooctyl 2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -Darabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-[2,3,5-tri-O-benzoyl- β -D-arabinofuranosyl-(1 \rightarrow 2)-3,5-di-Obenzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-Obenzoyl-α-D-arabinofuranoside (LAM-150). Prepared from alcohol LAM-148 (0.18 g, 0.08 mmol), thioglycoside LAM-119²³ (0.13 g, 0.12 mmol), powdered 4 Å molecular sieves (0.1 g), N-iodosuccinimide (28 mg, 0.12 mmol) and silver triflate (4 mg, 0.02 mmol) in CH₂Cl₂ (9 mL) as described for the synthesis of LAM-3. After work up, the crude material was quickly filtered through a short silicagel column (3:2; hexane-EtOAc) and the fractions containing the octasaccharide were combined, concentrated and dried under vacuum for 2h. The vacuum-dried crude octasaccharide LAM-149 was dissolved in THF-pyridine (5 mL, 4:1) and treated with 70% HF pyridine (0.1 mL) as described for the synthesis of LAM-26 to afford LAM-150 (0.17 g, 72% over two steps) as a semisolid. $R_f 0.2$ (3:2 hexanes–EtOAc). $[\alpha]_D - 9.0$ (c = 0.20, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.14–7.67 (m, 30 H), 7.61–7.07 (m, 50 H), 5.98–5.95 (m, 1 H), 5.75 (dd, 1 H, J = 4.8 Hz), 5.65–5.58 (m, 7 H), 5.57 (s, 1 H), 5.54 (d, 3 H, J = 4.3 Hz), 5.50–5.48 (m, 3 H), 5.43-5.34 (m, 7 H), 5.24 (s, 3 H), 5.14 (s, 1 H), 4.76 (dd, 1 H, J = 4.9, 11.6 Hz), 4.66 (dd, 1 H, J = 7.2, 11.6 Hz), 4.60–4.37 (m, 11 H), 4.23–4.04 (m, 5 H), 4.03–3.88 (m, 5 H), 3.86– 3.72 (m, 4 H), 3.51 (ddd, 1 H, J = 6.3, 6.3, 9.5 Hz), 3.22 (dd, 3 H, J = 7.0, 7.0 Hz), 1.68–1.47 (m, 4 H), 1.38–1.20 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.0(4), 166.0(0), 165.9, 165.8, 165.6(4), 165.6(1), 165.6(0), 165.5(4), 165.5(2), 165.4, 165.3, 165.1, 164.9(8), 164.9(0), 133.6, 133.5, 133.4(6), 133.4(2), 133.3(8), 133.3(2), 133.2(7), 133.2(5), 133.2(4), 133.2(3), 133.2(2), 133.1(9), 133.1(3), 133.1(0), 132.8(7), 132.8(5), 129.8(9), 129.8(8), 129.8(6), 129.8(3), 129.8(0), 129.8, 129.7(5), 129.7(3), 129.7(2), 129.6(9), 129.6(8), 129.6(6), 129.4, 129.1(8), 129.1(7), 129.1(4), 129.0(7), 129.0(3), 129.0(1), 128.9(8), 128.9(7), 128.7, 128.5, 128.4(9), 128.4(4), 128.4(1), 128.4(0), 128.2(9), 128.2(7), 128.2(5), 128.2(2), 128.2(1), 128.2(0), 128.1, 106.5 (C-1), 105.9 (C-1), 105.8(5) (C-1), 105.8(4) (C-1), 105.8 (C-1), 105.5 (C-1), 105.2 (C-1), 100.3 (C-1), 85.1, 83.6, 82.9, 82.7, 81.9(6), 81.9(3), 81.9(0), 81.7, 81.6, 81.6, 81.5, 80.8, 80.2, 79.1, 78.2, 77.7, 77.6, 77.4, 76.9, 76.5, 67.4, 66.1, 65.8, 64.3, 62.3, 51.4, 36.6, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1, 24.7. HRMS (ESI) *m/z* calcd for (M+Na) C₁₆₀H₁₄₅N₃O₄₉Na: 2914.8838. Found: 2914.8834.

8-Azidooctyl 2,3,5-tri-O-benzoyl-β-D-arabinofuranosyl-(1-2)-3,5-di-O-benzoyl-α-Darabinofuranosyl- $(1\rightarrow 3)$ -2,5-di-O-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-Obenzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -2,3-di-O-benzoyl- α -D-arabinofuranosyl- $(1 \rightarrow 5)$ -[2,3,5tri-*O*-benzoyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzoyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$]-2-O-benzoyl- α -D-arabinofuranosyl-(1 \rightarrow 5)-2,3-di-O-benzoyl- α -D-arabinofuranoside (LAM-152) Trichloroacetimidate LAM-151 was prepared from hemiacetal LAM-146 (0.09 g, 0.08 mmol) using DBU (10 µL) and trichloroacetonitrile (0.05 mL, 0.5 mmol) as described for the synthesis of LAM-42 (Scheme S7). This was immediately subjected to coupling with alcohol LAM-150 (0.15 g, 0.05 mmol) as described for the synthesis of LAM-43, to afford LAM-152 (0.14 g, 68%) as a syrup. R_f 0.19 (3:2 hexanes-EtOAc); $[\alpha]_D$ -27.6 (c = 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.11–7.77 (m, 46 H), 7.61–7.15 (m, 69 H), 5.96 (dd, 3 H, J = 5.3, 11.6 Hz), 5.75 (dd, 3 H, J = 4.8, 8.6 Hz), 5.67–5.55 (m, 10 H), 5.53 (d, 3 H, J = 4.8 Hz), 5.50–5.43 (m, 3 H), 5.43–5.32 (m, 8 H), 5.23 (s, 3 H), 5.14 (s, 3 H), 4.82–4.61 (m, 5 H), 4.60–4.36 (m, 16 H), 4.28-4.03 (m, 8 H), 4.00-3.86 (m, 5 H), 3.85-3.73 (m, 5 H), 3.51 (ddd, 1 H, J = 7.0, 7.0 Hz), 1.68-1.48 (m, 4 H), 1.43-1.21 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.1, 166.0, 165.9(7), 165.9(3), 165.9(2), 165.8(3), 165.6(7), 165.6(4), 165.6(0), 165.5(7), 165.5(6), 165.5(4), 165.5(1), 165.4, 165.3, 165.0(8), 165.0(5), 164.9(9), 164.9(0), 133.5(6), 133.5(1), 133.4(6), 133.4(2),

133.3(8), 133.3(1), 133.2(6), 133.2(2), 133.1(8), 133.1(3), 133.0(9), 133.0(5), 133.0(1), 132.9, 132.8(8), 132.8(5), 132.8(3), 129.9, 129.8(5), 129.8(1), 129.7(4), 129.7(0), 129.4, 129.1(7), 129.1(5), 129.1(4), 129.0(8), 129.0(4), 129.0, 128.8, 128.7, 128.4(9), 128.4(7), 128.4(1), 128.4(0), 128.2(9), 128.2(3), 128.2(0), 128.1, 106.5 (C-1), 105.9(8) (C-1), 105.9(5) (C-1), 105.9(0) (C-1), 105.8 ($2 \times C$ -1), 105.7 (C-1), 105.6 (C-1), 105.2 (C-1), 100.5 (C-1), 100.3 (C-1), 85.5, 85.1, 82.9, 82.7, 82.1, 81.9, 81.8(8), 81.8(4), 81.7(7), 81.7(4), 81.5(9), 81.5(4), 81.5(0), 80.8, 80.4, 80.2, 79.3, 79.1, 78.3, 78.2, 77.6, 77.5, 77.4, 77.2, 77.1, 76.9, 76.5, 76.4(6), 67.4(2), 66.1, 65.9(5), 65.9(1), 65.8(8), 65.8(3), 65.7(0), 65.6, 65.4, 64.3, 51.4, 36.6, 29.5, 29.3, 29.1, 28.8, 26.7, 26.1, 24.7; Low res MS (ESI) calcd for (M+Na) C₂₂₄H₁₉₇N₃O₆₈Na: 4041. Found: 4041.

 β -D-arabinofuranosyl- $(1 \rightarrow 2)$ - α -D-arabinofuranosyl- $(1 \rightarrow 3)$ - α -D-**8-Azidooctvl** arabinofuranosyl- $(1 \rightarrow 5)$ - α -D-arabinofuranosyl- $(1 \rightarrow 5)$ - α -D-arabinofuranosyl- $(1 \rightarrow 5)$ - α -Darabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranosyl- $(1\rightarrow 5)$ -[β -D-arabinofuranosyl- $(1\rightarrow 2)$ - α -Darabinofuranosyl- $(1\rightarrow 5)$]- α -D-arabinofuranosyl- $(1\rightarrow 5)$ - α -D-arabinofuranoside (20 Azide). Prepared from LAM-152 (0.1 g, 0.025 mmol) and 1M sodium methoxide solution as described for the synthesis of 18 Azide, to afford 20 Azide (0.041 g, quantitative) as a fluffy solid. $[\alpha]_D$ +79.5 (c = 0.2, CH₃OH); ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.17 (d, 1 H, J = 1.6 Hz, H-1), 5.15 (d, 1 H, J = 1.3 Hz, H-1), 5.14 (d, 1 H, J = 0.9 Hz, H-1), 5.12 (d, 1 H, J = 0.9 Hz, H-1), 5.10–5.07 (m, $6 \text{ H}, 6 \times \text{H-1}$, 4.99 (d, 1 H, J = 2.0 Hz, H-1), 4.32 - 4.26 (m, 3 H), 4.23 - 4.16 (m, 6 H), 4.16 - 3.98 H(m, 23 H), 3.98-3.64 (m, 26 H), 3.57 (ddd, 1 H, J = 6.5, 9.9, 13.0 Hz), 3.31 (dd, 3 H, J = 6.9, 6.9Hz), 1.65–1.57 (m, 4 H), 1.40–1.30 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 108.3(9) (2 × C-1), 108.3(7) (2 × C-1), 108.3(0) (C-1), 108.1 (C-1), 108.0 (C-1), 106.6 (C-1), 106.5 (C-1), 101.5 $(2 \times C-1)$, 87.7, 87.6, 83.7, 83.3, 83.2, 83.1, 82.9, 82.5, 82.4, 82.0, 81.8, 81.7(2), 81.7(1), 81.7(0), 80.0, 77.6, 77.5, 77.2, 77.1(6), 77.1(2), 75.7, 75.6, 75.0(4), 75.0(2), 69.5, 67.7, 67.7, 67.5, 67.3(4), 67.3(0), 63.8, 61.4(9), 61.4(5), 52.1, 29.5, 29.1, 29.0, 28.8, 26.7, 25.9. HRMS (ESI) *m/z* calcd for (M+Na) C₆₃H₁₀₅N₃O₄₅Na: 1646.5912. Found: 1646.5916.

18. Synthesis of 23

Scheme S25. Synthesis of 23. a) PhCHO, Et₃SiH, TMSOTf, CH_2CI_2 ; then *n*-Bu₄NF, THF, 68%; b) TMSOTf, CH_2CI_2 , 70%; c) 5-azidopentyl iodide, NaH, DMF, 95%; d) H₂, Pd(OH)₂–C, phosphate buffer, CH₃OH, THF, 88%.

5-azidopentyl iodide. Synthesized as described previously.²⁵ ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 3.27 (t, 2 H, J = 6.9 Hz), 3.17 (t, 2 H, J = 6.9), 1.86–1.81 (m, 2 H), 1.63–1.58 (m, 2 H), 1.5–1.45 (m, 2 H); ¹³C NMR (600 MHz, CDCl₃, $\delta_{\rm C}$) 35.1, 32.9, 27.8, 27.7, 6.3.

[2,3,4-Tri-*O*-benzyl-6-*O*-(2-naphthylmethyl)- α -D-mannopyranosyl]-(1 \rightarrow 2)-(2,3,4-tri-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 6)-3,4,5-tri-*O*-benzyl-D-*myo*-inositol (LAM-154). Compound LAM-153²⁶ (110 mg, 0.06 mmol) and 3 Å molecular sieves (200 mg) in CH₂Cl₂ (5 mL) was stirred at rt for 1 h. The mixture was cooled -40 °C and benzaldehyde (39 μ L, 0.39 mmol) was added. After stirring for 5 min, triethylsilane (67 μ L, 0.42 mmol) and TMSOTf (4 μ L, 18 mmol) were added and the resulting solution was stirred for 48 h. At that point, *n*-Bu₄NF (1M in THF, 0.3 mL) was added and the solution was warmed to rt and then stirred for 12 h. The

solution was filtered through Celite, the filtrate was diluted with CH₂Cl₂, washed with water, brine, dried (MgSO₄) and concentrated to give a residue that was purified by chromatography (2.5:1 hexanes-EtOAc) to yield LAM-154 (64 mg, 68%). $[\alpha]_D$ +38.9 (c = 3.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.76–7.67 (m, 4 H), 7.45–7.10 (m, 46 H), 7.01 (d, 2 H, J = 7.1 Hz), 5.44 (d, 1 H, J = 1.4 Hz, H-1), 5.27 (d, 1 H, J = 2.6 Hz, H-1), 4.86 (d, 1 H, J = 10.7 Hz), 4.83– 4.51 (m, 17 H), 4.47 (d, 1 H, J = 12.2 Hz,), 4.41 (d, 1 H, J = 10.6 Hz), 4.24 (app t, 1 H, J = 2.4Hz), 4.11–4.05 (m, 2 H), 3.93–3.75 (m, 8 H), 3.57 (dd, 1 H, J = 3.6, 10.6 Hz), 3.50–3.47 (m, 2 H), 3.45 (dd, 1 H, J = 4.1, 11.8 Hz), 3.45 (dd, 1 H, J = 4.1, 11.8 Hz), 3.40 (dd, 1 H, J = 1.3, 10.6 Hz), 3.28 (d, 1 H, J = 2.4, 9.8 Hz), 3.20 (app t, 1 H, J = 9.2 Hz); ¹³C NMR (150 MHz, CDCl₃, $\delta_{\rm C}$) 138.5(0), 138.4(6), 138.3(8), 138.37, 138.3, 138.2, 138.0(4), 138.0(3), 137.9, 135.7, 133.2, 132.9, 128.4(3), 128.3(7), 128.3(4), 128.3(2), 128.2(8), 128.2, 128.1, 128.0(1), 127.9(6), 127.9(3), 127.8(7), 127.8, 127.6(9), 127.6(5), 127.5(9), 127.5(5), 127.5, 127.4(2), 127.3(5), 127.2, 126.7, 126.1, 125.9, 125.7, 99.0 (C-1), 98.1 (C-1), 81.1, 80.9, 79.2, 78.8, 78.5, 75.7, 75.6, 75.4, 74.9, 74.8, 74.6, 74.5, 74.3, 73.5, 73.4, 72.5(4), 72.4(9), 72.1, 72.0, 71.9, 71.8, 71.7, 68.8, 61.9. HRMS (ESI) *m/z* calcd for (M+Na) calcd for C₉₂H₉₄O₁₆Na: 1477.6440. Found: 1477.6443. A small amount of [2,3,4-tri-O-benzyl-6-O-(2-naphthylmethyl)-α-D-mannopyranosyl]- $(1\rightarrow 2)-(2,3,4-\text{tri-}O-\text{benzyl-}\alpha-D-\text{mannopyranosyl})-(1\rightarrow 6)-4,5-\text{di-}O-\text{benzyl-}D-\text{myo-inositol}$ (8.8) mg, 10%) was also isolated. $[\alpha]_{\rm D}$ +53.9 (c = 2.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.78– 7.69 (m, 4 H), 7.46–7.12 (m, 41 H), 7.04 (d, 2 H, J = 7.3 Hz), 5.42 (s, 1 H, H-1), 4.99 (d, 1 H, J = 3.7 Hz, H-1), 4.90 (d, 1 H, J = 11.1 Hz), 4.85 (d, 1 H, J = 10.8 Hz), 4.77–4.51 (m, 15 H), 4.49 (d, 1 H, J = 12.2 Hz), 4.44 (d, 1 H, J = 10.8 Hz), 4.30 (app t, 1 H, J = 2.2 Hz), 4.15-4.12 (m, 1)H), 4.08 (app t, 1 H, J = 9.5 Hz), 3.98–3.95 (m, 1 H), 3.88 (dd, 1 H, J = 2.7, 6.2 Hz), 3.83–3.76 (m, 4 H), 3.72-3.69 (m, 2 H), 3.60 (t, 1 H, J = 9.2 Hz), 3.57 (dd, 1 H, J = 3.9, 10.8 Hz), 3.90(app t, 1 H, J = 9.2 Hz), 3.41–3.38 (m, 2 H), 3.34 (app t, 1 H, J = 9.2 Hz), 3.27 (dd, 1 H, J = 2.2, 9.2 Hz); 13 C NMR (150 MHz, CDCl₃, δ_{C}) 138.6, 138.4(4), 138.4(1), 138.1(2), 138.0(3), 137.9(6), 137.8(8), 137.6(3), 135.6(9), 133.1(6), 132.9(1), 128.4(9), 128.4(5), 128.3(8), 128.3(7), 128.2(8), 128.2(6), 128.1(0), 128.0(9), 127.9(6), 127.9(2), 127.8(8), 127.8(5), 127.6(3), 127.5(9), 127.4, 127.3, 127.1, 126.7, 126.1, 125.9, 125.7, 99.9 (C-1), 98.6 (C-1), 83.1, 80.3, 79.0, 78.2, 76.6, 75.4, 75.3, 75.0, 74.6, 74.2, 73.8, 73.7, 73.5, 73.2, 73.1, 72.6, 72.5, 72.4, 72.1, 71.9, 71.7(3), 71.6(3), 68.8, 62.6. HRMS (ESI) m/z calcd for (M+Na) calcd for C₈₅H₈₈O₁₆Na: 1387.5970. Found: 1387.5983.
3,4,6-Tri-O-benzyl-α-D-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-D-

mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 6)-[2,3,4-Tri-Obenzyl-6-O-(2-naphthylmethyl)- α -D-mannopyranosyl-(1 \rightarrow 2)]-3,4,5-tri-O-benzyl-D-*myo*inositol (LAM-156). A mixture of LAM-154 (140 mg, 0.095 mmol) and 3Å molecular sieves in Et₂O (10 mL) was stirred at rt for 1 h before being cooled to -40 °C. TMSOTf (3 µL, 0.02 mmol) was then added and then trichloroacetimidate LAM-155²⁶ (419 mg, 0.21 mmol) in Et₂O (2 mL) was added via syringe pump over 30 min. The solution was stirred at -40 °C for 2 h, Et₃N (10 µL) was added and then the mixture was filtered through Celite. The filtrate was diluted with EtOAc and washed successively with a satd ag soln of NaHCO₃ and brine. The organic layer was dried (MgSO₄) and concentrated to a residue that was purified by chromatography (1:2.5 EtOAc-hexanes) to provide LAM-156 (221 mg, 70%). $[\alpha]_D$ +37.9 (c = 1.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 7.76–7.75 (m, 1 H), 7.69–7.61 (m, 3 H), 7.44–7.41 (m, 2 H), 7.33– 6.99 (m, 111 H), 5.45 (d, 1 H, J = 1.1 Hz, H-1), 5.19 (d, 1 H, J = 1.4 Hz, H-1), 5.18 (d, 1 H, J = 2.1 Hz, H-1), 5.17 (d, 1 H, J = 1.5 Hz, H-1), 4.93 (d, 1 H, J = 1.4 Hz, H-1), 4.88–4.77 (m, 10 H), 4.70-4.26 (m, 37 H), 4.15 (app t, 1 H, J = 2.0 Hz), 4.10 (app t, 1 H, J = 1.9 Hz), 4.07-4.04 (m, 2 H), 3.93–3.73 (m, 20 H), 3.67–3.62 (m, 2 H), 3.59–3.56 (m, 1 H), 3.52–3.47 (m, 5 H), 3.22–3.29 (m, 2 H), 3.28 (dd, 1 H, J = 9.8, 2.4 Hz), 3.18 (app t, 1 H, J = 9.3 Hz); ¹³C NMR (600 MHz, $CDCl_3, \delta_C$) 138.8, 138.7(2), 138.7(0), 138.6(9), 138.6(0), 138.5(5), 138.4(4), 138.4(2), 138.3(7), 138.3(4), 138.3(1), 138.2, 138.1, 138.0, 137.9, 135.8, 133.2, 132.9, 128.4(4), 128.3(9), 128.3(7), 128.2(8), 128.2(5), 128.2(1), 128.1(9), 128.1(5), 128.1(2), 128.0(8), 127.9(7), 127.9(5), 127.8(7), 127.8(5), 127.8, 127.7(3), 127.7(1), 127.6(4), 127.6(1), 127.5(9), 127.5(4), 127.5(0), 127.4(3), 127.4(0), 127.3(6), 127.2(9), 127.2(8), 127.2, 127.1, 126.5, 126.0, 125.9, 125.6, 100.5 (${}^{1}J_{C-1,H-1} =$ 175.6 Hz, C-1), 99.2(4) (${}^{1}J_{C-1,H-1}$, J = 171.1 Hz, 2 × C-1), 99.2(2) (${}^{1}J_{C-1,H-1} = 171.1$ Hz, C-1), 98.8 (${}^{1}J_{C-1,H-1} = 172.2 \text{ Hz}, C-1$), 98.5 (${}^{1}J_{C-1,H-1} = 170.0 \text{ Hz}, C-1$), 81.2, 80.4, 79.9, 79.8, 78.8(9), 78.8(5), 78.7, 75.5, 75.3, 74.9(3), 74.8(8), 74.8, 74.6(9), 74.6(5), 74.5, 74.3, 73.9, 73.4, 73.3, 73.23, 73.15, 72.7, 72.5(1), 72.4(6), 72.3, 72.1, 72.0(3), 72.0(1), 71.9(3), 71.9(0), 71.8(8), 71.8, 71.7, 71.5(1), 71.4(8), 71.2, 71.1, 69.2, 69.0, 68.9, 68.8, 66.7, 66.1.

3,4,6-Tri-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -[2,3,4-Tri-O-benzyl- $(1\rightarrow 6)$ - $(1\rightarrow 6)$ -

benzyl-6-O-(2-naphthylmethyl)- α -D-mannopyranosyl-(1 \rightarrow 2)]-1-(5'-azidopentyl)-3,4,5-tri-Obenzyl-D-myo-inositol (LAM-157). To a solution of LAM-156 (100 mg, 0.3 mmol) and 5azidopentyl iodide (37 mg, 0.16 mmol) in DMF (1 mL), was added sodium hydride (60% oil suspension, 11 mg, 0.26 mmol) at 0 °C. The solution was stirred for 20 h as it warmed to rt, diluted with EtOAc and water was added. The aqueous layer was extracted with twice with EtOAc and the combined organic layer was washed with water and then brine. After drying (MgSO₄), the organic layer was concentrated and the resulting residue was purified by chromatography (1:3 EtOAc-Hexanes) to give LAM-157 (98 mg, 95%). $[\alpha]_D$ +28.2 (c = 5.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.89–7.66 (m, 4 H), 7.46–6.96 (m, 114 H), 5.47 (d, 1 H, J = 1.3 Hz, H-1), 5.23 (d, 1 H, J = 1.3 Hz, H-1), 5.21 (d, 1 H, J = 1.8 Hz, H-1), 5.20 (d, 1 H, J= 1.4 Hz, H-1, 5.01 (d, 1 H, J = 10.7 Hz), 4.94 (d, 1 H, J = 11.8 Hz), 4.90 (d, 1 H, J = 10.6 Hz), 4.86–4.26 (m, 44 H), 4.23 (d, 1 H, J = 11.9 Hz), 4.17–3.80 (m, 24 H), 3.68–3.62 (m, 3 H), 3.57– 3.49 (m, 4 H), 3.41–3.25 (m, 9 H), 3.12–3.02 (m, 4 H), 1.65–1.57 (m, 2 H), 1.48–1.35 (m, 4 H); 13 C NMR (600 MHz, CDCl₃, $\delta_{\rm C}$) 139.0, 138.9, 138.8, 138.7(2), 138.6(6), 138.6(2), 138.5(9), 138.5(6), 138.5(2), 138.4(6), 138.4(3), 138.4(0), 138.3(2), 138.3(0), 138.2, 138.1, 138.0, 137.9, 137.8, 135.8, 133.2, 132.9, 128.4(9), 128.4(6), 128.3(4), 128.3(1), 128.2(9), 128.2(6), 128.2(4), 128.1(9), 128.1(4), 128.1(2), 128.1(0), 128.0(6), 128.0(4), 128.0(0), 127.9(2), 127.8(6), 127.8(3), 128.0(1), 128.0(1), 128.0(2), 128.0(1), 128.0(2), 128.127.8(0), 127.7(7), 127.7(4), 127.6(8), 127.6(4), 127.5(8), 127.5(5), 127.5, 127.4(3), 127.3(8), 127.2(7), 127.2(5), 127.2, 127.1, 126.8, 126.7, 126.5, 125.9, 125.7, 100.3 (C-1), 99.2 (C-1), 99.1 (C-1), 98.9 (C-1), 98.7 (C-1), 98.3 (C-1), 82.7, 81.4, 80.7, 79.9(2), 79.8(9), 79.8(6), 79.1, 78.9, 78.8, 76.6, 76.1, 75.8, 75.7, 75.5, 74.9, 74.8, 74.8, 74.6(2), 74.6(0), 74.5, 74.4, 74.3, 74.2, 73.5, 73.4, 73.3(2), 73.2(6), 73.2, 72.8, 72.7, 72.5, 72.40, 72.36, 72.3, 72.21, 72.17, 72.1, 72.0, 71.9, 71.8(4), 71.8(1), 71.2, 71.1, 71.0, 70.8, 70.5, 70.1, 69.1, 68.9, 68.8, 68.7, 65.9, 65.7, 62.6, 51.0, 29.7, 28.6, 23.0. HRMS (ESI) *m/z* calcd for (M+2Na) calcd for C₂₁₂H₂₁₉N₃O₃₆Na₂: 1715.2675. Found: 1715.2708.

 α -D-Mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-(1 \rightarrow 6)- α -D-mannopyranosyl-(1 \rightarrow 6)-[α -D-mannopyranosyl-(1 \rightarrow 2)]-1-(5'-aminopentyl)-D-*myo*-inositol (23). A solution of LAM-157 (201 mg, 0.06 mmol) in a mixture of phosphate buffer-CH₃OH-THF (1:6:4, 20 mL) was degassed with argon and then 20% Pd(OH)₂ (1.0 g) was added. The mixture was further purged with H₂ gas and stirred under H₂ (1 atm) for 12 h. At that point, the mixture was filtered through Celite and the filtrate was concentrated to a residue that was purified on a Sephadex column (water). The fractions containing the desired compound were pooled and lyophilized to give **23** (64 mg, 88%). ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 5.30 (s, 1 H, H-1), 5.21 (s, 1 H, H-1), 5.13 (s, 2 H, 2 × H-1), 5.06 (s, 2 H, 2 × H-1), 4.32–3.37 (m, 46 H), 3.08–3.00 (m, 1 H), 1.47–1.42 (m, 2 H), 1.34–1.16 (m, 2 H), 1.00–0.96 (m, 2 H). HRMS (ESI) *m*/*z* calcd for (M+H) calcd for C₄₇H₈₄NO₃₆: 1238.4773. Found: 1238.4801.

Scheme S26. Synthesis of linker for PGL targets. a) 7-octyl-1-ol, PdCl₂(PPh₃)₂, Et₃N, CH₃CN, 91%; b) H₂, Pd(OH)₂–C, CH₃OH; c) CBr₄, PPh₃, Et₂O, 67% over two steps; d) NaN₃, DMF, 81%; e) NaOCH₃, CH₃OH, CH₂Cl₂, quant.

p-(8-Hydroxy-1-octynyl)phenyl acetate (PGL-2). To a solution of 7-octyn-1-ol ²⁷ (431 mg, 3.42 mmol), 4-iodophenyl acetate²⁸, (PGL-1, 746 mg, 2.85 mmol) and PdCl₂(PPh₃)₂ (260 mg, 0.37 mmol) in 2:1 Et₃N–CH₃CN (6 mL) at rt was added CuI (81 mg, 0.43 mmol). The reaction mixture was stirred at rt for 4 h, concentrated and the residue was then co-evaporated twice with toluene. The resulting residue was purified by chromatography (3:7 EtOAc–hexane) to give PGL-2 (674 mg, 91%) as a yellow oil. R_f 0.27 (2:3 EtOAc–hexane); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.43–7.30 (m, 2 H), 7.05–6.94 (m, 2 H), 3.66 (app t, 2 H, *J* = 6.4 Hz), 2.40 (app t, 2 H, *J* = 7.1 Hz), 2.28 (s, 3 H), 1.67–1.56 (m, 4 H), 1.49 (ddd, 2 H, *J* = 14.0, 9.3, 6.9 Hz), 1.45–1.37 (m, 2 H), 1.26 (s, 1H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 169.4, 150.1, 132.8, 122.0, 121.7, 90.5, 80.1, 63.2, 32.9, 28.9, 28.8, 25.5, 21.3, 19.5. HRMS (EI) *m/z* calcd for (M+Na) C₁₆H₂₀O₃Na: 283.1305. Found: 283.1299.

p-(8-Bromo-1-octynyl)phenyl acetate (PGL-4). To a solution of PGL-2 (327 mg, 1.24 mmol) in CH₃OH (15 mL) at rt was added Pd(OH)₂–C (49 mg) and the solution was stirred under H₂ (1 atm) at rt for 2 d. The reaction mixture was filtered and concentrated to give PGL-3 as a light yellow solid. To the solution of the resulting residue (384 mg, 1.45 mmol) and CBr₄ (1.06 g, 3.19 mmol) in Et₂O (12 mL) at rt was added PPh₃ (1.68 g, 6.39 mmol). The reaction mixture was stirred at rt for 40 min and concentrated and the resulting residue was purified by chromatography (3:97 EtOAc–hexane) to yield PGL-4 (331 mg, 67%, two steps) as a colorless oil. R_f 0.47 (5:95 EtOAc–hexane); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.19–7.12 (m, 2 H), 7.01–6.94 (m, 2 H), 3.40 (app t, 2 H, *J* = 6.9 Hz), 2.62–2.55 (m, 2 H), 2.29 (s, 3 H), 1.89–1.80 (m, 2

H), 1.65–1.56 (m, 2 H), 1.42 (dt, 2 H, J = 14.7, 7.5 Hz), 1.36–1.27 (m, 6 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 169.9, 148.8, 140.5, 129.5, 121.4, 35.5, 34.2, 33.0, 31.6, 29.5, 29.3, 28.9, 28.4, 21.4. HRMS (EI) *m/z* calcd for (M+Na) C₁₆H₂₃O₂BrNa: 349.0774. Found: 349.0771.

p-(8-Azido-1-octynyl)phenyl acetate (PGL-5). A suspension of PGL-4 (318 mg, 0.97 mmol) and NaN₃ (126 mg, 1.94 mmol) in DMF (5 mL) was stirred at 90 °C for 1 d and then cooled and concentrated. The resulting residue was purified by chromatography (3:97 EtOAc-hexane) to yield PGL-5 (227 mg, 81%) as a colorless oil. R_f 0.41 (5:95 EtOAc-hexane); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.22–7.14 (m, 2 H), 7.02–6.93 (m, 2 H), 3.25 (app t, 2 H, *J* = 7.0 Hz), 2.64–2.54 (m, 2 H), 2.29 (s, 3 H), 1.64–1.55 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 169.9, 148.8, 140.6, 129.5, 121.4, 51.7, 35.5, 31.6, 29.5, 29.3, 29.3, 29.0, 26.9, 21.4. HRMS (EI) *m/z* calcd for (M+Na) C₁₆H₂₃O₂N₃Na: 312.1682. Found: 312.1681.

4-(8-Azidooctyl)phenol (PGL-6). To a solution of **PGL-5** (200 mg, 691 μmol) in 1:1 CH₂Cl₂–CH₃OH (4 mL) was added sodium methoxide (26 mg, 481 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated to yield **PGL-6** (171 mg, quant) as a colorless oil. R_f 0.24 (1:9 EtOAc–hexane); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.04 (d, 2 H, J = 8.4 Hz), 6.75 (d, 2 H, J = 8.5 Hz), 4.65 (s, 1H), 3.25 (app t, 2 H, J = 7.0 Hz), 2.59–2.44 (m, 2 H), 1.59 (dt, 4 H, J = 14.1, 6.9 Hz), 1.41–1.23; ¹³C NMR (125 MHz, CDCl₃, δ_C) 153.6, 135.3, 129.6, 115.3, 51.7, 35.2, 31.9, 29.5, 29.3, 29.0, 26.9. HRMS (EI) *m/z* calcd for (M+Na) C₁₄H₂₁ON₃Na: 270.1577. Found: 270.1573.

Scheme S27. Synthesis of 26 Squaramide. a) PGL-6, $BF_3 \cdot OEt_2$, CH_2Cl_2 , 66%; b) NaOCH₃, CH_3OH , CH_2Cl_2 , 98%; c) PhC(OCH₃)₃, camphorsulfonic acid, CH_2Cl_2 ; then BnBr, NaH, DMF; then HOAc, H_2O , 77%; d) CH₃I, NaH, DMF; then NaOCH₃, CH_3OH , CH_2Cl_2 , 55%; e) PGL-12, NIS, AgOTf, CH_2Cl_2 , 92%; f) NaOCH₃, CH_3OH , CH_2Cl_2 , 99%; g) PGL-15, NIS, AgOTf, CH_2Cl_2 , 63%; h) H_2 , Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 69%.

4-(8-Azidooctyl)phenyl 2,3,4-tri-O-acetyl- α -L-rhamnopyranoside (PGL-8). To a solution of PGL-7 (1.54 g, 4.63 mmol) and PGL-6 (1.29 g, 5.21 mmol) in CH₂Cl₂ (31 mL) at 0 °C was added neat BF₃·OEt₂ (0.91 mL, 7.4 mmol). The reaction mixture was stirred at 0 °C for 10 h, at rt for 28 h and the concentrated before being co-evapaorated twice with toluene. The resulting residue was purified by chromatography (10:90 \rightarrow 12:88 hexane–EtOAc) to yield PGL-8 (1.58 g, 66%) as a colorless oil. R_f 0.61 (3:7 EtOAc–hexane); [α]_D –91.4 (c = 0.7,

CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.10–7.08 (m, 2 H), 6.99–6.97 (m, 2 H), 5.51 (dd, 1 H, J = 10.1, 3.3 Hz), 5.42–5.40 (m, 2 H), 5.14 (app t, 1 H, J = 10.0 Hz), 4.01 (dd, 1 H, J = 9.8, 6.3 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.57–2.52 (m, 2 H), 2.18 (s, 3 H), 2.05 (s, 3 H), 2.03 (s, 3 H), 1.61–1.55 (m, 4 H), 1.37–1.32 (m, 8 H), 1.20 (d, 3 H, J = 6.3 Hz); ¹³C NMR (150 MHz, CDCl₃, $\delta_{\rm C}$) 170.3, 170.24, 170.23, 154.2, 137.4, 129.6, 116.5, 96.1 (¹ $J_{\rm C-1,H-1} = 175$ Hz, C-1), 71.3, 70.0, 69.2, 67.2, 51.7, 35.3, 31.8, 29.5, 29.33, 29.29, 29.1, 26.9, 21.1, 21.0, 20.98, 17.7. HRMS (ESI) *m/z* calcd for (M+Na) C₂₆H₃₇N₃O₈Na: 542.2473. Found: 542.2465.

4-(8-Azidooctyl)phenyl *α*-L-rhamnopyranoside (PGL-9). To a solution of PGL-8 (1.58 g, 3.04 mmol) in 1:1 CH₂Cl₂–CH₃OH (20 mL) at rt was added sodium methoxide (50 mg, 0.92 mmol). The reaction mixture was stirred at rt overnight, neutralizied with Amberlite IR-120 H⁺ resin, filtered and concentrated to yield PGL-9 (1.18 g, 98%) as a colorless wax. The crude product was used for next step without further purification. R_f 0.24 (95:5 CH₂Cl₂–CH₃OH); [α]_D –80.4 (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.09 (d, 2 H, *J* = 8.5 Hz), 6.97 (d, 2 H, *J* = 8.6 Hz), 5.47 (s, 1 H, H-1), 4.14 (s, 1H), 3.99 (ddd, 1 H, *J* = 9.4, 6.1, 3.6 Hz), 3.81 (tt, 1 H, *J* = 12.4, 6.2 Hz), 3.54 (app td, 1 H, *J* = 9.5, 3.5 Hz), 3.25 (app t, 2 H, *J* = 7.0 Hz), 2.61 (d, 1 H, *J* = 5.7 Hz), 2.56–2.53 (m, 2 H), 2.44 (d, 1 H, *J* = 3.9 Hz), 2.27 (s, 1H), 1.62–1.58 (m, 4 H), 1.39–1.30 (m, 8 H), 1.29 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ _C) 154.4, 137.0, 129.5, 116.5, 98.2 (¹*J*_{C-1,H-1} = 172 Hz, C-1), 73.4, 71.9, 71.2, 68.9, 51.7, 35.3, 31.8, 29.6, 29.4, 29.3, 29.0, 26.9, 17.8. HRMS (ESI) *m/z* calcd for (M+Na) C₂₀H₃₁N₃O₅Na: 416.2156. Found: 416.2150.

4-(8-Azidooctyl)phenyl 2-*O*-benzoyl-4-*O*-benzyl-α-L-rhamnopyranoside (PGL-10). To a solution of PGL-9 (184 mg, 468 μmol) and trimethyl orthobenzoate (0.24 mL, 1.40 mmol) in CH₂Cl₂ (4 mL) at rt was added CSA (22 mg, 94 μmol). The reaction mixture was stirred at rt for 4 h, Et₃N (100 μL), was added and the mixture was concentrated and then co-evaporated twice with toluene to give a colorless oil. To the solution of the resulting oil and BnBr (72 μL, 608 μmol) in DMF (5 mL) at 0 °C was added NaH (60% dispersion in oil, 24 mg, 608 μmol). The reaction mixture was stirred overnight at rt and concentrated. The solution of the resulting oil in aqueous 80% AcOH (8 mL) was stirred at rt for 4 h concentrated and then and co-evaporated twice with toluene. The resulting residue was purified by chromatography (2:98 EtOAc-toluene) to yield PGL-10 (211 mg, 77%, three steps) as a colorless oil. R_f 0.38 (5:95 EtOAc-hexane); $[\alpha]_D$ –43.6 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.11–8.04 (m, 2

H), 7.63–7.60 (m, 1H), 7.51–7.48 (m, 2 H), 7.42–7.33 (m, 4 H), 7.33–7.30 (m, 1H), 7.11–7.06 (m, 2 H), 7.00–6.93 (m, 2 H), 5.55 (d, 1 H, J = 1.7 Hz, H-1), 5.53 (dd, 1 H, J = 3.4, 1.8 Hz), 4.88 (d, 1 H, J = 11.2 Hz), 4.79 (d, 1 H, J = 11.1 Hz), 4.44 (dd, 1 H, J = 9.4, 3.4 Hz), 3.97 (app dq, 1 H, J = 9.6, 6.2 Hz), 3.55 (app t, 1 H, J = 9.4 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.59–2.50 (m, 2 H), 2.19 (s, 1H), 1.64–1.53 (m, 4 H), 1.40–1.28 (m, 11H); ¹³C NMR (126 MHz, CDCl₃, δ_C) 166.4, 154.4, 138.3, 137.1, 133.7, 130.1, 129.8, 129.5, 128.8, 128.7, 128.3, 128.2, 116.5, 96.1 (${}^{1}J_{C-1,H-1} = 174$ Hz, C-1), 81.9, 75.4, 73.3, 70.6, 68.5, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.4. HRMS (ESI) *m/z* calcd for (M+Na) C₃₄H₄₁N₃O₆Na: 610.2888. Found: 610.2876.

4-(8-Azidooctyl)phenyl 4-O-benzyl-2-O-methyl-L-rhamnopyranoside (PGL-11). To a solution PGL-10 (498 mg, 847 µmol) and CH₃I (211 µL, 3.39 mmol) in DMF (5 mL) at 0 °C was added NaH (60% dispersion in oil, 47 mg, 1.18 mmol). The reaction mixture was stirred overnight at rt and concentrated. To the solution of the resulting oil in 1:1 CH₂Cl₂-CH₃OH (10 mL) was added sodium methoxide (37 mg, 1.3 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (1:99 acetone-toluene) to vield PGL-11 (234 mg, 55%, two steps) as a colorless oil. $R_f 0.41$ (1:9 acetone-toluene); $[\alpha]_D$ – 68.2 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.39–7.32 (m, 4 H), 7.31–7.26 (m, 1H), 7.11–7.06 (m, 2 H), 6.99–6.94 (m, 2 H), 5.52 (d, 1 H, J = 1.5 Hz, H-1), 4.92 (d, 1 H, J = 11.1Hz), 4.70 (d, 1 H, J = 11.1 Hz), 4.15 (app td, 1 H, J = 9.1, 3.8 Hz), 3.80 (app dq, 1 H, J = 12.5, 6.3 Hz), 3.67 (dd, 1 H, J = 3.8, 1.7 Hz), 3.55 (s, 1H), 3.34 (app t, 1 H, J = 9.4 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.59–2.51 (m, 1H), 2.43 (d, 1 H, J = 9.0 Hz), 1.64–1.53 (m, 4 H), 1.40–1.30 (m, 8 H), 1.29 (d, 3 H, J = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.7, 138.6, 136.9, 129.5, 128.6, 128.2, 128.0, 116.4, 94.9 (${}^{1}J_{C-1 H-1} = 170 Hz$, C-1), 82.3, 80.8, 75.3, 71.7, 68.1, 59.3, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.3. HRMS (ESI) *m/z* calcd for (M+Na) C₂₈H₃₉N₃O₅Na: 520.2782. Found: 520.2781.

4-(8-Azidooctyl)phenyl 2,4-di-*O*-benzyl-3-*O*-levulinoyl-α-L-rhamnopyranosyl-(1→3)-4-*O*-benzyl-2-*O*-methyl-α-L-rhamnopyranoside (PGL-13). A solution of PGL-11 (53 mg, 107 μmol), PGL-12²⁹ (61 mg, 112 μmol), and crushed 4Å molecular sieves (50 mg) in CH₂Cl₂ (3.5 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (29 mg, 128 μmol) and silver triflate (5.5 mg, 21 μmol). The reaction mixture was stirred at -20 °C for another 30 min, then Et₃N (100 μL) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (25:75 EtOAc–toluene) to yield **PGL-13** (90 mg, 92%) as a colorless oil. R_f 0.34 (3:7 EtOAc–hexane); $[\alpha]_D$ –33.4 (c = 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37–7.21 (m, 15 H), 7.09-7.06 (m, 2 H), 6.97–6.95 (m, 2 H), 5.46 (d, 1 H, J = 1.8 Hz, H-1), 5.32 (dd, 1 H, J = 9.5, 3.2 Hz), 5.11 (d, 1 H, J = 1.9 Hz), 4.81 (d, 1 H, J = 11.4 Hz), 4.74 (d, 1 H, J = 11.4 Hz), 4.65 (dd, 2 H, J = 11.4, 5.5 Hz), 4.42 (d, 1 H, J = 12.0 Hz), 4.35 (d, 1 H, J = 12.1 Hz), 4.20 (dd, 1 H, J = 9.6, 3.2 Hz), 4.01 (app dq, 1 H, J = 9.6, 6.3 Hz), 3.89 (dd, 1 H, J = 3.2, 2.0 Hz), 3.79 (app dq, 1 H, J = 9.3, 6.2 Hz), 3.72 (dd, 1 H, J = 3.1, 1.9 Hz), 3.67 (app t, 1 H, J = 9.5 Hz), 3.59–3.50 (m, 1H), 3.24 (app t, 1 H, J = 7.0 Hz), 2.71–2.38 (m, 6 H), 2.12 (s, 3 H), 1.61–1.54 (m, 4 H), 1.36 (d, 1 H, J = 6.3 Hz), 1.31 (br s, 8 H), 1.25 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.4, 172.2, 154.7, 138.8, 138.6, 138.3, 136.8, 129.5, 128.6, 128.5, 128.0, 127.9, 127.87, 127.8, 127.7, 127.6, 116.4, 100.3 (¹_{JC-1,H-1} = 171 Hz, C-1), 95.5 (¹_{JC-1,H-1} = 171 Hz, C-1), 80.5, 80.3, 79.6, 79.2, 77.0, 75.3, 75.1, 74.2, 73.2, 69.0, 68.7, 59.3, 51.7, 38.0, 35.3, 31.8, 30.0, 29.6, 29.4, 29.3, 29.1, 28.3, 26.9, 18.5, 18.2. HRMS (ESI) *m/z* calcd for (M+Na) C_{53H67}N₃O₁₁Na: 944.4668. Found: 944.4657.

4-(8-Azidooctyl)phenyl 2,4-di-O-benzyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-4-O-benzyl-2-**O-methyl-α-L-rhamnopyranoside (PGL-14)**. To a solution of **PGL-13** (195 mg, 211 μmol) in 1:1 CH₂Cl₂-CH₃OH (8 mL) was added sodium methoxide (65 mg, 1.2 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (25:75 EtOAchexane) to yield PGL-14 (172 mg, 99%) as a colorless oil. $R_f 0.66$ (1:9 acetone-toluene); $[\alpha]_D$ – 59.0 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.40–7.27 (m, 12 H), 7.26–7.21 (m, 1H), 7.20–7.16 (m, 2 H), 7.12–7.07 (m, 2 H), 7.00–6.96 (m, 2 H), 5.47 (d, 1 H, J = 1.8 Hz, H-1), 5.21 (d, 1 H, J = 1.2 Hz, H-1), 4.90 (d, 1 H, J = 11.3 Hz), 4.79 (d, 1 H, J = 11.7 Hz), 4.68 (dd, 2 H, J = 13.9, 11.4 Hz, 4.41 (d, 1 H, J = 11.7 Hz), 4.25 (dd, 1 H, J = 9.7, 3.2 Hz), 4.18 (d, 1 H, J = 11.7Hz), 4.01 (dd, 1 H, J = 9.0, 3.5 Hz), 3.90 (app dq, 1 H, J = 9.4, 6.0 Hz), 3.82 (app dq, 1 H, J =9.7, 6.1 Hz), 3.73 (dd, 1 H, J = 3.7, 1.5 Hz), 3.69 (dd, 1 H, J = 3.2, 1.9 Hz), 3.55 (app t, 1 H, J =9.6 Hz), 3.52 (s, 3 H), 3.34 (app t, 1 H, J = 9.3 Hz), 3.24 (app t, 2 H, J = 7.0 Hz), 2.56–2.51 (m, 2 H), 1.62–1.53 (m, 4 H), 1.36 (d, 3 H, J = 6.3 Hz), 1.31 (s, 8 H), 1.25 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.7, 138.8, 138.7, 137.9, 136.9, 129.5, 128.7, 128.6, 128.2, 128.1, 127.9, 127.8, 127.2, 116.39, 99.4 (${}^{1}J_{C-1 H-1} = 171 \text{ Hz}, \text{ C-1}$), 95.5 (${}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}$),

82.4, 80.7, 80.6, 79.5, 78.7, 75.3, 75.2, 72.8, 71.8, 69.1, 68.1, 59.3, 51.7, 35.30, 31.8, 29.6, 29.4, 29.3, 29.1, 26.9, 18.4, 18.2. HRMS (ESI) *m/z* calcd for (M+Na) C₄₈H₆₁N₃O₉Na: 846.4300. Found: 846.4286.

2,3,4-tri-O-methyl- α -L-fucopyranoside-(1 \rightarrow 3)-2,4-di-O-4-(8-Azidooctyl)phenyl benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-benzyl-2-O-methyl- α -L-rhamnopyranoside (PGL-16). A solution of PGL-14 (66 mg, 80 µmol), PGL-15²⁹ (26 mg, 84 µmol), and crushed 4Å molecular sieves (85 mg) in CH₂Cl₂ (4 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added N-iodosuccinimide (22 mg, 96 µmol) and silver triflate (4.1 mg, 16 µmol). The reaction mixture was stirred at -20 °C for another 20 min, and then Et₃N (50 µL) and a satd aq soln of Na₂S₂O₃ (200 µL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (5:95 acetone-toluene) to yield **PGL-16** (51 mg, 63%) as a colorless oil. $R_f 0.31$ (1:9 acetone-toluene); $[\alpha]_D - 98.1$ (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37–7.36 (m, 2 H), 7.33–7.25 (m, 13 H), 7.08 (d, 2 H, J = 8.6 Hz), 6.98 (d, 2 H, J = 8.6 Hz), 5.49 (d, 1 H, J = 1.6Hz, H-1), 5.23 (d, 1 H, J = 1.4 Hz, H-1), 5.21 (s, 1 H, H-1), 5.19 (d, 1 H, J = 11.4 Hz), 4.86 (d, 1 H, *J* = 11.6 Hz), 4.67 (d, 1 H, *J* = 11.6 Hz), 4.61 (d, 1 H, *J* = 11.4 Hz), 4.56 (d, 1 H, *J* = 12.3 Hz), 4.27-4.21 (m, 2 H), 4.09 (dd, 1 H, J = 9.4, 3.1 Hz), 3.96 (app dq, 1 H, J = 9.5, 6.2 Hz), 3.85-3.78(m, 2 H), 3.75 (dd, 1 H, J = 3.0, 2.0 Hz), 3.69 (q, 1 H, J = 6.8 Hz), 3.62 (app t, 1 H, J = 9.4 Hz), 3.58-3.55 (m, 3 H) 3.53 (s, 1H), 3.53 (s, 1H), 3.50 (s, 3 H), 3.32 (s, 3 H), 3.25 (app t, 2 H, J =7.0 Hz), 3.20 (s, 1H), 2.58–2.51 (m, 2 H), 1.64–1.54 (m, 4 H), 1.40–1.28 (m, 11H), 1.24 (d, 3 H, J = 6.2 Hz), 0.98 (d, 3 H, J = 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.8, 139.4, 138.7, 138.7, 136.8, 129.5, 128.6, 128.4, 128.4, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 116.4, 99.8 $({}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}), 99.6 ({}^{1}J_{C-1 H-1} = 169 \text{ Hz}, \text{ C-1}), 95.3 ({}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}), 80.6, 80.3,$ 80.0, 79.8, 79.4, 79.2, 78.1, 75.1, 74.9, 71.6, 69.0, 66.6, 61.9, 59.3, 59.1, 58.2, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.1, 26.9, 18.4, 18.2, 16.8. HRMS (ESI) m/z calcd for (M+Na) C₅₇H₇₇N₃O₁₃Na: 1034.5349. Found: 1034.5331.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,3,4-tri-*O*-methyl-α-Lfucopyranosyl-(1 \rightarrow 3)-α-L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-methyl-α-L-rhamnopyranoside (26 Squaramide) A suspension of PGL-16²⁹ (50 mg, 48 µmol) and 20% Pd(OH)₂–C (50 mg) in 1:1 CH₂Cl₂–CH₃OH (10 mL) was stirred overnight under H₂ (1 atm) at rt. Another portion of 20% Pd(OH)₂–C (50 mg) was added and the mixture was stirred for another night at rt before being

filtered. After concentrating the filtrate, the resulting residue was dissolved in absolute ethanol (5 mL) and stirred at rt with diethyl squarate (67 µL, 455 µmol) and Et₃N (13 µL, 91 µmol) until the reaction was complete as monitored by TLC. The solution was then concentrated and the resulting residue was purified by column chromatography (5:95 CH₃OH-CH₂Cl₂) to yield 26 Squaramide (30 mg, 69%) as a colorless oil. $R_f 0.38$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –121.4 (c = 1.4, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 7.06–7.04 (m, 2 H), 6.97–6.90 (m, 2 H), 5.47 (d, 1 H, J = 1.6 Hz, H-1, 5.21 (d, 1 H, J = 3.8 Hz, H-1), 5.01 (d, 1 H, J = 1.6 Hz, H-1), 4.67 (p, 2 H, J = 7.2 Hz), 4.09 (q, 1 H, J = 6.7 Hz), 4.02 (dd, 1 H, J = 3.1, 1.8 Hz), 3.96 (dd, 1 H, J = 9.7, 3.2 Hz), 3.78 (app dq, 1 H, J = 9.7, 6.3 Hz), 3.74 (dd, 1 H, J = 9.6, 3.2 Hz), 3.68–3.64 (m, 2 H), 3.61 (m, 1H), 3.58–3.50 (m, 7 H), 3.49 (m, 7 H), 3.46 (s, 3 H), 3.35 (app t, 1H), 2.50 (app t, 2 H), 1.54 (d, 4 H), 1.39 (app t, 3 H, J = 7.1 Hz), 1.31–1.25 (m, 11H), 1.17 (app t, 3 H, J = 6.3 Hz), 1.14 (app t, 3 H, J = 6.3 Hz); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 189.8, 184.5, 177.4, 174.7, 155.7, 137.8, 130.3, 117.5, 103.9 (${}^{1}J_{C-1 H-1} = 173 \text{ Hz}, \text{C-1}$), 100.1 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}, \text{C-1}$), 96.8 (${}^{1}J_{C-1 H-1}$ = 172 Hz, C-1), 81.5, 81.3, 80.6, 80.4, 79.5, 79.2, 73.3, 73.0, 72.0, 70.8, 70.6, 70.4, 67.9, 61.9, 59.3, 58.8, 58.1, 45.4, 36.0, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.1, 17.9, 16.6, 16.08. HRMS (ESI) *m/z* calcd for (M+Na) C₄₂H₆₅NO₁₆Na: 862.4196. Found: 862.4181.

Scheme S28. Synthesis of **27 Squaramide**. a) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 68%.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2-*O*-methyl-α-Lrhamnopyranoside (27 Squaramide). Treatment of PGL-11 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 27 Squaramide (68%, chromatography 4:96 CH₃OH–CH₂Cl₂) as a colorless oil. R_{*f*} 0.64 (1:9 CH₃OH–CH₂Cl₂); [α]_D –48.7 (*c* = 1.3, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ _H) 7.04 (d, 2 H, *J* = 8.4 Hz), 6.92 (d, 2 H, *J* = 8.5 Hz), 5.46 (s, 1 H, H-1), 4.66 (p, 2 H, *J* = 7.2 Hz), 3.83 (dd, 1 H, *J* = 9.6, 3.4 Hz), 3.63–3.50 (m, 3 H), 3.46 (s, 3 H), 3.34 (dd, 2 H, *J* = 12.2, 6.9 Hz), 2.50 (app t, 2 H, *J* = 7.5 Hz), 1.54 (d, 4 H, *J* = 6.1 Hz), 1.39 (app t, 3 H, *J* = 7.0 Hz), 1.23–127 (m, 8 H), 1.16 (app t, 3 H, *J* = 5.9 Hz); ¹³C NMR (125 MHz, CD₃OD, δ _C) 189.8, 184.5, 177.3, 174.7, 155.8, 137.7, 130.2, 117.4, 96.7 (¹*J*_{C-1,H-1} = 173 Hz, C-1), 82.0, 74.1, 72.1, 70.5, 70.4, 59.4, 45.4, 35.9, 32.7, 31.4, 30.3, 30.04, 30.0, 27.2, 18.0, 16.1 (*C*H₃CH₂). HRMS (ESI) *m/z* calcd for (M+Na) C₂₇H₃₉NO₈Na: 528.2568. Found: 528.2563.

Scheme S29. Synthesis of 28 Squaramide. a) H_2 , $Pd(OH)_2$ -C, CH_2CI_2 , CH_3OH ; then diethyl squarate, CH_3CH_2OH , 63%.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl *a*-L-rhamnopyranoside (**28 Squaramide**). Treatment of **PGL-9** with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of **26 Squaramide** gave **28 Squaramide** (63%, chromatography 5:95 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.36 (1:9 CH₃OH–CH₂Cl₂); [α]_D –65.9 (*c* = 1.1, CH₃OH); ¹H NMR (500 MHz, CD₃OD, $\delta_{\rm H}$) 7.03 (d, 2 H, *J* = 8.6 Hz), 6.90 (d, 2 H, *J* = 8.6 Hz), 5.31 (d, 1 H, *J* = 1.5 Hz, H-1), 4.66 (p, 2 H, *J* = 7.3 Hz), 3.93 (dd, 1 H, *J* = 3.3, 1.8 Hz), 3.78 (dd, 1 H, *J* = 9.5, 3.4 Hz), 3.61 (app dq, 1 H, *J* = 9.6, 6.2 Hz), 3.52 (app t, 1 H, *J* = 7.1 Hz), 3.39 (app t, 1 H, *J* = 9.5 Hz), 3.35 (app t, 1 H, *J* = 7.0 Hz), 2.49 (app t, 2 H, *J* = 7.6 Hz), 1.54 (d, 4 H, *J* = 6.3 Hz), 1.38 (app t, 3 H, *J* = 7.1 Hz), 1.28 (s, 8 H), 1.17 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 189.8, 184.5, 177.4, 174.7, 155.9, 137.6, 130.2, 117.4, 100.0 (¹*J*_{C-1,H-1} = 172 Hz, C-1), 73.8, 72.2, 72.1, 70.6, 70.4, 45.4, 36.0, 32.7, 31.4, 30.3, 30.1, 30.0, 27.2, 17.9, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₆H₃₇NO₈Na: 514.2411. Found: 514.2408.

Scheme S30. Synthesis of 29 Squaramide. a) PGL-17, NIS, AgOTf, CH_2CI_2 , 64%; b) H_2 , Pd(OH)₂–C, CH₂CI₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 62%.

4-(8-Azidooctyl)phenyl 3-*O*-benzyl-2,4-di-*O*-methyl-α-L-fucopyranoside-(1→3)-2,4di-*O*-benzyl-α-L-rhamnopyranosyl-(1→3)-4-*O*-benzyl-2-*O*-methyl-α-L-rhamnopyranoside (PGL-18). A solution of PGL-14 (51 mg, 62 µmol), PGL-17¹⁶ (25 mg, 65 µmol), and crushed 4Å molecular sieves (90 mg) in CH₂Cl₂ (4 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (17 mg, 74 µmol) and silver triflate (3.2 mg, 12 µmol). The reaction mixture was stirred at -20 °C for another 20 min, Et₃N (50 µL) was added, and then the solution was extracted with satd aq soln of Na₂S₂O₃ (200 µL), dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (1:9 EtOAc–hexane) to yield PGL-18 (43 mg, 64%) as a colorless oil. R_f 0.21 (25:75 EtOAc–hexane); [α]_D –85.5 (*c* = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.40–7.21 (m, 26 H), 7.11–7.07 (m, 2 H), 7.00– 6.95 (m, 2 H), 5.48 (d, 1 H, *J* = 1.7 Hz, H-1), 5.23 (d, 1 H, *J* = 3.7 Hz, H-1), 5.22 (d, 1 H, *J* = 1.5 Hz, H-1), 5.20 (d, 1 H, *J* = 11.5 Hz), 4.84 (d, 1 H, *J* = 11.6 Hz), 4.79 (d, 1 H, *J* = 12.1 Hz), 4.69 (d, 1 H, *J* = 12.1 Hz), 4.66 (d, 1 H, *J* = 11.6 Hz), 4.61 (d, 1 H, *J* = 11.3 Hz), 4.52 (d, 1 H, *J* = 12.3 Hz), 4.28–4.22 (m, 2 H), 4.11 (dd, 1 H, J = 9.5, 3.1 Hz), 3.95 (app dq, 1 H, J = 9.7, 6.2 Hz), 3.85–3.78 (m, 3 H), 3.75 (dd, 1 H, J = 3.1, 2.0 Hz), 3.73–3.67 (m, 1H), 3.65 (dd, 1 H, J = 6.6, 3.6 Hz), 3.62 (dd, 1 H, J = 11.8, 3.4 Hz), 3.58–3.54 (m, 4 H), 3.53 (s, 3 H), 3.36 (s, 3 H), 3.25 (app t, 1 H, J = 7.0 Hz), 3.15 (d, 1 H, J = 2.1 Hz), 2.58–2.51 (m, 2 H), 1.63–1.54 (m, 4 H), 1.40–1.29 (m, 11H), 1.24 (d, 3 H, J = 6.2 Hz), 0.95 (d, 3 H, J = 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 154.8, 139.4, 139.1, 138.7, 136.8, 129.5, 128.6, 128.6, 128.42, 128.40, 127.8, 127.7, 127.6, 127.55, 127.52, 127.4, 127.3, 116.4, 100.0 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 99.7 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 95.3 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 80.8, 80.6, 80.3, 80.0, 79.8, 79.7, 79.1, 78.7, 78.6, 75.2, 74.9, 72.8, 71.7, 69.0, 68.9, 66.7, 62.0, 59.6, 59.1, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.4, 18.2, 16.6 HRMS (ESI) *m/z* calcd for (M+Na) C₆₃H₈₁N₃O₁₃Na: 1110.5662. Found: 1110.5652.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,4-di-O-methyl-α-Lfucopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2-O-methyl- α -L-rhamnopyranoside (29) Squaramide). Treatment of PGL-18 with H_2 and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 29 Squaramide (62%, chromatography 5:95 CH₃OH–CH₂Cl₂) as a colorless oil. $R_f 0.46$ (12:88 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –119.8 (c = 1.0, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 7.07–7.03 (m, 2 H), 6.96–6.91 (m, 2 H), 5.47 (d, 1 H, J = 1.5 Hz, H-1), 5.23 (d, 1 H, J = 3.8 Hz, H-1), 5.00 (d, 1 H, J = 1.4 Hz, H-1), 4.67 (p, 2 H, J = 7.2 Hz), 4.13 (q, 1 H, J = 6.5 Hz), 4.03 (dd, 1 H, J = 2.9, 1.9 Hz), 3.99–3.92 (m, 2 H), 3.78 (app dq, 1 H, J = 9.6, 6.2 Hz), 3.74 (dd, 1 H, J = 9.6, 3.2 Hz), 3.67 (dd, 1 H, J = 3.0, 2.0 Hz), 3.61 (app dq, 1 H, J = 10.3, 6.1 Hz), 3.58–3.50 (m, 5 H), 3.51–3.43 (m, 7 H), 3.41 (dd, 1 H, J =10.3, 3.7 Hz), 3.35 (app t, 1 H, J = 7.0 Hz), 3.30 (d, 1 H, J = 3.3 Hz), 2.50 (app t, 2 H, J = 7.5Hz), 1.54 (d, 4 H, J = 5.5 Hz), 1.39 (app t, 3 H, J = 7.1 Hz), 1.31–1.25 (m, 11H), 1.17 (dd, 6 H, J = 7.9, 6.5 Hz); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 189.8, 184.5, 177.4, 174.7, 155.7, 137.8, 130.3, 117.5, 103.9 (${}^{1}J_{C-1 H-1} = 173 \text{ Hz}, \text{ C-1}$), 99.9 (${}^{1}J_{C-1 H-1} = 171 \text{ Hz}, \text{ C-1}$), 96.8 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}$) Hz, C-1), 84.4, 81.5, 80.6, 80.2, 79.2, 73.3, 73.0, 72.0, 71.0, 70.8, 70.6, 70.4, 67.8, 62.5, 59.3, 58.6, 45.4, 36.0, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.1, 17.9, 16.6, 16.1. HRMS (ESI) m/z calcd for (M+Na) C₄₁H₆₃NO₁₆Na: 848.4039. Found: 848.4024.

Scheme S31. Synthesis of 30 Squaramide. a) $(CH_3)_2C(OCH_3)_2$, *p*-TsOH·H₂O, acetone, 95%; b) NaH, BnBr, DMF; then *p*-TsOH·H₂O, CH₂Cl₂, CH₃OH; then *n*-Bu₂SnO, toluene; then CH₃I, *n*-Bu₄NI 71%; c) **PGL-21**, NIS, AgOTf, CH₂Cl₂, 83%; d) NaOCH₃, CH₂Cl₂, CH₃OH; e) CH₃I, NaH, DMF, 86% over two steps; f) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 60%

4-(8-Azidooctyl)phenyl 2,3-*O***-isopropylidene-α-L-rhamnopyranoside (PGL-19)**. To a solution of PGL-9 (1.18 g, 2.99 mmol) and 2,2-dimethoxypropane (1.10 mL, 8.97 mmol) in acetone (50 mL) at rt was added *p*-TsOH·H₂O (0.17 g, 0.90 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Et₃N (1 mL), concentrated and then the residue was co-evaporated with toluene. The resulting residue was purified by chromatography (75:25 hexane–EtOAc) to yield **PGL-19** (1.23 g, 95%) as a colorless oil. R_f 0.60 (6:4 hexane–EtOAc); $[\alpha]_D$ –55.2 (*c* = 1.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.12–7.07 (m, 2 H), 6.99–6.94 (m, 2 H), 5.67 (s, 1 H, H-1), 4.35 (d, 1 H, *J* = 5.7 Hz), 4.23 (dd, 1 H, *J* = 7.2, 5.8 Hz), 3.81 (app dq, 1 H, *J* = 9.7, 6.2 Hz), 3.47 (ddd, 1 H, *J* = 11.3, 7.8, 3.4 Hz), 3.25 (app t, 2 H, *J* = 7.0 Hz), 2.58–2.52 (m, 2 H), 2.19 (d, 1 H, *J* = 3.7 Hz), 1.64–1.54 (m, 7 H), 1.40 (s, 3 H), 1.39–1.28 (m, 8 H), 1.25 (d, 3 H, *J* = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.5, 136.9, 129.5, 116.5,

110.0, 95.9 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 78.6, 76.1, 74.9, 66.8, 51.7, 35.3, 31.7, 29.5, 29.3, 29.28, 29.0, 28.3, 26.9, 26.5 (*C*H₃), 17.6. HRMS (ESI) *m/z* calcd for (M+Na) C₂₃H₃₅N₃O₅Na: 456.2469. Found: 456.2460.

4-(8-Azidooctyl)phenyl 4-O-benzyl-3-O-methyl-a-L-rhamnopyranoside (PGL-20). To a solution PGL-19 (697 mg, 1.61 mmol) and BnBr (288 µL, 4.62 mmol) in DMF (5 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 90 mg, 2.25 mmol). The reaction mixture was stirred overnight at rt and concentrated. The resulting residue was purified by chromatography (2:98 EtOAc-hexane) to give a colorless oil. A solution of the resulting oil and p-TsOH·H₂O (66 mg, 346 µmol) in 1:1 CH₃OH–CH₂Cl₂ (24 mL) was stirred overnight at rt, before Et₃N (200 µL) was added and the mixture concentrated. The resulting oil was purified by chromatography (25:75 EtOAc-hexane) to give a colorless oil. A solution of the resulting oil (515 mg, 1.06 mmol) and n-Bu₂SnO (291 mg, 1.17 mmol) in toluene (30 mL) was heated refluxed with a Dean–Stark apparatus overnight, cooled, concentrated and dried on a vacuum pump for 1 h. The solution of this residue, n-Bu₄NI (472 mg, 1.28 mmol) and CH₃I (6.6 mL, 106 mmol) in toluene (10 mL) in a Schlenk tube was heated at 110 °C for 1 d, cooled and concentrated. The resulting residue was purified by chromatography (1:99 acetone-toluene) to give PGL-20 (379 mg, 71%, 4 steps) as a colorless oil. $R_f 0.34$ (2:8 EtOAc-hexane); $[\alpha]_D - 104.1$ (c = 1.1, CHCl₃); IR v 2096 (azide) cm⁻¹; ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.38–7.27 (m, 5 H), 7.11–7.06 (m, 2 H), 6.98–6.93 (m, 2 H), 5.52 (d, 1 H, J = 1.7 Hz, H-1), 4.87 (d, 1 H, J = 11.0 Hz), 4.65 (d, 1 H, J = 11.0 Hz), 4.23 (dt, 1 H, J = 3.6, 1.9 Hz), 3.83 (app dq, 1 H, J = 9.6, 6.2 Hz), 3.76 (dd, 1H J = 9.1, 3.4 Hz), 3.56 (s, 3 H), 3.43 (app t, 1 H, J = 9.4 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.56–2.53 (m, 3 H, CH_2Ar), 1.63–1.53 (m, 4 H), 1.40–1.29 (m, 8 H), 1.26 (d, 3 H, J = 6.2 Hz); ¹³C NMR (151 MHz, $CDCl_3, \delta_C$) 154.5, 138.7, 136.8, 129.5, 128.6, 128.2, 127.9, 116.4, 97.5 (${}^{1}J_{C-1,H-1} = 173$ Hz, C-1), 81.7, 80.1, 75.5, 68.1, 68.1, 57.8, 51.7, 35.3, 31.8, 29.6, 29.4, 29.3, 29.1, 26.9, 18.2. HRMS (ESI) *m/z* calcd for (M+Na) C₂₈H₃₉N₃O₅Na: 520.2782. Found: 520.2783.

4-(8-Azidooctyl)phenyl 6-*O*-acetyl-2,4-di-*O*-benzyl-3-*O*-methyl-β-D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-acetyl-α-L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-benzyl-3-*O*-methyl-α-Lrhamnopyranoside (PGL-22). A solution of PGL-20 (63 mg, 127 µmol), PGL-21³⁰ (83 mg, 110 µmol) and crushed 4Å molecular sieves (100 mg) in CH₂Cl₂ (3 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (30 mg, 132 µmol) and silver triflate (5.7 mg, 22 µmol). The reaction mixture was stirred at -20 °C for another 30 min, Et₃N

(50 μ L) and a satd ag soln of Na₂S₂O₃ (200 μ L) were added, and then the solution was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (3:97 acetone-toluene) to yield PGL-22 (102 mg, 83%) as a colorless oil. Rf 0.22 (3:7 EtOAchexane); $[\alpha]_D - 46.2$ (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.27 (m, 15 H), 7.11–7.06 (m, 2 H), 6.98–6.92 (m, 2 H), 5.48–5.44 (m, 2 H), 5.35 (dd, 1 H, J = 9.8, 3.4 Hz), 5.05 (d, 1 H, J = 1.6 Hz, H-1), 4.91 (d, 1 H, J = 11.0 Hz), 4.85 (d, 1 H, J = 11.0 Hz), 4.77 (d, 1 H, J = 11.0 Hz)11.4 Hz), 4.66 (d, 1 H, J = 11.0 Hz), 4.60 (dd, 2 H, J = 13.9, 11.3 Hz), 4.50 (d, 1 H, J = 7.6 Hz, H-1), 4.37 (dd, 1 H, J = 11.7, 2.3 Hz), 4.22–4.18 (m, 1H), 4.16 (dd, 1 H, J = 11.8, 5.3 Hz), 3.90 (app dq, 1 H, J = 12.5, 6.1 Hz), 3.84–3.75 (m, 1H), 3.66 (app t, 1 H, J = 9.7 Hz), 3.62 (s, 3 H), 3.56 (app t, 1 H, J = 9.4 Hz), 3.51 (s, 3 H), 3.48 (ddd, 1 H, J = 9.6, 5.3, 2.3 Hz), 3.37 (app t, 1 H, J = 9.2 Hz, 3.30 (app t, 1 H, J = 8.8 Hz), 3.27–3.21 (m, 3 H), 2.57–2.51 (m, 2 H), 2.16 (s, 3 H), 2.03 (s, 3 H), 1.88 (s, 3 H), 1.64–1.54 (m, 4 H), 1.39–1.30 (m, 8 H), 1.28 (d, 3 H, J = 4.6 Hz), 1.27 (d, 3 H, J = 4.6 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.8, 170.1, 170.0, 154.5, 138.9, 138.6, 138.1, 136.9, 129.5, 128.7, 128.6, 128.5, 128.4, 128.35, 128.3, 128.2, 127.8, 127.79, 116.4, 103.8 (${}^{1}J_{C-1 H-1} = 163 \text{ Hz}, \text{ C-1}$), 99.2 (${}^{1}J_{C-1 H-1} = 175 \text{ Hz}, \text{ C-1}$), 97.5 (${}^{1}J_{C-1 H-1} = 173 \text{ Hz}, \text{ C-1}$) 1), 87.2, 82.1, 81.7, 80.4, 77.8, 76.9, 75.6, 75.2, 75.0, 74.5, 72.6, 71.7, 70.4, 69.0, 68.1, 63.3, 61.5, 58.4, 51.7, 35.3, 31.8, 29.6, 29.4, 29.3, 29.1, 26.9, 21.3, 21.0, 21.97, 18.2, 18.1. HRMS (ESI) m/z calcd for (M+Na) C₆₁H₇₉N₃O₁₇Na: 1148.5302. Found: 1148.5288.

4-(8-Azidooctyl)phenyl 2,4-di-*O*-benzyl-3,6-di-*O*-methyl-β-D-glucopyranosyl-(1→4)-2,3-di-*O*-methyl-α-L-rhamnopyranosyl-(1→2)-4-*O*-benzyl-3-*O*-methyl-α-L-

rhamnopyranoside (PGL-24). To a solution of PGL-22 (95 mg, 84 μmol) in 1:1 CH₂Cl₂– CH₃OH (4 mL) was added sodium methoxide (11.4 mg, 211 μmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated to give a colorless oil (triol PGL-23). To the solution of the resulting oil and CH₃I (24 μL, 389 μmol) in DMF (2 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 14 mg, 340 μmol). The reaction mixture was stirred at rt for 4 h, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (4:6 EtOAc– hexane) to yield PGL-24 (73 mg, 86%, two steps) as a colorless oil. R_f 0.26 (3:7 EtOAc– hexane); [α]_D –57.4 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41 (d, 2 H, J = 7.1 Hz), 7.39–7.31 (m, 16 H), 7.31–7.24 (m, 3 H), 7.08 (d, 2 H, J = 8.6 Hz), 6.95 (d, 2 H, J = 8.6 Hz), 5.47 (d, 1 H, J = 1.7 Hz, H-1), 5.17 (d, 1 H, J = 1.6 Hz, H-1), 4.95–4.87 (m, 2 H), 4.82 (d, 1 H, J = 10.9 Hz), 4.75–4.73 (m, 2 H), 4.64 (dd, 2 H, J = 12.9, 11.1 Hz), 4.25–4.21 (m, 1H), 3.86–3.78 (m, 2 H), 3.77–3.68 (m, 3 H), 3.67–3.61 (m, 4 H), 3.59–3.52 (m, 5 H), 3.51 (s, 3 H), 3.50–3.42 (m, 2 H), 3.36 (s, 3 H), 3.35 (s, 3 H), 3.31 (ddd, 2 H J = 5.2, 4.6, 2.6 Hz), 3.27–3.22 (m, 3 H), 2.58–2.51 (m, 2 H), 1.58 (app td, 4 H, J = 14.7, 7.5 Hz), 1.36–1.25 (m, 14 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.5, 139.3, 138.7, 138.7, 136.9, 129.5, 128.6, 128.6, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.6, 116.4, 103.2 ($^{1}J_{\rm C-1,H-1}$ = 166 Hz, C-1), 98.8 ($^{1}J_{\rm C-1,H-1}$ = 171 Hz, C-1), 97.59 ($^{1}J_{\rm C-1,H-1}$ = 173 Hz, C-1), 86.9, 82.9, 81.9, 81.2, 80.4, 78.0, 75.3, 75.0, 74.7, 74.6, 73.9, 71.4, 68.7, 68.2, 61.5, 59.8, 59.2, 58.3, 57.5, 51.7, 35.3, 31.8, 29.6, 29.4, 29.3, 29.1, 26.9, 18.4, 18.3. HRMS (ESI) *m/z* calcd for (M+Na) C₅₈H₇₉N₃O₁₄Na: 1064.5454. Found: 1064.5439.

 $\label{eq:2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl] phenyl 3,6-di-O-methyl-β-D-glucopyranosyl-(1$-$4)-2,3-di-O-methyl-α-L-rhamnopyranosyl-(1$-$2)-3-O-methyl-α-L-$

rhamnopyranoside (30 Squaramide). Treatment of **PGL-24** with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of **26 Squaramide** gave **30 Squaramide** (60%, chromatography 5:95 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.40 (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –54.9 (*c* = 0.8, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 7.08–7.03 (m, 2 H), 6.92–6.87 (m, 2 H), 5.45 (d, 1 H, *J* = 1.7 Hz, H-1), 5.44 (s, 1 H, N*H*), 5.05 (d, 1 H, *J* = 1.8 Hz, H-1), 4.67 (p, 4 H), 4.50 (d, 1 H, *J* = 7.8 Hz, H-1), 4.18 (dd, 1 H, *J* = 2.9, 2.2 Hz), 3.75–3.68 (m, 2 H), 3.66–3.59 (m, 2 H), 3.59–3.49 (m, 11H), 3.46–3.40 (m, 7 H), 3.38–3.29 (m, 5 H), 3.29–3.27 (m, 1H), 3.16 (dd, 1 H, *J* = 9.2, 7.8 Hz), 3.03 (dd, 1 H, *J* = 9.1, 8.5 Hz), 2.51 (app t, 2 H, *J* = 7.6 Hz), 1.55 (dd, 4 H, *J* = 13.0, 6.9 Hz), 1.39 (app td, 3 H, *J* = 7.0, 2.6 Hz), 1.29 (s, 8 H), 1.19 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (151 MHz, CD₃OD, δ_C) 189.8, 184.6, 177.4, 174.7, 155.8, 138.0, 130.3, 117.3, 104.8 (¹*J*_{C-1,H-1} = 163 Hz, C-1), 100.3 (¹*J*_{C-1,H-1} = 172 Hz, C-1), 98.8 (¹*J*_{C-1,H-1} = 174 Hz, C-1), 87.5, 82.0, 81.9, 79.1, 77.6, 76.7, 75.9, 75.4, 73.2, 72.9, 71.1, 70.6, 70.55, 69.1, 60.8, 59.7, 59.0, 58.4, 57.4, 45.4, 35.9, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.2, 18.1, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₃H₆₇NO₁₇Na: 892.4301. Found: 892.4290.

Scheme S32. Synthesis of 31 Squaramide. a) PGL-25, NIS, AgOTf, CH_2CI_2 , 60%; b) H_2 , Pd(OH)₂–C, CH₂CI₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 57%.

$\label{eq:alpha} 4-(8-Azidooctyl)phenyl \ 2,4-di-{\it O}-benzyl-3,6-di-{\it O}-methyl-\beta-D-glucopyranosyl-(1\rightarrow 4)-2-{\it O}-benzyl-3-{\it O}-methyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-4-{\it O}-benzyl-3-{\it O}-be$

rhamnopyranoside (PGL-26). A solution of **PGL-20** (33 mg, 66 μmol), **PGL-25**³⁰ (51 mg, 68 μmol) and crushed 4Å molecular sieves (85 mg) in CH₂Cl₂ (4 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (18 mg, 80 μmol) and silver triflate (3.4 mg, 13 μmol). The reaction mixture was stirred at -20 °C for another 30 min, Et₃N (50 μL) and a satd aq soln of Na₂S₂O₃ (200 μL) were added, and then the solution was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (15:85 EtOAc–toluene) to yield **PGL-26** (43 mg, 60%) as a colorless oil. R_f 0.39 (25:75 EtOAc–hexane); $[\alpha]_D - 47.5$ (*c* = 1.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41 (dd, 4 H, *J* = 12.8, 7.5 Hz), 7.37–7.23 (m, 16 H), 7.08 (d, 2 H, *J* = 8.5 Hz), 6.94 (d, 2 H, *J* = 8.5 Hz), 5.45 (s, 1 H, H-1), 5.15 (s, 1 H, H-1), 4.92 (d, 1 H, *J* = 11.5 Hz), 4.85 (app t, 2 H, *J* = 11.2 Hz), 4.76–4.71 (m, 4 H), 4.64 (d, 1 H, *J* = 11.0 Hz), 4.60 (d, 1 H, *J* = 11.2 Hz), 3.56–3.49 (m, 2 H), 3.48 (s, 3 H), 3.40–3.33 (m, 6 H), 3.28–3.24 (m, 3 H), 3.21 (s, 3 H), 2.59–2.49 (m, 2 H), 1.59 (dt, 4 H, *J* =

14.3, 7.3 Hz), 1.43–1.28 (m, 11H), 1.24 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.5, 139.3, 138.8, 138.7, 138.4, 136.8, 129.5, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.5, 116.4, 103.3 (¹ $J_{\rm C-1,H-1} = 166$ Hz, C-1), 99.6 (¹ $J_{\rm C-1,H-1} = 173$ Hz, C-1), 97.6 (¹ $J_{\rm C-1,H-1} = 174$ Hz, C-1), 86.9, 82.8, 81.9, 81.4, 80.3, 78.0, 77.5, 75.3, 75.0, 74.7, 74.6, 73.6, 73.3, 72.6, 71.5, 68.7, 68.2, 61.4, 59.8, 58.1, 57.4, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 26.9, 18.4, 18.3. HRMS (ESI) *m/z* calcd for (M+Na) C₆₄H₈₃N₃O₁₄Na: 1140.5767. Found: 1140.5750.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl **3,6-di-***O*-methyl-β-Dglucopyranosyl- $(1\rightarrow 4)$ -3-*O*-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -3-*O*-methyl- α -Lrhamnopyranoside (31 Squaramide). Treatment of PGL-26 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 31 Squaramide (57%, chromatography 8:92 CH₃OH–CH₂Cl₂) as a colorless oil. $R_f 0.19$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_{\rm D}$ -48.9 (c = 0.8, CH₃OH); ¹H NMR (500 MHz, CD₃OD, $\delta_{\rm H}$) 7.07–7.04 (m, 2 H), 6.92–6.87 (m, 2 H), 5.46 (d, 1 H, J = 1.8 Hz, H-1), 4.93 (d, 1 H, J = 1.8 Hz, H-1), 4.66 (p, 2 H, J = 7.2 Hz), 4.52 (d, 1 H, J = 7.8 Hz, H-1), 4.18-4.14 (m, 1H), 4.09 (dd, 1 H, J = 3.1, 1.9 Hz), 3.74 (app dq, 1 H, J = 9.5, 6.3 Hz), 3.66–3.60 (m, 3 H), 3.58 (s, 3 H), 3.57–3.49 (m, 4 H), 3.48 (s, 3 H), 3.44 (d, 1 H, J = 9.5 Hz), 3.41 (s, 3 H), 3.37–3.32 (m, 4 H), 3.32–3.28 (m, 2 H), 3.16 (dd, 1 H, J = 9.2, 7.8 Hz), 3.03 (dd, 1 H, J = 9.2, 8.5 Hz), 2.50 (app t, 2 H, J = 7.6 Hz), 1.58–1.51 (m, 4 H), 1.39 (app td, 3 H, J = 7.1, 2.5 Hz), 1.29 (s, 8 H), 1.21 (d, 3 H, J = 6.2 Hz), 1.17 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CD₃OD, δ_C) 189.8, 184.6, 177.4, 174.7, 155.8, 138.0, 130.3, 117.3, 104.9 $({}^{1}J_{C-1,H-1} = 164 \text{ Hz}, \text{ C-1}), 103.4 ({}^{1}J_{C-1,H-1} = 173 \text{ Hz}, \text{ C-1}), 98.9 ({}^{1}J_{C-1,H-1} = 174 \text{ Hz}, \text{ C-1}), 87.5,$ 82.1, 81.8, 79.0, 76.7, 75.6, 75.4, 73.1, 72.9, 71.1, 70.6, 70.55, 69.0, 67.7, 60.8, 59.7, 58.2, 56.8, 49.2, 36.0, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.1, 18.06, 16.1. HRMS (ESI) m/z calcd for (M+Na) C₃₆H₆₁NO₁₄Na: 754.3984. Found: 754.3982.

Scheme S33. Synthesis of 32 Squaramide. a) PGL-27, NIS, AgOTf, CH₂Cl₂, 59%; b) NaOCH₃, CH₂Cl₂, CH₃OH; e) CH₃I, NaH, DMF, 89% over two steps; f) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 71%.

4-(8-Azidooctyl)phenyl 6-*O*-acetyl-2,3,4-tri-*O*-benzyl-β-D-glucopyranosyl-(1→4)-2,3di-*O*-acetyl-α-L-rhamnopyranosyl-(1→2)-4-*O*-benzyl-3-*O*-methyl-α-L-rhamnopyranoside (PGL-28). A solution of PGL-20 (63 mg, 127 µmol), PGL-27³⁰ (110 mg, 133 µmol) and crushed 4Å molecular sieves (100 mg) in CH₂Cl₂ (4 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (34 mg, 152 µmol) and silver triflate (6.5 mg, 25 µmol). The reaction mixture was stirred at -20 °C for another 30 min, Et₃N (50 µL) and a satd aq soln of Na₂S₂O₃ (200 µL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (3:97 acetone–toluene) to yield PGL-28 (90 mg, 59%) as a colorless oil. R_f 0.39 (5:95 acetone–toluene); [α]_D –44.6 (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.38–7.24 (m, 26 H), 7.10–7.07 (m, 2 H), 6.97– 6.94 (m, 1H), 5.48 (dd, 1 H, *J* = 3.3, 1.8 Hz), 5.46 (d, 1 H, *J* = 1.9 Hz, H-1), 5.35 (dd, 1 H, *J* = 9.8, 3.4 Hz), 5.05 (d, 1 H, J = 1.7 Hz, H-1), 4.92 (dd, 2 H, J = 10.9, 8.7 Hz), 4.85 (d, 1 H, J = 11.0 Hz), 4.79 (dd, 2 H, J = 13.3, 11.2 Hz), 4.65 (dd, 2 H, J = 13.6, 11.3 Hz), 4.58 (d, 1 H, J = 11.1 Hz), 4.55 (d, 1 H, J = 7.8 Hz, H-1), 4.40 (dd, 1 H, J = 11.7, 1.9 Hz), 4.20–4.19 (m, 1H), 4.17 (dd, 1 H, J = 11.7, 4.7 Hz), 3.91 (app dq, 1 H, J = 12.5, 6.2 Hz), 3.83–3.76 (m, 2 H), 3.69 (app t, 1 H, J = 9.7 Hz), 3.61 (app t, 1 H, J = 8.7 Hz), 3.56 (app t, 1 H, J = 9.4 Hz), 3.52–3.46 (m, 5 H), 3.37 (dd, 1 H, J = 9.0, 7.9 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.56–2.53 (m, 2 H), 2.17 (s, 3 H), 2.03 (s, 3 H), 1.92 (s, 3 H), 1.62–1.56 (m, 4 H), 1.37–1.32 (m, 8 H), 1.29 (d, 3 H, J = 6.2 Hz), 1.27 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 170.8, 170.1, 170.0, 154.5, 138.9, 138.6, 138.5, 138.0, 136.9, 129.5, 128.7, 128.6, 128.5, 128.3, 128.2, 128.16, 127.9, 127.8, 116.4, 103.8 (¹ $J_{C-1,H-1} = 164$ Hz, C-1), 99.2 (¹ $J_{C-1,H-1} = 175$ Hz, C-1), 97.5 (¹ $J_{C-1,H-1} = 174$ Hz, C-1), 85.1, 82.3, 81.6, 80.4, 77.9, 76.7, 75.9, 75.6, 75.3, 75.1, 74.5, 72.7, 71.8, 70.4, 69.0, 68.1, 63.2, 58.4, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.1, 26.9, 21.3, 21.0, 20.99, 18.2, 18.1. HRMS (ESI) m/z calcd for (M+Na) C₆₇H₈₃N₃O₁₇Na: 1224.5615. Found: 1224.5603.

4-(8-Azidooctyl)phenyl 2,3,4-tri-*O*-benzyl-6-*O*-methyl-β-D-glucopyranosyl-(1→4)-2,3-di-*O*-methyl-α-L-rhamnopyranosyl-(1→2)-4-*O*-benzyl-3-*O*-methyl-α-L-

rhamnopyranoside (PGL-30). To a solution of PGL-28 (80 mg, 66 µmol) in 1:1 CH₂Cl₂-CH₃OH (4 mL) was added sodium methoxide (19 mg, 352 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated to give a colorless oil (triol PGL-29). To the solution of the resulting oil and CH₃I (20 µL, 317 µmol) in DMF (2 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 11 mg, 277 µmol). The reaction mixture was stirred at rt for 4 h, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (4:6 EtOAchexane) to yield PGL-30 (66 mg, 89%, two steps) as a colorless oil. Rf 0.26 (4:6 EtOAchexane); $[\alpha]_D$ –59.4 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.33 (m, 6 H), 7.33– 7.24 (m, 14 H), 7.08 (d, 2 H, J = 8.6 Hz), 6.95 (d, 2 H, J = 8.6 Hz), 5.47 (d, 1 H, J = 1.8 Hz, H-1), 5.18 (d, 1 H, J = 1.7 Hz, H-1), 4.98–4.87 (m, 3 H), 4.79 (ddd, 4 H, J = 29.4, 16.2, 10.1 Hz, H-1), 4.64 (app t, 2 H, J = 11.2 Hz), 4.25–4.21 (m, 1H), 3.85–3.79 (m, 2 H), 3.74 (dd, 2 H, J = 5.7, 2.3 Hz), 3.71 (dd, 1 H, J = 3.2, 1.9 Hz), 3.70–3.65 (m, 1H), 3.65–3.59 (m, 2 H), 3.59–3.54 (m, 5 H), 3.52 (s, 3 H), 3.45 (app t, 1 H, J = 9.4 Hz), 3.39–3.35 (m, 8 H), 3.25 (app t, 2 H, J = 7.0 Hz), 2.58–2.51 (m, 2 H), 1.59 (dt, 4 H, J = 14.3, 7.0 Hz), 1.41–1.29 (m, 11H), 1.27 (d, 3 H, J = 6.2Hz); ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 139.2, 139.1, 138.7, 138.6, 136.9, 129.5, 128.6,

128.5, 128.4, 128.2, 128.17, 128.1, 128.0, 127.9, 127.6, 127.57, 116.4, 103.3 (${}^{1}J_{C-1,H-1} = 166$ Hz, C-1), 98.9 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 97.6 (${}^{1}J_{C-1,H-1} = 174$ Hz, C-1), 85.1, 83.0, 81.9, 81.2, 80.4, 78.1, 76.9, 76.88, 75.8, 75.3, 75.2, 74.8, 74.77, 73.9, 71.4, 68.7, 68.2, 59.9, 59.2, 58.3, 57.4, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.1, 26.9, 18.4, 18.3. HRMS (ESI) *m/z* calcd for (M+Na) C₆₄H₈₃N₃O₁₄Na: 1140.5767. Found: 1140.5763.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 6-O-methyl-β-Dglucopyranosyl- $(1\rightarrow 4)$ -2,3-di-O-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -2-O-methyl- α -Lrhamnopyranoside (32 Squaramide). Treatment of PGL-30 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 32 Squaramide (71%, chromatography 1:9 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.18 (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_{\rm D}$ -49.7 (c = 1.0, CH₃OH); ¹H NMR (500 MHz, CD₃OD, $\delta_{\rm H}$) 7.08–7.03 (m, 2 H), 6.93–6.87 (m, 2 H), 5.46 (d, 1 H, J = 1.7 Hz, H-1), 5.06 (d, 1 H, J = 1.8 Hz, H-1), 4.67 (p, 2 H, J = 7.3 Hz), 4.50 (d, 1 H, J = 7.8 Hz, H-1), 4.21–4.16 (m, 1H), 3.75–3.69 (m, 2 H), 3.67–3.61 (m, 2 H), 3.60– 3.52 (m, 5 H), 3.51 (s, 3 H), 3.46–3.41 (m, 7 H), 3.37–3.30 (m, 5 H), 3.30–3.28 (m, 1H), 3.24– 3.20 (m, 1H), 3.11 (dd, 1 H, J = 9.1, 7.8 Hz), 2.51 (app t, 2 H, J = 7.6 Hz), 1.59-1.50 (m, 4 H),1.39 (app td, 3 H, J = 7.0, 2.4 Hz), 1.29 (s, 8 H), 1.20 (d, 3 H, J = 6.2 Hz), 1.18 (d, 3 H, J = 6.2Hz); ¹³C NMR (151 MHz, CD₃OD, δ_C) 189.8, 184.6, 177.4, 174.7, 155.8, 137.9, 130.3, 117.3, 104.8 (${}^{1}J_{C-1,H-1} = 163 \text{ Hz}, \text{ C-1}$), 100.3 (${}^{1}J_{C-1,H-1} = 173 \text{ Hz}, \text{ C-1}$), 98.8 (${}^{1}J_{C-1,H-1} = 174 \text{ Hz}, \text{ C-1}$), 82.1, 81.9, 79.0, 77.8, 77.7, 76.8, 75.9, 75.5, 73.2, 73.0, 71.6, 70.6, 70.55, 69.1, 59.7, 59.0, 58.4, 57.4, 45.4, 35.9, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.2, 18.1, 16.1. HRMS (ESI) m/z calcd for (M+Na) C₄₂H₆₅NO₁₇Na: 878.4145. Found: 878.4127.

Scheme S34. Synthesis of 33 Squaramide. a) CH_3I , n-Bu₄NCI, 40% NaOH, CH_2CI_2 , 69% b) Ac₂O, pyridine, 83%; c) BzCI, pyridine, 53%; d) PhC(OCH₃)₃, camphorsulfonic acid, CH_2CI_2 ; then CH_3I , NaH, DMF; then HOAc, H_2O , 93%; e) CH_3I , NaH, DMF; then NaOCH₃, CH_3OH , CH_2CI_2 , 59%; f) PGL-33, NIS, AgOTf, CH_2CI_2 ; g) NaOCH₃, CH_3OH , CH_2CI_2 , 74% over two steps; h) PGL-35, NIS, AgOTf, CH_2CI_2 ; i) NaOCH₃, CH_3OH , CH_2CI_2 , 81% over two steps; j) H_2 , Pd(OH)₂–C, CH_2CI_2 , CH_3OH ; then diethyl squarate, CH_3CH_2OH , 60%.

p-Tolyl 4-*O*-benzyl-2-*O*-methyl-1-thio- α -L-rhamnopyranoside (PGL-32). A solution of diol PGL-31³⁰ (335 mg, 929 µmol), CH₃I (67 µL, 1.1 µmo) and *n*-Bu₄NCl (310 mg, 1.12 µmol) in CH₂Cl₂ (12 mL) at rt was added aqueous 40% NaOH (250 µL). The reaction mixture

was stirred at rt for 3 d, concentrated and then co-evaporated twice with toluene. The resulting residue was purified by chromatography (4:96 acetone–toluene) to yield **PGL-32** (239 mg, 69%) as a colorless oil. R_f 0.40 (15:85 EtOAc–toluene); $[\alpha]_D$ –191.4 (*c* = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41–7.33 (m, 6 H), 7.29 (app t, 1 H, *J* = 7.8 Hz), 7.12 (d, 2 H, *J* = 8.2 Hz), 5.52 (s, 1 H, H-1), 4.92 (d, 1 H, *J* = 11.1 Hz), 4.69 (d, 1 H, *J* = 11.1 Hz), 4.18 (app dq, 1 H, *J* = 6.2, 9.4 Hz), 3.96 (app td, 1 H, *J* = 9.1, 3.7 Hz), 3.75 (dd, 1 H, *J* = 3.6, 1.3 Hz), 3.47 (s, 3 H), 3.35 (app t, 1 H, *J* = 9.3 Hz), 2.45 (d, 1 H, *J* = 9.0 Hz), 2.33 (s, 3 H), 1.33 (d, 1 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 138.6, 137.8, 132.1, 130.9, 130.1, 128.7, 128.2, 128.0, 84.6 (C-1), 82.6, 82.4, 75.4, 72.3, 68.5, 58.3, 21.3, 18.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₁H₂₆O₄SNa: 397.1444. Found: 397.1446.

p-Tolyl 3-*O*-acetyl-4-*O*-benzyl-2-*O*-methyl-1-thio-α-L-rhamnopyranoside (PGL-33). To a solution of PGL-32 (212 mg, 5.66 μmol) in pyridine (5 mL) at 0 °C was added Ac₂O (212 μL, 2.26 mmol). The reaction mixture was stirred overnight at rt, concentrated and the residue was co-evaporated twice with toluene. The resulting residue was purified by chromatography (7:93 EtOAc–hexane) to yield PGL-33 (195 mg, 83%) as a colorless oil. R_f 0.61 (2:8 EtOAc–hexane); $[\alpha]_D$ –132.6 (*c* = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40–7.27 (m, 7 H), 7.14–7.11 (m, 2 H), 5.45 (dd, 1 H, *J* = 1.9, 0.5 Hz, H-1), 5.21 (dd, 1 H, *J* = 9.4, 3.3 Hz), 4.74 (d, 1 H, *J* = 11.3 Hz), 4.66 (d, 1 H, *J* = 11.3 Hz), 4.25 (app dq, 1 H, *J* = 9.5, 6.3 Hz), 3.91 (dd, 1 H, *J* = 3.3, 1.9 Hz), 3.62 (app t, 1 H, *J* = 9.4 Hz), 3.42 (s, 3 H), 2.33 (s, 3 H), 2.07 (s, 3 H), 1.33 (dd, 3 H, *J* = 7.3, 3.7 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.5, 138.4, 137.8, 132.1, 130.9, 130.0, 128.7, 128.0, 127.8, 85.1 (C-1), 80.2, 79.5, 75.3, 74.1, 69.1, 58.7, 21.3(4), 21.3(2), 18.1 HRMS (ESI) *m/z* calcd for (M+Na) C₂₃H₂₈O₅SNa: 439.1543. Found: 439.1550.

p-Tolyl 3,4-di-*O*-benzoyl-2-*O*-methyl-1-thio-α-L-fucopyranoside (PGL-35). To a solution of diol PGL-34¹⁶ (1.06 g, 3.73 mmol) in pyridine (10 mL) at 0 °C was added BzCl (1.73 mL, 14.9 mmol). The reaction mixture was stirred overnight at rt, concentrated and the residue was and co-evaporated twice with toluene. The resulting residue was purified by chromatography (1:9 EtOAc–hexane) to yield PGL-35 (1.11 g, 53%) as a colorless solid. R_f 0.55 (2:8 EtOAc–hexane); $[\alpha]_D$ –82.9 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.98–7.95 (m, 2 H), 7.85–7.83 (m, 2 H), 7.64–7.59 (m, 3 H), 7.51–7.43 (m, 3 H), 7.33–7.29 (m, 2 H), 7.21–7.19 (m, 2 H), 5.62 (dd, 1 H, J = 3.4, 0.8 Hz), 5.34 (dd, 1 H, J = 9.6, 3.3 Hz), 4.65 (d, 1 H, J = 9.6 Hz, H-1), 3.99 (qd, 1 H, J = 6.4, 0.9 Hz), 3.60 (app t, 1 H, J = 9.6 Hz), 3.49 (s, 3 H), 2.41 (s,

3 H, ArCH₃), 1.31 (d, 3 H, J = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 166.0, 165.7, 138.3, 133.8, 133.5, 133.3, 130.1, 129.9, 129.8, 129.8, 129.7, 129.0, 128.7, 128.5, 87.2 (C-1), 76.7, 75.8, 73.5, 71.8, 61.2, 21.5, 17.0. HRMS (ESI) *m*/*z* calcd for C₂₈H₂₈O₆SNa: 515.1502. Found: 515.1499.

4-(8-Azidooctyl)phenyl 2-O-benzoyl-4-O-methyl-α-L-rhamnopyranoside (PGL-36). To a solution of PGL-9 (841 mg, 2.14 mmol) and trimethyl orthobenzoate (1.47 mL, 8.55 mmol) in CH₂Cl₂ (23 mL) at rt was added CSA (99 mg, 0.43 mmol). The reaction mixture was stirred at rt for 4 h, Et₃N (0.5 mL) was added, concentrated and then the residue was co-evapaorated twice with toluene to give a colorless oil. To the solution of the resulting oil and CH_3I (266 μ L, 4.27 mmol) in DMF (10 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 111 mg, 2.78 mmol). The reaction mixture was stirred overnight at rt and concentrated. The solution of the resulting oil in aqueous 80% AcOH (20 mL) was stirred at rt for 3 h, concentrated and the residue was co-evaporated twice with toluene. The resulting residue was purified by chromatography (1:9 EtOAc-hexane) to yield PGL-36 (1.02 g, 93%, three steps) as a colorless oil. $R_f 0.29$ (15:85 EtOAc-hexane); $[\alpha]_D -53.8$ (c = 1.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.09 (m, 2 H), 7.67–7.55 (m, 1H), 7.55–7.41 (m, 2 H), 7.14–7.04 (m, 2 H), 7.02–6.92 (m, 2 H), 5.62-5.48 (m, 2 H, H-1), 4.36 (dd, 1 H, J = 9.5, 2.9 Hz), 3.87 (app dq, 1 H, J = 9.5, 6.2 Hz), 3.63(s, 3 H), 3.34–3.19 (m, 3 H), 2.64-2.44 (m, 2 H), 2.34 (br, 1H), 1.62–1.54 (m, 4 H), 1.39–1.28 (m, 11H); ¹³C NMR (150 MHz, CDCl₃, $\delta_{\rm C}$) 166.4, 154.5, 137.1, 133.7, 130.1, 129.8, 129.5, 128.7, 116.5, 96.2 (C-1), 83.9, 73.1, 70.3, 68.4, 61.2, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.4. HRMS (ESI) *m/z* calcd for (M+Na) C₂₈H₃₇N₃O₆Na: 534.2575. Found: 534.2575.

4-(8-Azidooctyl)phenyl 2,4-di-*O***-methyl-L-rhamnopyranoside (PGL-37)**. To a solution PGL-36 (591 mg, 1.16 mmol) and CH₃I (288 μ L, 4.62 mmol) in DMF (5 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 65 mg, 1.6 mmol). The reaction mixture was stirred overnight at rt and concentrated. To the solution of the resulting oil in 1:1 CH₂Cl₂-CH₃OH (12 mL) was added sodium methoxide (82 mg, 1.5 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (2:8 EtOAc–hexane) to yield PGL-37 (290 mg, 59%, two steps) as a colorless oil. R_f 0.45 (4:6 EtOAc–hexane); $[\alpha]_D$ – 57.9 (c = 1.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.11–7.06 (m, 2 H), 6.99–6.94 (m, 2 H), 5.50 (d, 1 H, J = 1.5 Hz, H-1), 4.03 (app td, 1 H, J = 9.1, 3.8 Hz), 3.70 (app dq, 1 H, J = 9.5, 6.3

Hz), 3.65 (dd, 1 H, J = 3.8, 1.7 Hz), 3.59 (s, 1H), 3.54 (s, 1H), 3.25 (app t, 2 H, J = 7.0 Hz), 3.05 (app t, 1 H, J = 9.4 Hz), 2.58–2.51 (m, 2 H), 2.44 (dd, 1 H, J = 8.8, 4.0 Hz), 1.62–1.53 (m, 4 H), 1.40–1.28 (m, 8 H), 1.27 (d, 3 H, J = 6.3 Hz); ¹³C NMR (151 MHz, CDCl₃, δ_{C}) 154.7, 136.9, 129.5, 116.4, 94.9 (¹ $J_{C-1,H-1} = 170$ Hz, C-1), 83.9, 80.8, 71.4, 68.2, 61.1, 59.3, 51.8, 35.3, 31.8, 29.5, 29.3, 29.0, 26.9, 18.2. HRMS (ESI) *m*/*z* calcd for (M+Na) C₂₂H₃₅N₃O₅Na: 444.2469. Found: 444.2468.

4-(8-Azidooctyl)phenyl 4-O-benzyl-2-O-methyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-methyl-a-L-rhamnopyranoside (PGL-39). A solution of PGL-33 (270 mg, 648 µmol), PGL-37 (260 mg, 617 µmol), and crushed 4Å molecular sieves (100 mg) in CH₂Cl₂ (8 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added N-iodosuccinimide (166 mg, 740 μmol) and silver triflate (32 mg, 123 μmol). The reaction mixture was stirred at -20 °C for another 60 min, Et₃N (100 μ L) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and then the solution was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (2:8 EtOAc-hexane) to give a colorless oil (disaccharide PGL-38). To the solution of the resulting oil in 1:1 CH₂Cl₂-CH₃OH (8 mL) was added sodium methoxide (15 mg, 278 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H^+ resin, filtered and concentrated. The resulting residue was purified by chromatography (3:7 EtOAc-hexane) to yield PGL-39 (303 mg, 74%, two steps) as a colorless oil. $R_f 0.23$ (3:7 EtOAc-hexane); $[\alpha]_D$ -89.6 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.41–7.27 (m, 5 H), 7.11–7.06 (m, 2 H), 6.99–6.94 (m, 2 H), 5.44 (d, 1 H, J = 1.7 Hz, H-1), 5.22 (d, 1 H, J = 1.2 Hz, H-1), 4.92 (d, 1 H, J = 11.2 Hz), 4.70 (d, 1 H, J = 11.2 Hz), 4.14 (dd, 1 H, J)= 9.7, 3.2 Hz), 4.01 (app td, 1 H, J = 9.2, 3.8 Hz), 3.87 (app dg, 1 H, J = 9.4, 6.3 Hz), 3.70 (app dq, 1 H, J = 9.7, 6.3 Hz), 3.65 (dd, 1 H, J = 3.2, 1.9 Hz), 3.61 (dd, 1H, J = 3.7, 1.5 Hz), 3.55 (s, 3 H), 3.52 (s, 3 H), 3.51 (s, 3 H), 3.31 (app t, 1 H, J = 9.4 Hz), 3.27-3.22 (m, 3 H), 2.58-2.51 (m, 2H), 2.40 (d, 1 H, J = 9.1 Hz), 1.63–1.54 (m, 4 H), 1.41–1.29 (m, 11H), 1.27 (d, 3 H, J = 6.2 Hz); 13 C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.7, 138.7, 136.9, 129.5, 128.6, 128.2, 128.0, 116.4, 98.5 $({}^{1}J_{C-1 H-1} = 171 \text{ Hz}, \text{ C-1}), 95.6 ({}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}), 82.7, 82.3, 81.4, 80.5, 78.5, 75.3, 71.8,$ 69.0, 68.0, 61.2, 59.4, 58.9, 51.7, 35.3, 31.8, 29.5, 29.34, 29.29, 29.0, 26.9, 18.3, 18.1. HRMS (ESI) m/z calcd for (M+Na) C₃₆H₅₃N₃O₉Na: 694.3674. Found: 694.3668.

solution of PGL-35 (440 mg, 773 µmol), PGL-39 (433 mg, 645 µmol), and crushed 4Å molecular sieves (290 mg) in CH₂Cl₂ (17 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added N-iodosuccinimide (174 mg, 773 µmol) and silver triflate (33 mg, 129 µmol). The reaction mixture was stirred at -20 °C for another 60 min, Et₃N (100 µL) and a satd ag soln of $Na_2S_2O_3$ (0.5 mL) were added, and then the solution was dried (Na_2SO_4), filtered and concentrated. The resulting residue was purified by chromatography (1:9 Et₂O-toluene) to give a colorless oil (trisaccharide PGL-40). To the solution of the resulting oil in 1:1 CH₂Cl₂-CH₃OH (8 mL) was added sodium methoxide (23 mg, 426 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (2:98 CH₃OH-CH₂Cl₂) to yield PGL-41 (432 mg, 81%, two steps) as a colorless oil. $R_f 0.50$ (5:95 CH₃OH–CH₂Cl₂); $[\alpha]_D$ – 127.9 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.34 (dt, 4 H, J = 15.0, 7.4 Hz), 7.28– 7.23 (m, 1H), 7.08 (d, 2 H, J = 8.6 Hz), 6.97 (d, 2 H, J = 8.6 Hz), 5.47 (d, 1 H, J = 1.6 Hz, H-1), 5.22 (d, 1 H, J = 3.6 Hz, H-1), 5.19 (d, 1 H, J = 1.4 Hz, H-1), 5.12 (d, 1 H, J = 11.5 Hz), 4.59 (d, 1 H, J = 111 H, J = 11.5 Hz, 4.25 (q, 1 H, J = 6.7 Hz), 4.10 (d, 1 H, J = 3.1 Hz), 4.08 (d, 1 H, J = 3.1 Hz), 4.02 (dd, 1 H, J = 9.4, 3.2 Hz), 3.95 (app dq, 1 H, J = 9.5, 6.2 Hz), 3.87 (s, 1H), 3.77 (dd, 1 H, J = 2.9, 2.0 Hz, 3.72 (dd, 1 H, J = 3.1, 1.9 Hz), 3.71–3.65 (m, 1H), 3.56 (s, 3 H), 3.51 (s, 3 H), 3.50-3.45 (m, 5 H), 3.28 (s, 3 H), 3.27-3.20 (m, 3 H), 2.60 (d, 1 H, J = 2.0 Hz), 2.58-2.50 (m, 2 H), 2.38 (s, 1H), 1.63–1.54 (m, 4 H), 1.40–1.28 (m, 14 H), 1.27 (d, 1 H, J = 6.2 Hz); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 154.8, 139.3, 136.9, 129.5, 128.4, 127.6, 127.6, 116.4, 99.0 (^{1}J_{C-1,H-1} = 168)$ Hz, C-1), 98.7 (${}^{1}J_{C-1,H-1} = 169$ Hz, C-1), 95.2 (${}^{1}J_{C-1,H-1} = 168$ Hz, C-1), 82.2, 80.9, 80.5, 80.2, 79.6, 78.4, 75.1, 71.6, 69.6, 69.0, 68.9, 66.1, 61.4, 59.1, 58.2, 57.9, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 26.9, 18.5, 18.1, 16.7. HRMS (ESI) *m/z* calcd for (M+Na) C₄₃H₆₅N₃O₁₃Na: 854.4410. Found: 854.4397.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2-*O*-methyl-α-Lfucopyranosyl-(1 \rightarrow 3)-2-*O*-methyl-α-L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl-α-Lrhamnopyranoside (33 Squaramide). Treatment of PGL-41 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 33 Squaramide (60%, chromatography 6:94 CH₃OH–CH₂Cl₂) as a light yellow foam. R_f 0.32 (1:9 CH₃OH– CH₂Cl₂); [α]_D –121.3 (*c* = 1.0, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 7.07–7.03 (m, 2 H), 6.95–6.90 (m, 2 H), 5.47 (d, 1 H, *J* = 1.5 Hz, H-1), 5.18 (d, 1 H, *J* = 3.8 Hz, H-1), 5.09 (d, 1 H, *J* = 1.5 Hz, H-1), 4.67 (p, 2 H, J = 7.1 Hz), 4.07 (q, 1 H, J = 6.1 Hz), 4.01 (dd, 1 H, J = 9.6, 3.2 Hz), 3.84–3.77 (m, 3 H), 3.69 (dd, 1 H, J = 3.1, 2.0 Hz), 3.64 (dd, 1 H, J = 3.3, 0.7 Hz), 3.62–3.57 (m, 2 H), 3.55–3.49 (m, 4 H), 3.49–3.45 (m, 7 H), 3.45–3.41 (m, 4 H), 3.35 (app t, 1 H, J = 7.0 Hz), 3.18 (app t, 1 H, J = 9.5 Hz), 2.50 (app t, 2 H, J = 7.5 Hz), 1.54 (d, 4 H, J = 6.0 Hz), 1.39 (app t, 3 H, J = 7.1 Hz), 1.29 (s, 8 H), 1.25 (d, 3 H, J = 6.2 Hz), 1.19–1.16 (m, 6 H); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 189.8, 184.5, 177.4, 174.7, 155.7, 137.9, 130.3, 117.5, 100.5 (¹ $J_{\rm C}$ -1,H-1 = 172 Hz, C-1), 100.4 (¹ $J_{\rm C-1,H-1}$ = 171 Hz, C-1), 96.4 (¹ $J_{\rm C-1,H-1}$ = 172 Hz, C-1), 83.5, 82.0, 81.4, 80.9, 80.3, 79.7, 73.5, 73.0, 70.62, 70.6, 70.55, 69.9, 67.7, 61.5, 59.1, 58.8, 58.6, 45.4, 35.9, 32.7, 31.8, 31.4, 30.3, 30.0, 27.2, 18.2, 18.0, 16.7, 16.1. HRMS (ESI) *m*/*z* calcd for (M+Na) C₄₂H₆₅NO₁₆Na: 862.4196. Found: 862.4191.

Scheme S35. Synthesis of 34 Squaramide. a) PGL-33, NIS, AgOTf, CH₂Cl₂; b) NaOCH₃, CH₃OH, CH₂Cl₂, 57% over two steps; c) PGL-35, NIS, AgOTf, CH₂Cl₂; d) NaOCH₃, CH₃OH, CH₂Cl₂, 70% over two steps; e) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 66%.

4-(8-Azidooctyl)phenyl 4-O-benzyl-2-O-methyl-α-L-rhamnopyranosyl-(1→3)-4-O-benzyl-2-O-methyl-α-L-rhamnopyranoside (PGL-43). A solution of PGL-33 (Scheme S34, 116 mg, 278 μmol), PGL-11 (126 mg, 253 μmol), and crushed 4Å molecular sieves (100 mg) in CH₂Cl₂ (5 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (68 mg, 304 μmol) and silver triflate (13 mg, 51 μmol). The reaction mixture was stirred at -20 °C for another 45 min, Et₃N (100 μL) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (3:97 EtOAc–hexane) to give a light yellow oil (disaccharide PGL-42). To the solution of the resulting oil in 1:1 CH₂Cl₂–CH₃OH (6 mL) was added sodium methoxide (16 mg, 296 μmol). The reaction mixture was stirred and concentrated. The resulting

residue was purified by chromatography (2:8 EtOAc–hexane) to yield **PGL-43** (108 mg, 57%, two steps) as a colorless oil. R_f 0.40 (3:7 EtOAc–hexane); $[\alpha]_D$ –93.5 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40–7.23 (m, 10 H), 7.09 (d, 2 H, J = 8.5 Hz), 6.98 (d, 2 H, J = 8.6 Hz), 5.48 (d, 1 H, J = 1.5 Hz, H-1), 5.16 (s, 1 H, H-1), 4.91 (d, 1 H, J = 11.2 Hz), 4.80 (d, 1 H, J = 11.4 Hz), 4.74–4.67 (m, 2 H), 4.25 (dd, 1 H, J = 9.7, 3.1 Hz), 4.00 (app td, 1 H, J = 9.2, 3.7 Hz), 3.88 (app dq, 1 H, J = 9.2, 6.1 Hz), 3.83 (ddd, 1 H, J = 12.4, 9.6, 6.0 Hz), 3.70 (dd, 1 H, J = 2.9, 2.0 Hz), 3.56 (app t, 1 H, J = 9.6 Hz), 3.52 (s, 3 H), 3.48 (dd, 1 H, J = 3.6, 1.3 Hz), 3.29 (app t, 1 H, J = 9.4 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 3.21 (s, 3 H), 2.59–2.52 (m, 2 H), 2.35 (d, 1 H, J = 9.1 Hz), 1.65–1.54 (m, 4 H), 1.40–1.29 (m, 11H), 1.27 (d, 1 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.7, 138.7, 138.6, 136.9, 129.5, 128.6, 128.2, 128.0, 127.9, 127.3, 116.4, 98.8 (¹ $J_{C-1,H-1}$ = 170 Hz, C-1), 95.4 (¹ $J_{C-1,H-1}$ = 171 Hz, C-1), 82.3, 81.2, 80.7, 80.6, 78.9, 75.3(1), 75.3(0), 71.8, 69.1, 68.0, 59.3, 58.8, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.3, 18.2. HRMS (ESI) *m/z* calcd for (M+Na) C₄₂H₅₇N₃O₉Na: 770.3987. Found: 770.3983.

2-O-methyl- α -L-fucopyranoside-(1 \rightarrow 3)-4-O-benzyl-2-O-4-(8-Azidooctyl)phenyl methyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-benzyl-2-O-methyl- α -L-rhamnopyranoside (PGL-45). A solution of PGL-35 (Scheme S34, 70 mg, 124 µmol), PGL-43 (84 mg, 112 µmol), and crushed 4Å molecular sieves (60 mg) in CH₂Cl₂ (5 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added N-iodosuccinimide (30 mg, 135 µmol) and silver triflate (5.8 mg, 22 μ mol). The reaction mixture was stirred at -20 °C for another 60 min, Et₃N (100 μ L) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (5:95 EtOAc-toluene) to give a colorless foam. To the solution of the resulting foam in 1:1 CH₂Cl₂-CH₃OH (4 mL) was added sodium methoxide (29 mg, 537 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (2:98 CH₃OH–CH₂Cl₂) to yield PGL-45 (71 mg, 70%, two steps) as a colorless oil. $R_f 0.62$ (CH₃OH–CH₂Cl₂); $[\alpha]_D$ –119.6 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.25 (m, 10 H), 7.09 (d, 2 H, J = 8.5 Hz), 6.97 (d, 2 H, J = 8.5 Hz), 5.50 (d, 1 H, J = 1.2 Hz, H-1), 5.22 (d, 1 H, J = 3.4 Hz, H-1), 5.19 (d, 1 H, J = 1.0 Hz, H-1), 5.12 (d, 1 H, J = 11.5 Hz), 4.85 (d, 1 H, J = 11.2 Hz), 4.68 (d, 1 H, J = 11.2 Hz), 4.58 (d, 1 H, J = 11.5 Hz), 4.24–4.18 (m, 2 H), 4.07 (dd, 1 H, J = 10.0, 2.7 Hz), 4.03 (dd, 1 H, J = 9.3, 3.1Hz), 3.96 (app dq, 1 H, J = 12.6, 6.2 Hz), 3.85–3.79 (m, 2 H), 3.76–3.75 (m, 2 H), 3.56–3.53 (m,

4 H), 3.50–3.45 (m, 2 H), 3.28–3.23 (m, 8 H), 2.59 (d, 1 H, J = 2.6 Hz), 2.56–2.53 (m, 2 H), 2.35 (s, 1H), 1.62–1.56 (m, 4 H), 1.37–1.31 (m, 11H), 1.28 (d, 3 H, J = 6.2 Hz), 1.23 (d, 3 H, J = 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.7, 139.3, 138.5, 136.9, 129.5, 128.6, 128.4, 127.9, 127.7, 127.6, 127.5, 116.3, 98.9 ($^{1}J_{\rm C-1,H-1} = 169$ Hz, C-1), 98.8 ($^{1}J_{\rm C-1,H-1} = 168$ Hz, C-1), 95.0 ($^{1}J_{\rm C-1,H-1} = 171$ Hz, C-1), 80.7, 80.6, 80.3, 80.2, 79.5, 78.3, 75.5, 75.1, 71.6, 69.6, 69.0, 68.7, 66.1, 58.9, 58.0, 57.7, 51.7, 35.3, 31.8, 29.5, 29.3, 29.29, 29.0, 26.9, 18.5, 18.3, 16.7. HRMS (ESI) *m/z* calcd for (M+Na) C₄₉H₆₉N₃O₁₃Na: 930.4723. Found: 930.4709.

 $\label{eq:2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl] phenyl 2-O-methyl-\alpha-L-fucopyranosyl-(1 \rightarrow 3)-2-O-methyl-\alpha-L-rhamnopyranosyl-(1 \rightarrow 3)-2-O-methyl-\alpha-L-$

rhamnopyranoside (34 Squaramide). Treatment of **PGL-45** with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of **26 Squaramide** gave **34 Squaramide** (66%, chromatography 7:93 CH₃OH–CH₂Cl₂) as a light yellow foam. R_f 0.32 (1:9 CH₃OH – CH₂Cl₂; [α]_D –110.9 (c = 1.1, CH₃OH); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.09 (d, 2 H, J = 8.5 Hz), 6.99 (d, 2 H, J = 8.6 Hz), 5.87 (s, 1H), 5.51 (d, 1 H, J = 1.2 Hz, H-1), 5.22 (s, 1 H, H-1), 5.14 (d, 1 H, J = 3.6 Hz, H-1), 4.77 (m, 2 H), 4.23 (q, 1 H, J = 6.8 Hz), 4.05 (dd, 2 H), 3.89 (app dq, 1 H, J = 9.3, 6.1 Hz), 3.83 (s, 1H), 3.76 (m, 3 H), 3.73–3.66 (m, 2 H), 3.63 (app t, 1 H, J = 9.4 Hz), 3.57 (s, 1H), 3.56–3.51 (m, 4 H), 3.50 (s, 3 H), 3.47 (s, 3 H), 3.43–3.39 (m, 1H), 2.59 (d, 1 H, J = 4.3 Hz), 2.55 (app t, 2 H, J = 7.6 Hz), 2.36 (d, 2 H, J = 2.4 Hz), 1.61–1.54 (m, 4 H), 1.46 (app t, 3 H, J = 7.1 Hz), 1.32 (m, 17 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 189.6, 183.0, 177.6, 172.6, 154.8, 136.9, 129.5, 116.4, 100.0 (¹ $J_{C-1,H-1} = 168$ Hz, C-1), 99.4 (¹ $J_{C-1,H-1} = 172$ Hz, C-1), 95.2 (¹ $J_{C-1,H-1} = 171$ Hz, C-1), 83.2, 80.4, 80.3, 80.2, 79.7, 72.2, 71.9, 71.7, 70.0, 69.9, 69.3, 69.2, 66.7, 59.5, 58.9, 58.8, 45.1, 35.3, 31.8, 30.8, 29.5, 29.3, 29.2, 26.5, 18.2, 18.0, 16.6, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₁H₆₃NO₁₆Na: 848.4039. Found: 848.4033.

Scheme S36. Synthesis of **35 Squaramide**. a) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 66%.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl α-L-rhamnopyranosyl-(1→3)-2-*O*-methyl-α-L-rhamnopyranoside (35 Squaramide). Treatment of PGL-14 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of **26** Squaramide gave 35 Squaramide (66%, chromatography 1:9 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.29 (1:9 CH₃OH–CH₂Cl₂); [α]_D –80.3 (c = 0.7, CH₃OH); ¹H NMR (500 MHz, CD₃OD, $\delta_{\rm H}$) 7.04 (d, 2 H, J = 8.6 Hz), 6.93 (d, 2 H, J = 8.6 Hz), 5.46 (d, 1 H, J = 1.2 Hz, H-1), 5.01 (d, 1 H, J = 1.5 Hz, H-1), 4.71–4.63 (m, 2 H), 3.99–3.92 (m, 2 H), 3.74 (app dq, 1 H, J = 9.1, 6.3 Hz), 3.69–3.65 (m, 2 H), 3.61 (app dq, 1 H, J = 9.3, 6.2 Hz), 3.52 (app t, 1 H, J = 7.0 Hz), 3.49–3.42 (m, 4 H), 3.40–3.32 (m, 2 H), 2.50 (app t, 2 H, J = 7.6 Hz), 1.54 (d, 4 H, J = 4.8 Hz), 1.38 (app t, 3 H, J = 7.1 Hz), 1.32–1.21 (m, 11H), 1.15 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CD₃OD, $\delta_{\rm C}$) 189.8, 184.5, 177.4, 174.7, 155.7, 137.8, 130.3, 117.5, 104.1 (¹ $J_{\rm C-1,H-1} = 173$ Hz, C-1), 96.8 (¹ $J_{\rm C-1,H-1} = 172$ Hz, C-1), 81.5, 79.3, 73.9, 73.4, 72.2, 72.1, 70.8, 70.6, 70.2, 59.3, 45.4, 36.0, 32.7, 31.4, 30.3, 30.03, 30.0, 27.2, 18.1, 17.9, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₃₃H₄₉NO₁₂Na: 674.3147. Found: 674.3137.

Scheme S37. Synthesis of 36 Squaramide. a) *n*-Bu₂SnO, toluene; then CH₃I, CsF, DMF; then BzCl, pyridine, 67%; b) **PGL-19**, NIS, AgOTf, CH₂Cl₂; c) NaOCH₃, CH₃OH, CH₂Cl₂, 67% over two steps; d) **PGL-49**, NIS, AgOTf, CH₂Cl₂; e) NaOCH₃, CH₃OH, CH₂Cl₂, 79% over two steps; f) *p*-TsOH·H₂O, CH₃OH, CH₂Cl₂; then CH₃I, NaH, DMF; 88%; g) Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 47%.

p-Tolyl 2-*O*-benzoyl-4-*O*-benzyl-3-*O*-methyl-1-thio- α -L-rhamnopyranoside (PGL-46). A solution of diol PGL-31³⁰ (549 mg, 1.52 mmol) and *n*-Bu₂SnO (417 mg, 168 mmol) in toluene (35 mL) was heated at reflux with a Dean–Stark apparatus overnight, cooled,

concentrated and dried on a vacuum pump for 1 h. This residue was dissolved in DMF (12 mL) and CsF (254 mg, 1.68 mmol) and CH₃I (100 µL, 60 mmol) were added. The reaction mixture was stirred overnight at rt and concentrated. The resulting residue was purified by chromatography (6:94 acetone-toluene) to give a colorless oil. To the solution of the oil (570 mg, 1.52 mmol) in pyridine (10 mL) at 0 °C was added BzCl (235 µL, 2.28 mmol). The reaction mixture was stirred at rt for 4 h, concentrated and the residue was co-evaporated twice with toluene. The resulting residue was purified by chromatography (2:98 EtOAc-hexane) to yield **PGL-46** (487 mg, 67%, three steps) as a colorless oil. $R_f 0.69$ (2:8 EtOAc-hexane); $[\alpha]_D - 127.5$ $(c = 1.1, \text{CHCl}_3)$; ¹H NMR (500 MHz, CDCl₃, δ_{H}) 8.07–8.03 (m, 2 H), 7.61–7.56 (m, 1H), 7.46 (app tt, 2 H, J = 6.7, 2.0 Hz), 7.41–7.34 (m, 6 H), 7.31 (dt, 1 H, J = 8.6, 2.1 Hz), 7.14–7.08 (m, 2 H), 5.80 (dd, 1 H, J = 3.2, 1.7 Hz), 5.47 (d, 1 H, J = 1.3 Hz, H-1), 4.94 (d, 1 H, J = 11.0 Hz), 4.68 (d, 1 H, J = 11.0 Hz), 4.30 (app dq, 1 H, J = 9.7, 6.4 Hz), 3.76 (dd, 1 H, J = 9.2, 3.2 Hz), 3.56 (app t, 1 H, J = 9.3 Hz), 3.49 (s, 3 H), 2.32 (s, 3 H), 1.38 (d, 3 H, J = 6.2 Hz); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3, \delta_{\text{C}})$ 165.9, 138.7, 138.1, 133.4, 132.6, 130.4, 130.1, 128.6, 128.6, 128.3, 127.9, 86.8 (C-1), 81.0, 80.5, 75.6, 70.9, 69.1, 57.7, 21.3, 18.2. HRMS (ESI) m/z calcd for (M+Na) C₂₈H₃₀O₅SNa: 501.1706. Found: 501.1698.

4-(8-Azidooctyl)phenyl 4-*O***-benzyl-3-***O***-methyl-α-L-rhamnopyranosyl-(1→4)-2,3-***O***isopropylidene-α-L-rhamnopyranoside (PGL-48). A solution of PGL-46 (148 mg, 310 µmol), PGL-19 (Scheme S31, 112 mg, 258 µmol), and crushed 4Å molecular sieves (70 mg) in CH₂Cl₂ (7 mL) was stirred at 0 °C for 30 min. To this solution at –20 °C was added** *N***-iodosuccinimide (70 mg, 310 µmol) and silver triflate (13 mg, 52 µmol). The reaction mixture was stirred at –20 °C for another 60 min, Et₃N (100 µL) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (5:95 EtOAc–toluene) to give a colorless oil (disaccharide PGL-47). To the solution of the resulting oil in 1:1 CH₂Cl₂–CH₃OH (12 mL) was added sodium methoxide (66 mg, 1.2 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (3:7 EtOAc–hexane) to yield PGL-48 (118 mg, 67%, two steps) as a colorless oil. R_f 0.24 (2:8 EtOAc–hexane); [α]_D –89.6 (***c* **= 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37–7.31 (m, 4 H), 7.31–7.27 (m, 1H), 7.12–7.07 (m, 2 H), 6.98–6.94 (m, 2 H), 5.66 (s, 1 H, H-1), 5.43 (d, 1 H,** *J* **= 1.6 Hz, H-1), 4.84 (d, 1 H,** *J* **= 11.1 Hz), 4.62 (d, 1 H,** *J* **= 11.1 Hz), 4.34–**
4.29 (m, 2 H), 4.09 (dt, 1 H, J = 3.3, 1.6 Hz), 3.80 (app dq, 1 H, J = 9.9, 6.3 Hz), 3.72 (app dq, 1 H, J = 9.2, 6.4 Hz), 3.59 (dd, 1 H, J = 9.9, 7.0 Hz), 3.51–3.45 (m, 4 H), 3.39 (app t, 1 H, J = 9.3 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.59–2.50 (m, 2 H), 2.40 (d, 1 H, J = 2.0 Hz), 1.63–1.54 (m, 7 H), 1.37–1.26 (m, 14 H), 1.21 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 154.5, 138.7, 136.9, 129.5, 128.6, 128.3, 127.9, 116.5, 110.0, 98.2 ($^{1}J_{C-1,H-1} = 174$ Hz, C-1), 95.8 ($^{1}J_{C-1,H-1} = 172$ Hz, C-1), 81.8, 79.9, 78.8, 77.5, 76.3, 75.5, 68.5, 68.0, 65.2, 57.6, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 28.1, 26.9, 26.7, 18.3, 18.0. HRMS (ESI) *m/z* calcd for (M+Na) C₃₇H₅₃N₃O₉Na: 706.3674. Found: 706.3662.

4-(8-Azidooctyl)phenyl 4-*O*-benzyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -4-*O*-benzyl-3-*O*methyl- α -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3-O-isopropylidene- α -L-rhamnopyranoside (PGL-51). A solution of PGL-48 (46 mg, 67 µmol), PGL-49³¹ (54 mg, 95 µmol), and crushed 4Å molecular sieves (50 mg) in CH₂Cl₂ (5 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added N-iodosuccinimide (70 mg, 310 µmol) and silver triflate (13 mg, 52 µmol). The reaction mixture was stirred at -20 °C for another 45 min, Et₃N (50 µL) and a satd aq soln of $Na_2S_2O_3$ (0.5 mL) were added, and the solution was then dried (Na_2SO_4), filtered and concentrated. The resulting residue was purified by chromatography (3:97 acetone-toluene) to give a light yellow oil (trisaccharide PGL-50). To the solution of the resulting oil in 1:1 CH₂Cl₂-CH₃OH (3 mL) was added sodium methoxide (12 mg, 222 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (4:6 EtOAc-hexane) to yield PGL-51 (47 mg, 79%, two steps) as a colorless foam. $R_f 0.50$ (6:4 EtOAc-hexane); $[\alpha]_D$ – 76.7 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.41–7.26 (m, 10 H), 7.09 (d, 2 H, J =8.6 Hz), 6.95 (d, 2 H, J = 8.6 Hz), 5.65 (s, 1 H, H-1), 5.34 (d, 1 H, J = 1.6 Hz, H-1), 5.06 (d, 1 H, J = 1.3 Hz, H-1), 4.84 (d, 1 H, J = 11.0 Hz), 4.80–4.71 (m, 2 H), 4.58 (d, 1 H, J = 11.0 Hz), 4.34-4.26 (m, 2 H), 4.13-4.06 (m, 2 H), 4.03-3.96 (m, 1H), 3.87 (app dq, 1 H, J = 10.1, 6.2 Hz),3.77 (app dq, 1 H, J = 10.4, 6.2 Hz), 3.66 (app dq, 1 H, J = 9.5, 6.2 Hz), 3.53-3.47 (m, 2 H), 3.46(s, 3 H), 3.37 (app td, 2 H, J = 9.3, 7.4 Hz), 3.25 (app t, 2 H, J = 7.0 Hz), 2.59–2.50 (m, 2 H), 2.38 (d, 1 H, J = 3.3 Hz), 2.29 (d, 1 H, J = 4.8 Hz), 1.63–1.55 (m, 7 H), 1.38 (d, 3 H, J = 6.3 Hz), 1.36–1.27 (m, 11H), 1.25 (d, 3 H, J = 6.2 Hz), 1.19 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.5, 138.8, 138.5, 136.9, 129.5, 128.9, 128.6, 128.2, 128.1, 127.9, 116.5, 109.9, $100.9 ({}^{1}J_{C-1 H-1} = 172 Hz, C-1), 98.6 ({}^{1}J_{C-1 H-1} = 174 Hz, C-1), 95.8 ({}^{1}J_{C-1 H-1} = 172 Hz, C-1), 81.9,$

81.87, 80.4, 78.8, 78.5, 76.3, 75.5, 75.2, 74.0, 71.4, 71.39, 68.7, 68.0, 65.2, 58.1, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 28.2, 26.9, 26.6, 18.2, 18.14, 18.12. HRMS (ESI) *m/z* calcd for (M+Na) C₅₀H₆₉N₃O₁₃Na: 942.4723. Found: 942.4715.

4-(8-Azidooctyl)phenyl 4-O-benzyl-2,3-di-O-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-benzyl-3-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-methyl- α -L-rhamnopyranoside (PGL-52). To a solution of PGL-51 (45 mg, 49 µmol) and p-TsOH·H₂O (8.7 mg, 46 µmol) in 1:1 CH₃OH-CH₂Cl₂ (3 mL) was stirred at rt for 4 d, then Et₃N (200 µL) was added and the mixture was concentrated. The resulting oil was purified by chromatography (8:2 EtOAchexane) to give a colorless oil. To the solution of the resulting oil and CH₃I (24 µL, 385 mmol) in dry DMF (2 mL) at 0 °C (ice bath) was added NaH (60% dispersion in mineral oil, 10.5 mg, 263 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (3:7 EtOAc-hexane) to yield **PGL-52** (26 mg, 88%) as a colorless oil. $R_f 0.28$ (4:6 EtOAc–hexane); $[\alpha]_D - 84.5$ (c = 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.41–7.31 (m, 8 H), 7.28 (m, 2 H), 7.09 (d, 2 H, J = 8.4Hz), 6.97 (d, 2 H, J = 8.4 Hz), 5.47 (s, 1 H, H-1), 5.18 (s, 1 H, H-1), 5.15 (s, 1 H, H-1), 4.91 (d, 1 H, J = 11.1 Hz), 4.84 (d, 1 H, J = 11.1 Hz), 4.68–4.56 (m, 2 H), 4.09 (s, 1H), 3.78 (m, 2 H), 3.70 (m, 5 H), 3.61 (dd, 1 H, J = 9.3, 3.1 Hz), 3.57-3.46 (m, 16 H), 3.42 (app t, 1 H, J = 9.4 Hz), 3.36(app t, 1 H, J = 9.2 Hz), 3.25 (app t, 2 H, J = 6.9 Hz), 2.55 (app t, 2 H, J = 7.7 Hz), 1.58–1.61 (m, 4 H), 1.34 (m, 11H), 1.25 (d, 6 H, J = 4.8 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.8, 139.1, 138.8, 136.9, 129.5, 128.5, 128.49, 128.3, 127.9, 127.88, 127.7, 116.4, 100.8 (${}^{1}J_{C-1,H-1} = 175 \text{ Hz}$, C-1), 98.5 (${}^{1}J_{C-1,H-1} = 172 \text{ Hz}, \text{ C-1}$), 96.3 (${}^{1}J_{C-1,H-1} = 172 \text{ Hz}, \text{ C-1}$), 82.3, 82.1, 81.3, 80.8, 80.2, 78.2, 77.9, 76.5, 75.3, 75.2, 73.8, 68.7, 68.4, 68.2, 59.6, 59.2, 58.13, 58.1, 57.3, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.5, 18.2, 18.1. HRMS (ESI) *m/z* calcd for (M+Na) C₅₁H₇₃N₃O₁₃Na: 958.5036. Found: 958.5024.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,3-di-*O*-methyl-α-Lrhamnopyranosyl-(1→2)-3-*O*-methyl-α-L-rhamnopyranosyl-(1→4)-2,3-di-*O*-methyl-α-Lrhamnopyranoside (36 Squaramide). Treatment of PGL-52 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 36 Squaramide (47%, chromatography 5:95 CH₃OH–CH₂Cl₂) as a colorless foam. R_f 0.28 (5:95 CH₃OH– CH₂Cl₂); [α]_D –67.9 (c = 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.09 (d, 2 H), 7.01–6.96 (m, 2 H), 6.02 (s, 1H), 5.49 (d, 1 H, J = 1.7 Hz, H-1), 5.25 (d, 1 H, J = 1.4 Hz, H-1), 5.14 (d, 1 H, J = 1.1 Hz, H-1), 4.77 (m, 2 H), 4.16–4.13 (m, 1H), 3.79 (app t, 1 H, J = 2.0 Hz), 3.75–3.69 (m, 5 H), 3.67 (dd, 1 H, J = 2.9, 1.8 Hz), 3.57–3.54 (m, 5 H), 3.51 (s, 3 H), 3.49 (s, 3 H), 3.47 (d, 6 H, J = 1.3 Hz), 3.44–3.41 (m, 3 H), 3.36 (dd, 1 H, J = 9.5, 2.6 Hz), 2.61–2.50 (m, 2 H), 2.32 (s, 2 H), 1.62–1.56 (m, 4 H), 1.45 (app t, 3 H, J = 7.1 Hz), 1.34–1.25 (m, 17 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 189.4, 183.2, 177.5, 172.7, 154.7, 136.9, 129.6, 116.4, 101.0 ($^{1}J_{C-1,H-1} = 176$ Hz, C-1), 98.5 ($^{1}J_{C-1,H-1} = 172$ Hz, C-1), 96.2 ($^{1}J_{C-1,H-1} = 172$ Hz, C-1), 82.1, 80.9, 78.1, 76.4, 76.2, 71.94, 71.9, 71.4, 69.9, 69.3, 68.9, 68.1, 59.7, 59.2, 57.6, 57.3, 57.2, 45.1, 35.3, 31.8, 30.8, 29.5, 29.3, 29.2, 26.5, 18.6, 18.0, 17.8, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₃H₆₇NO₁₆Na: 876.4352. Found: 876.4340.

Scheme S38. Synthesis of 37 Squaramide. a) $Pd(OH)_2$ -C, CH_2CI_2 , CH_3OH ; then diethyl squarate, CH_3CH_2OH , 61%.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 3-O-methyl-a-L-rhamnopyranoside (37 Squaramide). Treatment of **PGL-20** with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of **26 Squaramide** gave **77 Squaramide** (61%, chromatography 3:96 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.50 (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –61.9 (c = 1.7, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 7.04 (d, 2 H, J = 8.6 Hz), 6.91 (d, 2 H, J = 8.6 Hz), 5.35 (d, 1 H, J = 1.6 Hz, H-1), 4.66 (p, 2 H, J = 7.2 Hz), 4.14 (d, 1 H, J = 1.9 Hz), 3.62 (app dq, 1 H, J = 9.5, 6.5 Hz), 3.52 (app t, 1 H, J = 6.9 Hz), 3.49–3.42 (m, 5 H), 3.35 (app t, 1 H, J = 7.0 Hz), 1.54 (d, 4 H, J = 5.7 Hz), 1.38 (app t, 3 H, J = 7.1 Hz), 1.28 (s, 8 H), 1.17 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CD₃OD, δ_C) 189.8, 184.6, 177.4, 174.7, 155.8, 137.7, 130.2, 117.4, 99.9 (¹ $J_{C-1,H-1} = 172$ Hz, C-1), 81.9, 72.7, 70.6, 70.4, 68.0, 57.4, 45.4, 36.0, 32.7, 31.4, 30.3, 30.1, 30.0, 27.3, 18.0, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₇H₃₉NO₈Na: 544.2307. Found: 544.2315.

Scheme S39. Synthesis of the **38 Squaramide**. a) 8-azidooctanoic acid, DIEA, TBTU, DMF, 87%; b) 60% aq HOAc, 82%; **LOS-3**, TMSOTf, CH₂Cl₂, 89%; d) NaOCH₃, CH₃OH; then H₂, Pd(OH)₂–C, H₂O, EtOH; then diethyl squarate, Na₂CO₃, H₂O, EtOH, 90% (three steps).

8-azidooctanoic acid. To a solution of 8-bromooctanoic acid (2.5 g, 11 mmol) in DMF (10 mL) was added NaN₃ (1.43 g, 22 mmol) at rt. After stirring at 80 °C for 6 h, the mixture was filtered through Celite and the filtrate was concentrated. The residue was purified by chromatography (2:1 hexanes–EtOAc) to give the product (1.87 g, 92%) as an oil: R_f 0.5 (2:1 hexanes–EtOAc); ¹H NMR (700 MHz, CDCl₃, δ_H) 3.24 (t, J = 7.0 Hz, 2 H), 2.34 (t, J = 7.5 Hz, 2 H), 1.65–1.56 (m, 4 H), 1.39–1.31 (m, 6 H); ¹³C NMR (126 MHz, CDCl₃, δ_C) 179.7 (COOH), 51.4 (CH₂N₃), 34.0 (CH₂COOH), 28.9, 28.8, 26.5, 24.5. HRMS (ESI) *m/z* calcd for (M–H) C₈H₁₄N₃O₂: 184.1092. Found: 184.1091.

2,3,4-Tri-O-benzyl-6-O-triphenylmethyl- α -D-glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-(8'azidooctanamide)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (LOS-1). Aminosugar TMM-7 (See Scheme S41, 0.448 g, 0.4 mmol) and 8-azidooctanoic acid (0.074 g, 0.4 mmol) were stirred with DIEA (0.1 mL, 0.6 mmol) and TBTU (0.192 g, 0.6 mmol) in DMF (20 mL) for 8 h. The mixture was diluted with EtOAc and the organic layer was washed with brine, dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (2:1 hexanes–EtOAc) to give **LOS-1** (0.45 g, 87%) as a syrup. $R_f 0.4$ (2:1 hexanes–EtOAc); $[\alpha]_D -253.2$ (c = 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.53–7.21 (m, 40 H), 7.10 (q, 4 H, J = 5.2, 4.3 Hz), 6.91–6.83 (m, 1 H), 5.44 (dd, 1 H, J = 7.9, 2.9 Hz), 5.36 (d, 1 H, J = 3.5 Hz, H-1), 5.34 (d, 1 H, J = 3.5 Hz, H-1), 5.03 (dd, 2 H, J = 18.2, 10.8 Hz), 4.96–4.87 (m, 4 H), 4.83–4.60 (m, 5 H), 4.35 (d, 1 H, J =10.3 Hz), 4.23 (app t, 2 H, J = 10.6 Hz), 4.11 (app dt, 2 H, J = 11.5, 9.4 Hz), 3.94–3.87 (m, 2 H), 3.80 (dd, 1 H, J = 9.1, 4.1 Hz), 3.59 (dd, 1 H, J = 9.7, 3.5 Hz), 3.47–3.34 (m, 2 H), 3.26 (t, 2 H, J =6.9 Hz), 3.16 (dd, 2 H, J = 17.3, 5.1 Hz), 2.08 (t, 2 H, J = 7.8 Hz), 1.64–1.59 (m, 4 H), 1.44– 1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 172.8, 143.9, 138.7, 138.7, 138.3, 138.2, 138.0, 138.0, 128.9, 128.6, 128.5, 128.5, 128.5, 128.3, 128.2, 128.2, 128.0, 128.0, 127.8, 127.7, 127.7, 127.6, 127.4, 127.3, 127.1, 127.0, 94.5 (C-1), 93.8 (C-1), 86.3, 82.0, 81.6, 80.0, 79.9, 78.8, 78.1, 73.3, 72.8, 70.9, 69.6, 68.0, 61.9, 51.4, 39.4, 36.7, 29.2, 28.9, 28.8, 26.6, 25.6. HRMS (ESI) *m/z* calcd for (M+Na) C₈₁H₈₆N₄O₁₁Na: 1313.6185. Found: 1313.6172.

2,3,4-Tri-*O***-benzyl-α-D-glucopyranosyl-(1↔1)-6-deoxy-6-(8'-azidooctanamide)-2,3,4-tri-***O***-benzyl-α-D-glucopyranoside (LOS-2). A solution of LOS-1 (0.463 g, 0.358 mmol) in 60% aq HOAc (20 mL) was heated at 60 °C overnight. The mixture was then cooled, concentrated and the residue was purified by chromatography (1:2 hexane–EtOAc) to give LOS-2 (0.308 g, 82%) as a syrup: R_f 0.36 (1:2 hexanes–EtOAc); [α]_D –20.2 (c = 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, \delta_{\rm H}) 7.55–7.18 (m, 30 H), 5.41 (dd, 1 H, J = 8.0, 2.5 Hz), 5.14 (d, 1 H, J = 3.5 Hz, H-1), 5.12 (d, 1 H, J = 3.5 Hz, H-1), 5.01 (dd, 2 H, J = 15.9, 10.9 Hz), 4.94–4.85 (m, 4 H), 4.78–4.63 (m, 6 H), 4.15–4.04 (m, 4 H), 3.86 (ddd, 1 H, J = 14.0, 8.3, 3.8 Hz), 3.60 (d, 3 H, J = 9.8 Hz), 3.58–3.49 (m, 2 H), 3.33 (app t, 1 H, J = 9.4 Hz), 3.23 (t, 2 H, J = 6.9 Hz), 3.07 (app dt, 1 H, J = 14.1, 3.6 Hz), 2.05–1.99 (m, 2 H), 1.60–1.54 (m, 4 H), 1.37–1.26 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, \delta_C) 172.8, 138.7, 138.6, 138.2, 138.1, 138.0, 128.5, 128.5, 128.4, 128.4, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7, 127.7, 127.6, 127.5, 127.4, 94.1 (C-1), 93.7 (C-1), 81.5, 79.5, 78.8, 77.4, 75.7, 75.6, 75.3, 75.1, 73.2, 73.0, 71.4, 69.6, 61.6, 53.4, 51.4, 39.3, 36.7, 29.2, 28.8, 26.6, 25.6. HRMS (ESI) m/z calcd for (M+Na) C₆₂H₇₂N₄O₁₁Na: 1071.5090. Found: 1071.5081.**

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-Tri-O-benzyl-6-Otriphenylmethyl- α -D-glucopyranosyl- $(1 \leftrightarrow 1)$ -6-deoxy-6-(8'-azidooctanamide)-2,3,4-tri-Obenzyl- α -D-glucopyranoside (LOS-4). To a mixture of LOS-3³² (0.39 g, 0.53 mmol) and acceptor LOS-2 (0.37 g, 0.352 mmol) in CH₂Cl₂ (10 mL) was added 4 Å molecular sieves (0.1

g) at rt. After stirring for 1 h and then cooling to -30 °C, TMSOTf (6.4 μ L, 0.05 mmol) was added to the mixture and stirring was continued for an additional 1 h while warming to 0 °C at which point Et₃N (0.2 mL) was added. The solution was diluted with CH₂Cl₂ and filtered through Celite and the filtrate was then washed with brine. The organic layer was dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (2:1 hexane-EtOAc) to give LOS-4 (0.509 g, 89%) as a white foam. R_f 0.28 (2:1 hexanes-EtOAc); $[\alpha]_D$ +44.1 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.98 (dd, 2 H, J = 8.2, 1.5 Hz), 7.90 (ddd, 4 H, J = 8.3, 4.6, 1.5 Hz), 7.83 (dd, 2 H, J = 8.4, 1.3 Hz), 7.52–7.47 (m, 2 H), 7.43–7.19 (m, 38 H), 7.02 (dd, 2 H, J = 7.1, 2.3 Hz), 5.88 (app t, 1 H, J = 9.6 Hz), 5.70 (app t, 1 H, J = 9.7Hz), 5.59 (dd, 1 H, J = 9.6, 7.7 Hz), 5.46 (dd, 1 H, J = 8.1, 3.1 Hz), 5.13 (d, 1 H, J = 3.5 Hz, H-1), 5.05 (d, 1 H, J = 3.5 Hz, H-1), 5.00 (d, 1 H, J = 10.8 Hz, H-1), 4.90–4.81 (m, 3 H), 4.75–4.53 (m, 10 H), 4.42 (d, 1 H, J = 11.1 Hz), 4.25 (d, 1 H, J = 11.1 Hz), 4.11–4.05 (m, 3 H), 4.05–4.01 (m, 1 H), 3.98–3.91 (m, 2 H), 3.84 (ddd, 1 H, J = 13.8, 8.1, 3.9 Hz), 3.53–3.41 (m, 4 H), 3.32– 3.28 (m, 1 H), 3.22 (t, 2 H, J = 7.0 Hz), 3.08 (dt, 1 H, J = 13.9, 3.5 Hz), 2.05 (t, 3 H, J = 7.8 Hz),1.60–1.54 (m, 4 H), 1.36–1.28 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) δ 172.7, 166.1, 165.8, 165.2, 164.9, 138.8, 138.6, 138.3, 138.1, 138.1, 138.0, 133.4, 133.3, 133.1, 133.1, 129.8, 129.8, 129.7, 129.7, 129.5, 129.1, 128.8, 128.8, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 127.4, 127.4, 101.2 (C-1), 93.9 (C-1), 93.4 (C-1), 81.5, 81.5, 79.6, 79.2, 78.8, 75.7, 75.3, 74.6, 73.0, 72.9, 72.8, 72.2, 71.8, 69.8, 69.7, 69.4, 67.8, 63.4, 60.4, 51.4, 39.3, 36.7, 29.2, 28.9, 28.8, 26.6, 25.6. HRMS (ESI) m/z calcd for (M+Na) C₉₆H₉₈N₄O₂₀Na: 1649.6667. Found: 1649.6649.

β-D-Glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1↔1)-6-deoxy-6-([8'-(1''-amino-2''ethoxycyclobutene-3'',4''-dione)]-octanamide)-α-D-glucopyranoside (38 Squaramide derivative). Trisaccharide LOS-4 (33 mg, 0.02 mmol) was dissolved in CH₂Cl₂ (3 mL) and CH₃OH (3 mL) and then NaOCH₃ (0.1 eq) was added. The mixture was stirred for 12 h before being neutralized by the addition of Amberlite IR-120 H⁺ resin. The mixture was filtered and the filtrate was concentrated to a syrup. The resulting crude residue was purified by chromatography (20:1 CH₂Cl₂–MeOH) to give the deacetylated product (24 mg, 99%) as a syrup; R_f 0.5 (10:1 CH₂Cl₂–MeOH). The product was dissolved in H₂O–EtOH (1:1, 3 mL), Pd(OH)₂–C (10%) was then added, and the reaction mixture was stirred overnight under a H₂ (1 atm). The reaction mixture was diluted with H₂O–CH₃OH (1:1, 5 mL), filtered through Celite, concentrated and the

resulting residue and purified by gel filtration chromatography (Sephadex, LH-20) using 1:1 CH₂Cl₂-CH₃OH as the eluent to give the corresponding aminosugar (13 mg, 99%) as a syrup. To a solution of the aminosugar (13 mg, 0.02 mmol) in 1:1 EtOH-H₂O (2 mL) was added diethyl squarate (15 µL, 0.1 mmol), followed by slow addition of saturated aq Na₂CO₃ solution until the pH of the reaction mixture was 8. After stirring for 30 min, the solvent was evaporated and the residue was purified by gel filtration chromatography (Sephadex, LH-20) using 1:1 CH₂Cl₂-CH₃OH as the eluent to give **38 Squaramide** 14 mg, 92%) as a syrup: $R_f 0.4$ (5:2:1 EtOH–NH₄OH–H₂O); $[\alpha]_D$ + 8.8 (*c* = 0.1, CHCl₃); ¹H NMR (600 MHz, CD₃OD, δ_H): 5.09 (d, 1 H, J = 3.5 Hz, H-1), 5.04 (d, 1 H, J = 3.5 Hz, H-1), 4.72 (dq, 2 H, J = 19.3, 7.0 Hz), 4.36 (d, 1 H, J = 7.8 Hz, H-1), 4.08 (dd, 1 H, J = 11.5, 2.0 Hz), 4.01 (ddd, 1 H, J = 10.0, 5.5, 1.9 Hz), 3.88– 3.83 (m, 2 H), 3.79-3.73 (m, 3 H), 3.66 (dd, 1 H, J = 11.9, 5.4 Hz), 3.58 (t, 1 H, J = 7.0 Hz), 3.42–4.46 (m, 4 H), 3.41 (t, 1 H, J = 7.0 Hz), 3.39–3.35 (m, 1 H), 3.34–3.32 (m 3 H), 3.29–3.24 (m, 2 H), 3.21-3.17 (m, 1 H), 3.12 (app t, 1 H, J = 9.4 Hz), 2.22 (t, 2 H, J = 7.5 Hz), 1.65-1.57(m, 4 H), 1.48–1.40 (m, 3 H), 1.37–1.34 (m, 6 H); 13 C NMR (126 MHz, CD₃OD, δ_{C}) 188.6, 188.5, 183.2, 183.0, 176.6, 176.1, 175.6, 175.5, 173.4, 173.3, 103.3 (C-1), 94.1 (2 × C-1), 76.6, 76.6, 73.7, 73.1, 72.6, 71.9, 71.8, 71.7, 70.7, 70.4, 70.1, 69.3, 69.3, 68.5, 61.3, 48.4, 48.2, 48.0, 44.1, 43.9, 39.9, 35.5, 30.5, 30.1, 28.7, 28.4, 25.9, 25.5, 14.8, 14.7. HRMS (ESI) m/z calcd for (M+Na) C₃₂H₅₂N₂O₁₉Na: 791.3056. Found: 791.3050.

Scheme S40. Synthesis of azide-functionalized mycolic acid derivative. a) PhCH₂OC(=NH)CCl₃, TfOH, CH₂Cl₂, cyclohexane 72%; b) NaOH, THF, CH₃OH, H₂O, 89%.

(2*R*,3*R*)-methyl-16-azido-3-(benzyloxy)-2-dodecylhexadecanoate (TMM-2). To a solution of TMM-1³³ (0.194 g, 0.39 mmol) in CH₂Cl₂ (6 mL) and cyclohexane (6 mL) was added 4 Å molecular sieves (0.05 g) at rt. After stirring for 10 min, benzyl 2,2,2-trichloroacetimidate (0.144 mL, 0.78 mmol) and triflic acid (3.4 μL, 0.039 mmol) were added at rt. After 24 h, CH₃OH was added and the reaction mixture was washed with brine, dried (MgSO₄), filtered and then concentrated to a residue that was purified by chromatography (10:1 hexanes–EtOAc) to give TMM-2 (0.16 g, 72%) as a colorless oil. R_f 0.49 (10:1 hexanes–EtOAc); [α]_D +2.6 (*c* = 0.21, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H): 7.35–7.23 (m, 5 H, Ar), 4.52 (d, 1 H, *J* = 11.4 Hz), 4.47 (d, 1 H, *J* = 11.4 Hz), 3.66 (s, 3 H), 3.66–3.62 (m, 1 H), 3.25 (t, 2 H, *J* = 7.0 Hz), 2.66 (ddd, 1 H, *J* = 11.1, 7.8, 3.7 Hz), 1.64–1.46 (m, 6 H), 1.39–1.20 (m, 40 H), 0.91–0.85 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 175.3, 138.6, 128.3, 127.7, 127.5, 80.6, 72.1, 51.5, 51.4, 49.9, 31.9, 31.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.2, 28.9, 27.9, 27.7, 26.9, 26.7, 24.6, 22.7, 14.1. HRMS (ESI) *m*/*z* calcd (M+Na) for C₃₆H₆₃N₃O₃Na: 608.4762. Found: 608.4760.

(2*R*,3*R*)-16-azido-3-(benzyloxy)-2-dodecylhexadecanoic acid (TMM-3). To a solution of TMM-2 (60 mg, 0.102 mmol) in CH₃OH–THF–H₂O (1:1:1, 3 mL) was added 1M aq NaOH (1 mL). The reaction mixture was stirred at 70 °C for 2 days, and then cooled and acidified with 1M HCl solution to pH 4. The organic phase was separated, washed with brine, dried (MgSO₄), filtered and then concentrated to a residue that was purified by chromatography (5:1 hexanes–EtOAc) to give TMM-3 (52 mg, 89%) as a colorless oil. R_f 0.51 (5:1 hexanes–EtOAc); [α]_D 0.00 (*c* = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.35–7.26 (m, 5 H), 4.61 (d, 1 H, *J* = 11.4 Hz), 4.53 (d, 1 H, *J* = 11.4 Hz), 3.63 (app q, 1 H, *J* = 5.7 Hz), 3.25 (t, 2 H, *J* = 7.0 Hz), 2.65 (app dt, 1 H, *J* = 10.2, 5.1 Hz), 1.69–1.50 (m, 6 H), 1.40–1.22 (m, 40 H), 0.91–0.85 (m, 4 H); ¹³C

NMR (125 MHz, CDCl₃, δ_C) 177.5, 137.8, 128.4, 127.9, 79.7, 72.4, 51.5, 49.7, 31.9, 31.5, 29.7, 29.6, 29.5, 29.5, 29.5, 29.4, 29.2, 28.9, 28.5, 27.6, 26.7, 25.0, 22.7, 14.1. HRMS (ESI) *m/z* calcd for [M – H] C₃₅H₆₀N₃O₃: 570.4640. Found: 470.4650.

Scheme S41. Synthesis of TMM derivative 39 Squaramide. a) TrCl, pyridine, 70%; b) TsCl, pyridine; then NaN₃, DMF, 89%; c) (CH₃)₃P, NaOH, H₂O, THF, 90%; d) **TMM-3**, TBTU, DIEA, DMF, 89%; e) TsOH, CH₂Cl₂, CH₃OH, 80%; f) (CH₃)₃P, NaOH, THF, H₂O; then Boc₂O, NaOH, THF, H₂O, 98%; g) H₂, Pd(OH)₂–C, H₂O, CH₃OH, 96%; h) 50% TFA in CH₂Cl₂; then diethyl squarate, Na₂CO₃, H₂O, CH₃OH, 99%.

2,3,4-Tri-O-benzyl-6-O-triphenylmethyl-α-D-glucopyranosyl-(1↔1)-2,3,4-tri-O-

benzyl-\alpha-D-glucopyranoside (TMM-5). To a solution of **TMM-4³⁴** (1.1 g, 1.24 mmol) in pyridine (10 mL) was added trityl chloride (0.347 g, 1.24 mmol) at 0 °C. After stirring at rt for 4 h, CH₃OH (10 mL) was added and the resulting solution was concentrated. The residue was

dissolved in EtOAc and washed with brine. The organic phase was concentrated and the resulting residue was purified by chromatography (2:1 hexane–EtOAc) to give **TMM-5** (0.96 g, 70%) as a syrup. $R_f 0.5$ (2:1 hexanes–EtOAc); $[\alpha]_D +74.3$ (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.52–7.16 (m, 39 H), 7.08–7.04 (m, 4 H), 6.86 (d, 2 H, J = 7.4 Hz), 5.38 (d, 1 H, J = 3.5 Hz, H-1), 5.33 (d, 1 H, J = 3.5 Hz, H-1), 5.01 (d, 2 H, J = 10.8 Hz), 4.94–4.87 (m, 3 H), 4.84 (d, 1 H, J = 11.9 Hz), 4.80 (d, 1 H, J = 11.9 Hz), 4.75–4.61 (m, 5 H), 4.33 (d, 1 H, J = 10.3 Hz), 4.22 (d, 1 H, J = 10.0 Hz), 4.14 (dt, 1 H, J = 10.6, 2.7 Hz), 4.10 (d, 1 H, J = 9.4 Hz), 4.06 (d, 1 H, J = 9.6 Hz), 3.88 (app t, 1 H, J = 9.6 Hz), 3.77 (dd, 1 H, J = 9.7, 3.6 Hz), 3.67–3.60 (m, 3 H), 3.58 (dd, 1 H, J = 9.6, 3.5 Hz), 3.40 (d, 1 H, J = 9.5 Hz), 3.15 (dd, 1 H, J = 10.3, 3.1 Hz), 1.54 (s, 1 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) δ 143.9, 138.9, 138.8, 138.4, 138.3, 138.1, 138.0, 128.9, 128.5, 128.5, 128.4, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 127.4, 127.3, 127.1, 127.0, 94.3 (C-1), 94.0 (C-1), 86.3, 82.0, 81.6, 80.0, 78.1, 77.4, 76.0, 75.6, 75.0, 73.1, 72.8, 71.3, 70.8, 61.9, 61.7. HRMS (ESI) *m/z* calcd for (M+Na) $C_{73}H_{72}O_{11}Na$: 1147.4967. Found: 1147.4963.

2,3,4-Tri-O-benzyl-6-O-triphenylmethyl- α -D-glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-azido-2,3,4-tri-O-benzyl-a-D-glucopyranoside (TMM-6). To a solution of TMM-5 (1.69 g, 1.5 mmol) in pyridine (30 mL) was added TsCl (1.43 g, 7.5 mmol) at 0 °C. The mixture was stirred at rt overnight and then concentrated. Without further purification, the crude product was dissolved in DMF (20 mL) and then NaN₃ (1.5 g, 23 mmol) was added and the mixture was heated with vigorous stirring at 100 °C for 2.5 h and then cooled. The mixture was diluted with EtOAc and washed with brine. The organic phase was dried (MgSO₄), filtered and then concentrated to a residue that was purified by chromatography (8:1, hexane-EtOAc) to give **TMM-6** (1.52 g, 89%) as a syrup. $R_f 0.4$ (8:1 hexanes–EtOAc); $[\alpha]_D$ +98.5 (c = 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.52–7.19 (m, 39 H), 7.06 (d, 4 H, J = 4.9 Hz), 6.86 (dd, 2 H, J = 8.0, 1.5 Hz), 5.41 (d, 1 H, J = 3.5 Hz, H-1), 5.35 (d, 1 H, J = 3.5 Hz, H-1), 5.02 (d, 1 H, J = 11.0Hz), 5.01 (d, 1 H, J = 11.0 Hz), 4.94 (d, 1 H, J = 11.0 Hz), 4.89 (d, 1 H, J = 12.0 Hz), 4.86 (d, 1 H, J = 11.0 Hz), 4.83 (d, 1 H, J = 12.0 Hz), 4.73 (d, 1 H, J = 10.3 Hz), 4.68 (d, 1 H, J = 12.0 Hz), 4.65-4.60 (m, 2 H), 4.33 (d, 1 H, J = 10.3 Hz), 4.25 (dt, 1 H, J = 10.0, 3.3 Hz), 4.20 (dt, 1 H, J = 10.0 Hz)10.1, 2.5 Hz), 4.06 (td, 2 H, J = 9.3, 3.4 Hz), 3.94–3.88 (m, 1 H), 3.79 (dd, 1 H, J = 9.6, 3.7 Hz), 3.62 (dd, 1 H, J = 9.6, 3.6 Hz), 3.56 (dd, 1 H, J = 9.8, 9.1 Hz), 3.39 (dd, 1 H, J = 10.3, 1.9 Hz), 3.28–3.20 (m, 2 H), 3.14 (dd, 1 H, J = 10.3, 3.1 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 149.9,

143.9, 138.7, 138.7, 138.4, 138.2, 138.0, 137.9, 128.9, 128.5, 128.4, 128.2, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.3, 127.3, 127.0, 127.0, 94.7 (C-1), 94.1 (C-1), 86.3, 82.0, 81.5, 80.0, 78.3, 78.0, 75.9, 75.6, 75.2, 75.1, 73.2, 72.8, 70.9, 70.3, 61.8, 51.2. HRMS (ESI) *m/z* calcd for (M+Na) C₇₃H₇₁N₃O₁₀Na: 1172.5032. Found: 1172.5029.

2,3,4-Tri-O-benzyl-6-O-triphenylmethyl- α -D-glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-amino-**2,3,4-tri-***O***-benzyl-***α***-D-glucopyranoside (TMM-7)**. To a solution of **TMM-6** (1.15 g, 1 mmol) in THF (20 mL) was added trimethylphosphine (1.5 mL, 1.5 mmol, 1M in THF), followed by the addition of 1M aq NaOH (0.6 mL, 0.6 mmol) at rt. The mixture was heated at 50 °C for 2 h and then cooled. The solvent was evaporated and the residue was purified by chromatography (20:1, EtOAc–CH₃OH) to give TMM-7 (0.32 g, 90%) as a syrup $R_f 0.43$ (20:1, EtOAc–CH₃OH); $[\alpha]_D$ +85.1 (c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.46–7.18 (m, 39 H), 7.04 (d, 4 H, J =6.5 Hz), 6.86–6.81 (m, 2 H), 5.37 (d, 1 H, J = 3.5 Hz, H-1), 5.30 (d, 1 H, J = 3.5 Hz, H-1), 4.99 (dd, 2 H, J = 10.8, 7.8 Hz), 4.93–4.80 (m, 5 H), 4.72–4.58 (m, 4 H), 4.30 (d, 1 H, J = 10.3 Hz), 4.23-4.18 (m, 1 H), 4.07 (td, 3 H, J = 9.3, 5.1 Hz), 3.86 (app t, 1 H, J = 9.6 Hz), 3.76 (dd, 1 H, J= 9.7, 3.6 Hz, 3.55 (dd, 1 H, J = 9.6, 3.5 Hz), 3.47 - 3.41 (m, 1 H), 3.37 (dd, 1 H, J = 10.1, 1.4 HzHz), 3.12 (dd, 1 H, J = 10.3, 3.3 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 143.9, 138.9, 138.8, 138.4, 138.3, 138.1, 138.0, 128.9, 128.5, 128.4, 128.2, 128.1, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.5, 127.3, 127.2, 127.0, 126.9, 94.2 (C-1), 93.7 (C-1), 86.3, 82.0, 81.7, 80.2, 80.1, 78.4, 78.1, 75.9, 75.5, 75.0, 74.9, 73.2, 72.7, 70.8, 61.9, 61.8. HRMS (ESI) *m/z* calcd for (M+Na) C₇₃H₇₃NO₁₀Na: 1146.5127. Found: 1146.5125.

2,3,4-Tri-*O*-benzyl-6-*O*-triphenylmethyl-*a*-D-glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-((2'*R*,3'*R*)-16'-azido-3'-(benzyloxy)-2'-dodecylhexadecanamide)-2,3,4-tri-*O*-benzyl-*a*-Dglucopyranoside (TMM-8). Aminosugar TMM-7 (63 mg, 0.056 mmol) and carboxylic acid TMM-3 (32 mg, 0.056 mmol), were stirred with DIEA (15 µL, 0.6 mmol) and TBTU (27 mg, 0.084 mmol) in DMF (2 mL) for 18 h. The mixture was diluted with EtOAc and the organic layer was washed with brine, dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (2:1, hexane–EtOAc) to give TMM-9 (81 mg, 89%) as a syrup. R_f 0.4 (2:1 hexanes–EtOAc); [α]_D +43.9 (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ _H) 7.48–7.15 (m, 43 H), 7.03 (dq, 4 H, J = 11.4, 7.0, 4.9 Hz), 6.83 (d, 2 H, J = 6.8 Hz), 6.49 (d, 1 H, J = 7.7 Hz), 5.27 (d, 1 H, J = 3.5 Hz, H-1), 5.13 (d, 1 H, J = 3.5 Hz, H-1), 5.00–4.62 (m, 10 H), 4.56–4.47 (m, 3 H), 4.30 (d, 1 H, J = 10.4 Hz), 4.23–4.06 (m, 3 H), 4.01 (app q, 2 H, J = 9.6 Hz), 3.88 (app t, 1 H, J = 9.6 Hz), 3.72 (dd, 1 H, J = 9.6, 3.6 Hz), 3.59 (app q, 1 H, J = 5.8 Hz), 3.41–3.31 (m, 3 H), 3.29 (t, 2 H, J = 7.0 Hz), 3.11 (dd, 1 H, J = 10.3, 2.8 Hz), 3.05–2.98 (m, 1 H), 2.40–2.33 (m, 1 H), 1.79–1.20 (m, 46 H), 0.92 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 174.3, 143.9, 139.0, 138.7, 138.6, 138.2, 138.1, 138.0, 128.9, 128.5, 128.4, 128.3, 128.2, 128.1, 127.8, 127.7, 127.5, 127.4, 127.2, 127.0, 126.9, 94.6 (C-1), 93.9 (C-1), 86.2, 81.9, 81.3, 80.5, 80.1, 79.8, 78.5, 77.9, 76.0, 75.6, 75.5, 75.0, 73.0, 72.7, 70.8, 69.6, 61.8, 52.4, 51.5, 38.7, 32.6, 32.0, 30.1, 29.9, 29.7, 29.6, 29.5, 29.4, 29.2, 28.9, 27.8, 26.8, 25.4, 22.7, 14.2. HRMS (ESI) *m/z* calcd for (M+Na) C₁₀₈H₁₃₂N₂O₁₂Na: 1699.9734. Found: 1699.9725.

2,3,4-Tri-O-benzyl-α-D-glucopyranosyl-(1↔1)-6-deoxy-6-((2'R,3'R)-16'-azido-3'-(benzyloxy)-2'-dodecylhexadecanamide)-2,3,4-tri-O-benzyl-α-D-glucopyranoside (TMM-9). To a solution of TMM-8 (81 mg, 0.048 mmol) in CH₂Cl₂-MeOH (1:1, 2 mL) was added p-TsOH·H₂O (28 mg, 0.144 mmol) at rt. After stirring for 20 h, the mixture was neutralized by adding Et₃N slowly at 0 °C. The solution was concentrated and the residue was purified by chromatography (3:1, hexane–EtOAc) to give TMM-8 (55 mg, 80%) as a syrup. R_f 0.48 (2:1) hexanes-EtOAc); $[\alpha]_{D}$ +40.2 (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 7.52-7.12 (m, 34 H), 6.48–6.38 (m, 1 H), 5.07 (d, 1 H, J = 3.5 Hz, H-1), 5.02–4.96 (m, 3 H, H-1), 4.93–4.85 (m, 3 H), 4.80 (d, 1 H, J = 10.0 Hz), 4.72–4.56 (m, 7 H), 4.49 (d, 1 H, J = 11.2 Hz), 4.13 (dt, 1 H, J = 10.0 Hz) 10.0, 3.0 Hz), 4.11–4.01 (m, 4 H), 3.63–3.49 (m, 5 H), 3.40–3.32 (m, 2 H), 3.27 (t, 2 H, J = 7.0Hz), 3.05-2.96 (m, 1 H), 2.37-2.29 (m, 1 H), 1.74-1.20 (m, 46 H), 0.90 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 138.9, 138.8, 138.6, 138.3, 138.2, 138.1, 137.9, 128.5, 128.4, 128.3, 128.1, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 93.9 (C-1), 93.7 (C-1), 81.6, 81.4, 80.5, 79.6, 79.3, 78.6, 77.4, 75.6, 75.5, 75.0, 73.0, 71.2, 69.6, 61.6, 52.4, 51.5, 38.6, 32.5, 32.0, 30.1, 29.9, 29.7, 29.6, 29.5, 29.4, 29.2, 28.9, 27.7, 26.8, 25.4, 22.7, 14.2. HRMS (ESI) m/z calcd for (M+Na) C₈₉H₁₁₈N₂O₁₂Na: 1457.8638. Found: 1457.8633.

2,3,4-Tri-*O*-benzyl-α-D-glucopyranosyl-(1↔1)-6-deoxy-6-[(2*R*,3*R*)-3-(benzyloxy)-16-((*tert*-butoxycarbonyl)amino)-2-dodecylhexadecanamide]-2,3,4-tri-*O*-benzyl-α-D-

glucopyranoside (TMM-10). To a solution of **TMM-9** (26 mg, 1 mmol) in THF (4 mL) was added trimethylphosphine (30 μ L, 0.03 mmol, 1M in THF), followed by the addition of 1M aq NaOH solution (11 μ L, 0.011 mmol) at rt. The mixture was heated at 50 °C for 2 h and then cooled. The solvent was evaporated and the residue was dissolved in a THF–H₂O solution (3:1, 1.6 mL), followed by the addition of di-*t*-butyl dicarbonate (5 mg, 0.022 mmol) and 1M aq

NaOH (56 µL, 0.056 mmol) at 0 °C. After stirring at rt for 16 h, the reaction mixture was diluted with CH₂Cl₂ and the organic layer was subsequently dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (2:1, hexane–EtOAc) to give **TMM-10** (26.7 mg, 98%) as a syrup. R_f 0.4 (2:1 hexanes–EtOAc); $[\alpha]_D$ +48.8 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.21 (m, 34 H), 6.45 (dd, 1 H, J = 8.5, 2.0 Hz), 5.07 (d, 1 H, J = 3.6 Hz, H-1), 5.01–4.96 (m, 3 H, H-1), 4.93–4.85 (m, 3 H), 4.80 (d, 1 H, J = 10.0 Hz), 4.73–4.56 (m, 7 H), 4.49 (d, 1 H, J = 11.2 Hz), 4.13 (dt, 1 H, J = 10.0, 3.0 Hz), 4.10–4.01 (m, 4 H), 3.60–3.50 (m, 5 H), 3.40–3.33 (m, 2 H), 3.13 (dd, 2 H, J = 6.6, 6.1 Hz), 3.01 (dt, 1 H, J = 14.0, 3.0 Hz), 2.33 (dt, 1 H, J = 9.6, 5.5 Hz), 1.75–1.20 (m, 46 H), 1.47 (s, 9 H), 0.91 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 174.3, 138.9, 138.8, 138.6, 138.3, 138.2, 138.1, 137.9, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 93.9 (C-1), 93.7 (C-1), 81.6, 81.4, 80.5, 79.6, 79.3, 78.6, 77.4, 75.6, 75.5, 75.0, 73.0, 71.2, 69.6, 61.6, 52.4, 40.7, 38.6, 32.5, 32.0, 30.1, 29.9, 29.7, 29.6, 29.5, 29.4, 29.3, 28.5, 27.7, 26.9, 25.4, 22.7, 14.2. HRMS (ESI) *m/z* calcd for (M+H) C₉₄H₁₂₉N₂O₁₄: 1509.9438. Found: 1509.9450.

α -D-Glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-[(2R,3R)-3-(benzyloxy)-16-((t-

butoxycarbonyl)amino)-2-dodecylhexadecanamide]-α-D-glucopyranoside (TMM-11). Compound TMM-10 (38.7 mg, 0.026 mmol) was dissolved in H₂O-CH₃OH (1:1, 2 mL) and $Pd(OH)_2$ -C (10%) was then added and the reaction mixture was stirred overnight under a H₂ (1 atm). The reaction mixture was diluted with H₂O-CH₃OH (1:1, 5 mL), filtered through Celite, and the filtrate was concentrated. The resulting residue was purified by chromatography (3:1 EtOAc-CH₃OH) to give TMM-11 (22 mg, 96%) as a syrup. $R_f 0.17$ (3:1 EtOAc-CH₃OH); $[\alpha]_D$ +30.0 (c = 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) 5.09 (d, 1 H, J = 3.5 Hz, H-1), 5.08 (d, 1 H, J = 3.5 Hz, H-1), 3.92 (ddd, 1 H, J = 9.7, 6.7, 2.8 Hz), 3.85-3.74 (m, 4 H), 3.67 (dd, 1 H, J)J = 11.8, 5.4 Hz), 3.63 (ddd, 1 H, J = 9.7, 5.0, 2.4 Hz), 3.57 (dd, 1 H, J = 14.1, 2.8 Hz3.47 (dd, 1 H, J = 3.7, 1.6 Hz), 3.45 (dd, 1 H, J = 3.7, 1.7 Hz), 3.39–3.33 (m, 1 H), 3.31–3.29 (m, 1 H), 3.16–3.12 (m, 1 H), 3.00 (t, 2 H, J = 7.1 Hz), 2.26–2.21 (m, 1 H), 1.62–1.26 (m, 46 H), 1.42 (s, 9 H), 0.89 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CD₃OD) δ 176.7, 157.1, 94.0 (2C, 2 × C-1), 78.3, 73.1, 72.7, 72.5, 72.1, 71.9, 71.9, 71.8, 70.6, 70.5, 61.3, 52.6, 40.0, 34.7, 31.7, 29.6, 29.4, 29.3, 29.2, 29.1, 29.0, 27.4, 27.2, 26.5, 25.2, 22.3, 13.1. HRMS (ESI) m/z calcd for (M+Na) C₄₅H₈₆N₂NaO₁₄: 901.5901. Found: 901.5999.

α -D-Glucopyranosyl-(1 \leftrightarrow 1)-6-deoxy-6-[(2*R*,3*R*)-2-dodecyl-3-hydroxy-16-((2-methoxy-3,4-dioxocyclobut-1-en-1-yl)amino)hexadecanamide]- α -D-glucopyranoside (39)

Squaramide). Disaccharide TMM-11 was dissolved in 50% TFA in CH₂Cl₂ at rt. After 4 h, the reaction mixture was concentrated to a syrup. To a solution of the resulting amine (5 mg, 0.0064 mmol) in 1:1 MeOH-H₂O (1 mL) was added diethyl squarate (2.8 µL, 0.02 mmol), followed by slow addition of satd aq Na₂CO₃ soln until the pH of the mixture was 8. Then the solvent was evaporated and the residue was purified by C_{18} chromatography (4:1 CH₃OH–H₂O) to give **39** Squaramide (5.6 mg, 99%) as a syrup (ester exchanged, OCH₂CH₃ was replaced by OCH₃ under the basic conditions). $R_f 0.4$ (4:1 CH₃OH–H₂O; $[\alpha]_D$ +26.2 (c = 0.1, CH₃OH); ¹H NMR (600 MHz, CD₃OD, $\delta_{\rm H}$) 5.09 (d, 1 H, J = 3.5 Hz, H-1), 5.08 (d, 1 H, J = 3.8 Hz, H-1), 4.36 (d, 3 H, J = 14.1 Hz), 3.91 (ddd, 1 H, J = 9.7, 6.7, 2.8 Hz), 3.84–3.73 (m, 4 H), 3.66 (dd, 1 H, J = 11.8, 5.4 Hz), 3.63 (ddd, 1 H, J = 8.3, 6.1, 3.2 Hz), 3.60–3.54 (m, 2 H), 3.47 (dd, 1 H, J = 3.7, 2.1 Hz3.45 (dd, 1 H, J = 3.7, 2.2 Hz), 3.41-3.33 (m, 2 H), 3.32-3.29 (m, 1 H), 3.14 (app t, 1 H, J =9.6), 2.27–2.21 (m, 1 H), 1.66–1.26 (m, 46 H), 0.89 (t, 3 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CD_3OD, δ_C) 188.6, 188.5, 183.5, 183.3, 177.0, 176.7, 176.4, 173.1, 94.0 (2 × C-1), 73.1, 72.7, 72.5, 72.1, 71.9, 71.8, 71.8, 70.6, 70.5, 61.3, 59.7, 59.6, 52.6, 44.2, 43.9, 40.0, 34.7, 31.7, 30.6, 30.1, 29.4, 29.3, 29.2, 29.1, 28.8, 27.2, 26.0, 25.2, 22.3, 13.0. HRMS (ESI) *m/z* calcd for (M+Na) C₄₅H₈₀N₂NaO₁₅: 911.5451. Found: 911.5444.

Scheme S42. Synthesis of 40 Squaramide. a) CH₃I, NaH, DMF; then *p*-TsOH·H₂O, CH₃OH, 69%; b) *n*-Bu₂SnO, toluene; then BnBr, CsF, DMF, 85%; c) NaH, CS₂, THF; then CH₃I, 88%; d) *n*-Bu₃SnH, AlBN, benzene; e) PhSH, BF₃·OEt₂, CH₂Cl₂, 58% over two steps; f) CH₃C(OCH₃)₃, camphorsulfonic acid, CH₂Cl₂; then HOAc, H₂O, 98%; g) **PGL-58**, NIS, AgOTf, CH₂Cl₂, 69%; h) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 61%.

p-Methoxyphenyl 4-*O*-methyl-α-L-rhamnopyranoside (PGL-54). To a solution of PGL-53¹⁶ (2.14 g, 6.89 mmol) and CH₃I (0.56 mL, 8.96 mmol) in dry DMF (18 mL) at 0 °C (ice bath) was added NaH (60% dispersion in mineral oil, 0.36 g, 8.96 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (1:9 EtOAc–hexane) to yield a colorless oil. To the solution of oil in CH₃OH (40 mL) at rt was added *p*-TsOH·H₂O (126 mg, 0.66 mmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Et₃N and concentrated. The resulting residue was purified by chromatography (1:1 EtOAc–hexane) to yield **PGL-54** (1.29 g, 69%, two steps) as a colorless oil. R_f 0.41 (8:2 EtOAc–hexane); [α]_D –119.5 (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.00–6.94 (m, 2 H), 6.85–6.78 (m, 2 H), 5.38 (d, 1 H, *J* = 1.2 Hz, H-1), 4.14 (s, 1H), 4.08–4.01 (m, 1H), 3.82–3.73 (m, 4 H), 3.58 (s, 3 H), 3.16 (app t, 1)

H, J = 9.4 Hz), 2.65 (d, 1 H, J = 3.7 Hz), 2.62 (s, 1H), 1.29 (d, 3 H, J = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 155.1, 150.5, 117.8, 114.8, 98.4 (¹ $J_{\rm C^{-1},H^{-1}} = 172$ Hz, C-1), 83.5, 71.4, 71.2, 68.1, 61.1, 55.9, 18.2. HRMS (ESI) *m/z* calcd for (M+Na) C₁₄H₂₀O₆Na: 307.1152. Found: 307.1157.

p-Methoxyphenyl 3-*O*-benzyl-4-*O*-methyl-*α*-L-rhamnopyranoside (PGL-55). A solution of diol PGL-54 (923 mg, 3.44 mmol) and *n*-Bu₂SnO (942 mg, 3.78 mmol) in toluene (40 mL) was heated at reflux with a Dean–Stark apparatus overnight, cooled, concentrated and the resulting residue dried on a vacuum pump for 1h. To a solution of this residue in DMF (15 mL) at rt was added CsF (575 mg, 3.78 mmol) and BnBr (0.45 mL, 3.8 mmol). The reaction mixture was stirred overnight at rt and concentrated. The resulting residue was purified by chromatography (2:8 EtOAc–hexane) to give PGL-55 (1.10 g, 85%, two steps) as a colorless oil. R_f 0.34 (2:8 EtOAc–hexane); [α]_D –113.6 (*c* = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.44–7.30 (m, 5 H), 7.00–6.94 (m, 2 H), 6.84–6.80 (m, 2 H), 5.41 (d, 1 H, *J* = 1.8 Hz, H-1), 4.76 (ABq, 2 H, *J* = 11.5 Hz), 4.18 (dt, 1 H, *J* = 3.5, 1.8 Hz), 3.91 (dd, 1 H, *J* = 9.1, 3.4 Hz), 3.82–3.71 (m, 4 H), 3.59 (s, 3 H), 3.22 (app t, 1 H, *J* = 9.4 Hz), 2.57 (d, 1 H, *J* = 1.8 Hz), 1.40–1.20 (d, 3 H, *J* = 6.2); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 155.1, 150.5, 138.2, 128.8, 128.2, 128.0, 117.8, 114.8, 98.1 (C-1), 82.1, 79.8, 72.5, 68.9, 68.2, 61.3, 55.9, 18.0. HRMS (ESI) *m/z* calcd for (M+Na) C₂₁H₂₆O₆Na: 397.1622. Found: 397.1619.

p-Methoxyphenyl **3-***O*-benzyl-4-*O*-methyl-2-*O*-(thiomethoxycarbonyl)-*a*-Lrhamnopyranoside (PGL-56). To a solution of PGL-55 (746 mg, 2.00 mmol) in THF (20 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 120 mg, 3.00 mmol) and imidazole (27 mg, 0.40 mmol). To this reaction mixture at rt was added CS₂ (1.2 mL, 20 mmol) and the solution was stirred for 1 h, before MeI (0.62 mL, 10 mmol) was added. The reaction mixture was stirred overnight at rt and concentrated. The resulting residue was purified by chromatography (5:95 EtOAc–hexane) to give PGL-56 (817 mg, 88%) as a colorless oil. R_f 0.33 (1:9 EtOAc–hexane); $[\alpha]_D$ –35.8 (*c* = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.38–7.26 (m, 5 H), 6.99–6.94 (m, 2 H), 6.84–6.79 (m, 2 H), 6.24 (dd, 1 H, *J* = 3.3, 2.0 Hz), 5.48 (d, 1 H, *J* = 1.8 Hz, H-1), 4.75 (d, 1 H, *J* = 11.5 Hz), 4.63 (d, 1 H, *J* = 11.5 Hz), 4.11 (dd, 1 H, *J* = 9.3, 3.4 Hz), 3.84 (app dq, 1 H, *J* = 9.6, 6.2 Hz), 3.77 (s, 3 H), 3.60 (s, 3 H), 3.27 (app t, 1 H, *J* = 9.4 Hz), 2.60 (s, 3 H), 1.32 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 216.2, 155.4, 150.3, 138.2, 128.6, 128.0, 127.9, 118.1, 114.8, 96.0 (C-1), 82.5, 77.8, 77.5, 72.2, 68.6, 61.5, 55.9, 19.3, 18.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₃H₂₈O₆S₂Na: 487.1220. Found: 487.1220.

Phenyl 3-O-benzyl-4-O-methyl-2,6-dideoxy-1-thio-L-arabino-hexopyranoside (PGL-58). To a solution of PGL-56 (785 mg, 1.69 mmol) in degassed benzene (20 mL) at 80 °C in a Schlenk tube was added dropwise a solution of n-Bu₃SnH (0.91 mL, 3.4 mmol) and AIBN (69 mg, 0.42 mmol) in benzene (10 mL) over 100 min using a syringe pump. The reaction mixture was stirred at 80 °C for 3 h, cooled and then concentrated. The resulting residue was purified by chromatography (1:99 EtOAc-toluene) to give a light yellow oil (2-deoxy glycoside PGL-57). To a solution of oil and thiophenol (166 µL, 162 mmol) in CH₂Cl₂ (17 mL) at 0 °C was added BF₃·OEt₂ (183 µL, 1.48 mmol). The reaction mixture was stirred at 0 °C for 1 h, Et₃N (200 µL) was added, and then the solution was concentrated. The resulting residue was purified by chromatography (1:99 EtOAc-toluene) to give PGL-58 (330 mg, 58%, two steps) as a colorless, oily mixture of 5:4 α : β isomers: $[\alpha]_D - 106.1$ (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.49–7.33 (m, 10 H), 7.32–7.22 (m, 8 H), 5.56 (d, 1 H, J = 5.6 Hz, H-1 α), 4.75–4.59 (m, 4.5 H), 4.13 (app dq, 1 H, J = 9.4, 6.2 Hz), 3.82 (ddd, 1 H, J = 11.6, 8.6, 4.9 Hz), 3.61 (s, 3 H), 3.60 (s, 2.4 H), 3.53 (ddd, 0.8 H, J = 11.2, 8.7, 5.2 Hz), 3.30 (app dq, 0.8 H, J = 9.4, 6.2 Hz), 2.89–2.83 (m, 1.8 H), 2.46–2.38 (m, 1.8 H), 2.05 (ddd, 1 H, J = 13.4, 11.6, 5.7 Hz), 1.74 (dt, 0.8 H, J =19.9, 10.1 Hz), 1.36 (d, 2.4 H, J = 6.2 Hz), 1.30 (app t, 3 H, J = 7.7 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.7, 138.6, 135.5, 134.3, 131.5, 131.3, 129.1, 129.0, 128.6, 127.9, 127.86, 127.82, 127.5, 127.2, 86.7, 85.8, 84.0 (C-1α), 82.0 (C-1β), 80.4, 77.6, 75.9, 72.2, 71.9, 68.6, 61.3, 61.1, 37.4, 36.8, 18.5, 18.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₀H₂₄O₃SNa: 367.1338. Found: 367.1336.

4-(8-Azidooctyl)phenyl 4-O-acetyl-2-O-methyl-α-L-fucopyranoside- $(1\rightarrow 3)$ -4-Obenzyl-2-O-methyl-α-L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-methyl-α-L-rhamnopyranoside (PGL-59). To a solution of PGL-41 (422 mg, 507 µmol) and trimethyl orthoacetate (387 µL, 3.04 mmol) in CH₂Cl₂ (10 mL) at rt was added CSA (27 mg, 117 µmol). The reaction mixture was stirred at rt for 4 h, Et₃N (300 µL) was added and the solution was concentrated. The residue was co-evaporated twice with toluene to give a colorless oil. A solution of the resulting oil in aqueous 80% AcOH (10 mL) was stirred at rt for 3 h, concentrated and the residue was and coevaporated twice with toluene. The resulting residue was purified by chromatography (5:5 EtOAc–hexane) to yield PGL-59 (434 mg, 98%, two steps) as a colorless oil. R_f 0.45 (7:3 EtOAc–hexane); $[\alpha]_D$ –125.0 (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.23 (m, 5 H), 7.08 (d, 2 H, *J* = 8.6 Hz), 6.96 (d, 2 H, *J* = 8.6 Hz), 5.46 (d, 1 H, *J* = 1.5 Hz, H-1), 5.29 (d, 1 H, *J* = 3.4 Hz), 5.24 (d, 1 H, *J* = 3.5 Hz, H-1), 5.19 (d, 1 H, *J* = 1.3 Hz, H-1), 5.13 (d, 1 H, *J* = 11.5 Hz), 4.59 (d, 1 H, *J* = 11.5 Hz), 4.35 (q, 1 H, *J* = 6.6 Hz), 4.25 (dt, 1 H, *J* = 10.2, 3.0 Hz), 4.09 (dd, 1 H, *J* = 9.6, 3.2 Hz), 4.02 (dd, 1 H, *J* = 9.4, 3.2 Hz), 3.95 (tt, 1 H, *J* = 12.5, 6.2 Hz), 3.74 (dd, 1 H, *J* = 2.9, 2.0 Hz), 3.72 (dd, 1 H, *J* = 3.1, 1.9 Hz), 3.71–3.65 (m, 1H), 3.55 (s, 3 H), 3.53–3.49 (m, 4 H), 3.49–3.44 (m, 4 H), 3.30 (s, 3 H), 3.28–3.19 (m, 3 H), 2.57–2.51 (m, 2 H), 2.28 (d, 1 H, *J* = 2.5 Hz), 2.18 (s, 3 H), 1.63–1.54 (m, 4 H), 1.39–1.28 (m, 11H), 1.27 (d, 3 H, *J* = 6.2 Hz), 1.15 (d, 3 H, *J* = 6.6 Hz); ¹³C NMR (151 MHz, CDCl₃, δ_C) 171.4, 154.7, 139.2, 136.9, 129.5, 128.4, 127.6, 127.6, 116.4, 99.3 (¹_{J_{C-1,H-1} = 169 Hz, C-1), 98.6 (¹_{J_{C-1,H-1} = 169 Hz, C-1), 95.2 (¹_{J_{C-1,H-1} = 171 Hz, C-1), 82.3, 81.7, 80.9, 80.5, 80.1, 79.5, 78.6, 75.2, 73.1, 69.0, 68.8, 68.2, 65.4, 61.4, 59.1, 58.3, 57.9, 51.7, 35.3, 31.8, 29.5, 29.34, 29.3, 29.0, 26.9, 21.0, 18.4, 18.1, 16.6. HRMS (ESI) *m/z* calcd for (M+Na) C₄₅H₆₇N₃O₁₄Na: 896.4515. Found: 896.4503.}}}

p-(8-Azidooctylphenyl) 2,6-dideoxy-3-*O*-benzyl-4-*O*-Me-α-L-*arabino*-hexopyranosyl-(1→3)-4-*O*-acetyl-2-*O*-methyl-α-L-fucopyranosyl-(1→3)-4-*O*-benzyl-2-*O*-methyl-α-L-

rhamnopyranosyl-(1\rightarrow3)-2,4-di-*O***-methyl-\alpha-L-rhamnopyranoside (PGL-60). A solution of** PGL-58 (94 mg, 273 µmol), PGL-59 (183 mg, 209 µmol), and crushed 4Å molecular sieves (100 mg) in CH₂Cl₂ (12 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*-iodosuccinimide (61 mg, 271 µmol) and silver triflate (11 mg, 43 µmol). The reaction mixture was stirred at -20 °C for another 60 min, Et₃N (100 µL) and a satd ag soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (15:85 EtOAc-toluene) to yield PGL-60 (160 mg, 69%) as a light yellow foam. $R_f 0.32$ (3:7 EtOAc-toluene); $[\alpha]_D - 128.3$ (c = 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.39–7.30 (m, 8 H), 7.29–7.24 (m, 2 H), 7.08 (d, 2 H, J = 8.6 Hz), 6.96 (d, 2 H, J = 8.6 Hz), 5.45 (d, 1 H, J = 1.6 Hz, H-1), 5.27 (d, 1 H, J = 2.5 Hz), 5.21–5.15 (m, 3 H), 5.04 (d, 1 H, J = 3.1 Hz, H-1), 4.64 (s, 2 H), 4.54 (d, 1 H, J = 11.0 Hz), 4.35 (q, 1 H, J =6.8 Hz), 4.28 (dd, 1 H, J = 10.4, 3.3 Hz), 4.08 (dd, 1 H, J = 9.6, 3.2 Hz), 4.01 (dd, 1 H, J = 9.5, 3.1 Hz), 3.96–3.88 (m, 2 H), 3.82–3.73 (m, 2 H), 3.72–3.66 (m, 2 H), 3.55 (s, 3 H), 3.54 (s, 3 H), 3.52-3.48 (m, 4 H), 3.47 (s, 3 H), 3.45-3.42 (m, 1H), 3.32 (s, 3 H), 3.27-3.19 (m, 3 H), 2.80 (app t, 1 H, J = 9.2 Hz), 2.59–2.51 (m, 2 H), 2.15 (s, 3 H), 2.02 (dd, 1 H, J = 12.5, 5.1 Hz), 1.64 (dd, 1 H, J = 11.5, 9.4 Hz), 1.58 (m, 4 H), 1.39-1.29 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.14 (d, 1 H, J = 11.5, 9.4 Hz), 1.58 (m, 4 H), 1.39-1.29 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.14 (d, 1 H, J = 11.5, 9.4 Hz), 1.58 (m, 4 H), 1.39-1.29 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.14 (d, 1 H, J = 11.5, 9.4 Hz), 1.58 (m, 4 H), 1.39-1.29 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.14 (d, 1 Hz), 1.58 (m, 4 Hz), 1.58

3 H, J = 6.6 Hz), 1.11 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 154.8, 139.3, 139.1, 136.9, 129.5, 128.5, 128.4, 128.2, 127.8, 127.7, 127.6, 116.4, 100.4 (¹ $J_{C-1,H-1} = 169$ Hz, C-1), 98.5 (¹ $J_{C-1,H-1} = 169$ Hz, C-1), 95.3 (¹ $J_{C-1,H-1} = 171$ Hz, C-1), 93.5 (¹ $J_{C-1,H-1} = 170$ Hz, C-1), 86.7, 82.3, 82.2, 80.9, 80.5, 79.9, 79.5, 76.9, 75.4, 71.9, 70.4, 70.2, 69.0, 68.8, 67.4, 65.0, 61.4, 60.9, 59.3, 59.1, 57.7, 51.7, 35.6, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 26.9, 21.1, 18.4, 18.3, 18.1, 16.7. HRMS (ESI) *m/z* calcd for (M+Na) C₅₉H₈₅N₃O₁₇Na: 1130.6000. Found: 1130.6000.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,6-dideoxy-4-O-Me-α-L-*arabino*-hexopyranosyl- $(1\rightarrow 3)$ -4-*O*-acetyl-2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2-*O*methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl- α -L-rhamnopyranoside (40 Squaramide). Treatment of PGL-60 with H_2 and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 40 Squaramide (61%, chromatography 4:96 CH₃OH–CH₂Cl₂) as a light yellow powder. $R_f 0.67$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –136.0 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.08 (d, 2 H, J = 8.5 Hz), 6.97 (d, 2 H, J = 8.5 Hz), 5.90 (s, 1H), 5.46 (s, 1H, H-1), 5.26 (d, 1H, J = 2.6 Hz), 5.16 (s, 1H, H-1), 5.08 (d, 1H, J = 3.6Hz, H-1), 5.04 (d, 1 H, J = 3.2 Hz, H-1), 4.80–4.72 (m, 2 H), 4.30–4.23 (m, 2 H), 4.12 (dd, 1 H, J = 9.6, 3.2 Hz), 3.95-3.78 (m, 4 H), 3.77-3.31 (m, 22 H), 3.23 (app t, 1 H, J = 9.5 Hz), 2.71(app t, 1 H, J = 9.2 Hz), 2.54 (app t, 2 H, J = 7.6 Hz), 2.28 (s, 1H), 2.16 (s, 3 H), 1.94 (dd, 1 H, J= 13.0, 5.1 Hz), 1.72-1.67 (m, 1H), 1.65-1.58 (m, 4 H), 1.45 (dd, 3 H, J = 12.7, 5.6 Hz), 1.30(m, 17 H), 1.12 (app t, 3 H, J = 7.9 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.9, 154.7, 136.8, 129.5, 116.4, 101.2 (${}^{1}J_{C-1 H-1} = 168 \text{ Hz}, \text{ C-1}$), 99.7 (${}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}$), 95.3 (${}^{1}J_{C-1 H-1} = 170 \text{ Hz}$) Hz, C-1), 93.3 (${}^{1}J_{C-1,H-1} = 171$ Hz, C-1), 88.2, 83.7, 82.5, 80.8, 80.6, 79.0, 78.3, 71.9, 70.7, 69.9, 69.8, 69.2, 69.0, 68.9, 67.4, 65.6, 61.2, 61.0, 60.6, 59.2, 59.0, 45.1, 37.2, 35.3, 31.8, 29.5, 29.4, 29.3, 26.5, 21.0, 18.3, 18.1, 18.1, 16.6, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₅₁H₇₉NO₂₀Na: 1048.5088. Found: 1048.5070.

Scheme S43. Synthesis of 41 Squaramide. a) n-Bu₂SnO, toluene; then BnBr, CsF, DMF; then BzCl, pyridine 90%; b) Et₃SiH, CH₂Cl₂ CF₃CO₂H; 76%; c) NaOCH₃, CH₂Cl₂, CH₃OH; then CH₃I, NaH, DMF, quant; d) **PGL-64**, NIS, AgOTf, CH₂Cl₂, 45%; e) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 73%.

Phenyl 2-*O*-benzoyl-3-*O*-benzyl-4,6-*O*-benzylidene-1-thio-α-D-mannopyranoside (PGL-62). A solution of diol PGL-61 ³⁵ (3.83 g, 10.6 mmol) and *n*-Bu₂SnO (2.78 g, 11.1 mmol) in toluene (60 mL) was heated at refluxed with a Dean–Stark apparatus overnight, cooled, concentrated and the resulting residue dried on a vacuum pump for 1 h. To this residue in DMF (46 mL) was added CsF (1.69 g 11.1 mmol) and BnBr (1.39 mL, 11.7 mmol). The reaction mixture was stirred overnight at rt and concentrated. The resulting residue was purified by chromatography (3:7 EtOAc–hexane) to give a colorless oil. To a solution of the resulting oil (4.44 g, 9.85 mmol) in pyridine (50 mL) at 0 °C was added BzCl (1.54 mL, 13.3 mmol). The reaction mixture was stirred overnight at rt, concentrated and the residue was co-evaporated twice with toluene. The resulting residue was purified by chromatography (15:85 EtOAc– hexane) to yield PGL-62 (5.29 g, 90%, three steps) as a colorless oil. R_f 0.61 (15:85 EtOAc– hexane); [α]_D +74.8 (*c* = 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.13–8.08 (m, 2 H), 7.62– 7.52 (m, 3 H), 7.50–7.15 (m, 15 H), 5.84 (dd, 1 H, *J* = 3.4, 1.5 Hz), 5.71 (s, 1H), 5.62 (d, 1 H, *J* = 1.4 Hz, H-1), 4.76 (ABq, 2 H, *J* = 12.2 Hz), 4.44 (app td, 1 H, *J* = 9.8, 4.9 Hz), 4.33–4.25 (m, 2 H), 4.14 (dd, 1 H, *J* = 9.9, 3.4 Hz), 3.93 (app t, 1 H, *J* = 10.3 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 138.0, 137.6, 133.6, 133.3, 132.4, 130.2, 129.9, 129.4, 129.3, 129.2, 128.7, 128.6, 128.4, 128.3, 127.9, 126.4, 101.9, 87.5 (C-1), 79.1, 74.5, 72.4, 72.2, 68.8, 65.5. HRMS (ESI) *m/z* calcd for (M+Na) C₃₃H₃₀O₆SNa: 577.1655. Found: 577.1649.

Phenyl 2-*O***-benzoyl-3,6-di-***O***-benzyl-1-thio-α-D-mannopyranoside (PGL-63)**. To a stirred solution of **PGL-62** (544 mg, 981 μmol) and Et₃SiH (1.56 mL, 9.8 1 mmol) in dichloromethane (13 mL) at 0 °C (ice bath) was added dropwise neat trifluoroacetic acid (0.75 mL, 9.8 mmol). The reaction mixture was stirred at 0 °C for 5 min, concentrated and the residue was then co-evaporated with toluene. The resulting residue was purified by chromatography (15:85 EtOAc–hexane) to yield **PGL-63** (414 mg, 76%) as a colorless oil. R_f 0.45 (2:8 EtOAc–hexane); $[\alpha]_D$ +38.9 (c = 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ_H) 8.06–8.02 (m, 2 H), 7.58–7.50 (m, 3 H), 7.41–7.24 (m, 15 H), 5.84 (dd, 1 H, J = 3.0, 1.7 Hz), 5.65 (d, 1 H, J = 1.4 Hz, H-1), 4.82 (d, 1 H, J = 11.3 Hz), 4.68 (d, 1 H, J = 11.8 Hz), 4.56 (app t, 2 H, J = 11.6 Hz), 4.41 (ddd, 1 H, J = 9.5, 4.6, 3.0 Hz), 4.23 (app t, 1 H, J = 9.6 Hz), 3.92 (dd, 1 H, J = 10.8, 4.9 Hz), 3.88 (dd, 1 H, J = 6.0, 3.2 Hz), 3.86 (dd, 1 H, J = 7.3, 3.1 Hz); ¹³C NMR (150 MHz, CDCl₃, δ_C) 165.8, 138.4, 137.5, 133.7, 133.5, 132.3, 130.1, 129.8, 129.3, 128.8, 128.6, 128.5, 128.45, 128.3, 128.0, 127.8, 127.7, 86.73 (C-1), 78.20, 73.78, 72.61, 71.82, 70.20, 69.95, 67.76. HRMS (ESI) *m/z* calcd for (M+Na) C₃₃H₃₂O₆SNa: 579.1812. Found: 579.1810.

Phenyl 3,6-di-*O***-benzyl-2,4-di-***O***-methyl-1-thio**-*α***-D-mannopyranoside (PGL-64)**. To a solution of **PGL-63** (170 mg, 298 μmol) in 1:1 CH₂Cl₂–CH₃OH (3 mL) at rt was added sodium methoxide (4.8 mg, 89 μmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR 120, filtered and concentrated to yield a colorless oil. To the solution of oil and CH₃I (24 μL, 387 μmol) in dry DMF (4 mL) at 0 °C (ice bath) was added NaH (60% dispersion in mineral oil, 15 mg, 387 μmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (15:85 EtOAc–hexane) to yield **PGL-64** (143 mg, 100%, two steps) as a colorless oil. R_f 0.65 (25:75 EtOAc–hexane); $[α]_D$ +118.1 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.52–7.47 (m, 2 H), 7.44–7.22 (m, 13 H), 5.61 (d, 1 H, J = 1.4 Hz, H-1), 4.73 (ABq, 2 H, J = 11.9 Hz), 4.65 (d, 1 H, J = 11.9 Hz), 4.50 (d, 1 H, J = 11.9 Hz), 4.22–4.15 (m, 1H), 3.79 (dd, 1 H, J = 10.9, 5.2 Hz), 3.75 (dd, 1 H, J = 7.0, 2.4 Hz), 3.73 (dd, 1 H, J = 8.7, 2.5 Hz), 3.71

(dd, 1 H, J = 3.2, 1.7 Hz), 3.66 (app t, 1 H, J = 9.5 Hz), 3.53 (s, 3 H), 3.44 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 138.6, 138.4, 134.7, 131.6, 129.2, 128.7, 128.4, 128.2, 128.0, 127.9, 127.6, 127.5, 85.1 (C-1), 80.1, 79.7, 76.8, 73.5, 72.8, 72.6, 69.5, 61.1, 58.6. HRMS (ESI) *m/z* calcd for (M+Na) C₂₈H₃₂O₅SNa: 503.1863. Found: 503.1859.

4-(8-Azidooctyl)phenyl 3,6-di-*O*-benzyl-2,4-di-*O*-methyl-α-D-mannopyranosyl-(1→3)-4-*O*-acetyl-2-*O*-methyl-α-L-fucopyranosyl-(1→3)-4-*O*-benzyl-2-*O*-methyl-α-L-

rhamnopyranosyl-(1\rightarrow3)-2,4-di-*O***-methyl-\alpha-L-rhamnopyranoside (PGL-65). A solution of** PGL-64 (51 mg, 106 µmol), PGL-59 (77 mg, 88 µmol), and crushed 4Å molecular sieves (60 mg) in CH₂Cl₂ (6 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added Niodosuccinimide (24 mg, 106 µmol) and silver triflate (4.5 mg, 18 µmol). The reaction mixture was stirred at -20 °C for another 30 min, Et₃N (100 µL) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and the solution was then dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (2:8 EtOAc-toluene) to yield PGL-65 (49 mg, 45%) as a colorless oil. $R_f 0.53$ (1:1 EtOAc-toluene); $[\alpha]_D$ -68.6 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, $CDCl_3$, δ_H) 7.38 (m, 4 H), 7.35–7.22 (m, 11H), 7.08 (d, 2 H, J = 8.6 Hz), 6.97 (d, 2 H, J = 8.6Hz), 5.46 (d, 1 H, J = 1.5 Hz, H-1), 5.23 (d, 1 H, J = 2.7 Hz), 5.16-5.18 (m, 2 H, H-1, H-1), 5.16 (d, 1 H, J = 1.4 Hz, H-1), 5.14 (d, 1 H, J = 11.3 Hz), 4.72 (m, 3 H), 4.54 (app t, 2 H, J = 11.9Hz), 4.28 (q, 1 H, J = 6.5 Hz), 4.24 (dd, 1 H, J = 10.3, 3.5 Hz), 4.08 (dd, 1 H, J = 9.6, 3.2 Hz), 4.00 (dd, 1 H, J = 9.5, 3.1 Hz), 3.93 (app dq, 1 H, J = 12.6, 6.3 Hz), 3.82 (dd, 1 H, J = 4.6, 2.6 Hz), 3.77 (m, 1H), 3.73–3.66 (m, 4 H), 3.59 (m, 2 H), 3.53 (s, 3 H), 3.52–3.47 (m, 7 H), 3.47– 3.43 (m, 2 H), 3.41 (s, 6 H), 3.25 (app t, 2 H, J = 7.0 Hz), 3.23–3.18 (m, 4 H), 2.59–2.51 (m, 2 H), 2.04 (s, 3 H), 1.64–1.55 (m, 4 H), 1.41–1.28 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.06 (d, 3 H) H, J = 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.5, 154.8, 139.4, 139.0, 138.9, 136.9, 129.51, 128.5, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.5, 127.46, 116.4, 99.7 (${}^{1}J_{C-1 H-1} =$ 175 Hz, C-1), 99.0 (${}^{1}J_{C-1,H-1} = 171$ Hz, C-1), 98.5 (${}^{1}J_{C,H} = 171$ Hz, C-1), 95.2 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 82.3, 81.9, 80.8, 80.5, 80.0, 79.5, 79.0, 78.8, 78.7, 76.7, 75.3, 73.7, 73.5, 73.4, 72.4, 72.2, 69.5, 68.9, 68.8, 65.6, 61.4, 60.8, 59.1, 58.9, 58.6, 57.9, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 26.9, 20.9, 18.4, 18.1, 16.5. HRMS (ESI) m/z calcd for (M+Na) C₆₇H₉₃N₃O₁₉Na: 1266.6295. Found: 1266.6296.

 $\label{eq:2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl] phenyl 2,4-di-O-methyl-α-D-methyl-α-D-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-(1$-3)-2-$O$-methyl-$\alpha$-L-fucopyranosyl-(1$-3)-2-O-methyl-α-L-fucopyranosyl-α-P-fucopyrano$

rhamnopyranosyl- $(1\rightarrow 3)$ -2.4-di-*O*-methyl- α -L-rhamnopyranoside (41 Squaramide). Treatment of PGL-65 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 41 Squaramide (73%, chromatography 4:96 CH₃OH- CH_2Cl_2) as a light yellow foam. $R_f 0.62$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –79.2 (c = 1.4, CHCl₃); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.08 (d, 2 H, J = 8.3 Hz), 6.97 (d, 2 H, J = 8.3 Hz), 6.06 (s, 1H), 5.47 (s, 1 H, H-1), 5.23 (d, 1 H, J = 2.4 Hz), 5.18 (s, 1 H, H-1), 5.16 (s, 1 H, H-1), 5.11 (d, 1 H, J = 3.3 Hz, H-1), 4.77–4.76 (s, 2 H), 4.29 (dd, 1 H, J = 12.7, 6.2 Hz), 4.18 (dd, 1 H, J = 10.1, 3.2 Hz), 4.11 (dd, 1 H, J = 9.5, 2.8 Hz), 3.87 (m, 2 H), 3.79–3.72 (m, 3 H), 3.70 (m, 2 H), 3.67–3.60 (m, 4 H), 3.58-3.47 (m, 19 H), 3.42 (s, 2 H), 3.31 (app t, 1 H, J = 9.5 Hz), 3.22 (app t, 1 H, J =9.5 Hz), 2.54 (app t, 2 H, J = 7.5 Hz), 2.42 (d, 1 H, J = 8.9 Hz), 2.15 (s, 3 H), 1.64–1.54 (m, 4 H), 1.45 (app t, 3 H, J = 6.8 Hz), 1.36 (d, 3 H, J = 6.1 Hz), 1.31 (s, 8 H), 1.26 (d, 3 H, J = 6.1Hz), 1.09 (d, 3 H, J = 6.5 Hz); ¹³C NMR (175 MHz, CDCl₃, $\delta_{\rm C}$) 177.5, 170.8, 154.7, 136.9, 129.5, 116.4, 100.7 (${}^{1}J_{C-1 H-1} = 169 \text{ Hz}, \text{ C-1}$), 99.4 (${}^{1}J_{C-1 H-1} = 171 \text{ Hz}, \text{ C-1}$), 98.5 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}$) Hz, C-1), 95.2 (${}^{1}J_{C-1 H-1} = 172$ Hz, C-1), 83.5, 82.5, 80.8, 80.7, 80.6, 79.8, 79.2, 78.0, 74.6, 73.3, 72.2, 71.8, 71.1, 69.8, 69.1, 69.0, 66.0, 62.5, 61.2, 60.7, 59.9, 59.2, 58.9, 58.8, 45.1, 35.3, 31.8, 29.5, 29.4, 29.3, 26.5, 21.0, 18.1, 18.1, 16.5, 16.1. HRMS (ESI) m/z calcd for (M+Na) C₅₂H₈₁NO₂₂Na: 1094.5142. Found: 1094.5131.

Scheme S44. Synthesis of 42 Squaramide. a) BnBr, NaH, DMF, 95%; b) NaOCH₃, CH₂Cl₂, CH₃OH; then CH₃I, NaH, DMF, 82%; d) PGL-67, NIS, AgOTf, CH₂Cl₂, 53%; e) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 69%.

Phenyl 2-*O***-benzoyl-3,4,6-tri-***O***-benzyl-1-thio-***α***-D-mannopyranoside (PGL-66). To a stirred solution of PGL-63 (404 mg, 726 μmol) and BnBr (0.26 mL, 2.2 mmol) in dry DMF (8 mL) at 0 °C (ice bath) was added NaH (60% dispersion in mineral oil, 40 mg, 1.0 mmol). The reaction mixture was stirred at 0 °C for 2 h, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (7:93 EtOAc–hexane) to yield PGL-66 (445 mg, 95%) as a colorless oil. R_f 0.64 (2:8 EtOAc–hexane); [\alpha]_D +72.2 (***c* **= 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃, \delta_H) 8.08–8.05 (m, 2 H), 7.58–7.53 (m, 1H), 7.53–7.48 (m, 2 H), 7.39–7.20 (m, 26 H), 5.87 (dd, 1 H,** *J* **= 3.0, 1.9 Hz), 5.65 (d, 1 H,** *J* **= 1.7 Hz, H-1), 4.91 (d, 1 H,** *J* **= 10.8 Hz), 4.82 (d, 1 H,** *J* **= 11.3 Hz), 4.71 (d, 1 H,** *J* **= 11.8 Hz), 4.62 (d, 1 H,** *J* **= 11.3 Hz), 4.58 (d, 1 H,** *J* **= 10.8 Hz), 4.51 (d, 1 H,** *J* **= 11.8 Hz), 4.40 (ddd, 1 H,** *J* **= 9.8, 4.1, 1.6 Hz), 4.17 (app t, 1 H,** *J* **= 9.6 Hz), 4.06 (dd, 1 H,** *J* **= 9.3, 3.0 Hz), 3.95 (dd, 1 H,** *J* **= 10.9, 1.8 Hz); ¹³C NMR (150 MHz, CDCl₃, \delta_C) 165.8, 138.6, 138.51, 137.9, 133.9, 133.4, 132.1, 130.2, 130.0, 129.3, 128.63, 128.61, 128.6, 128.5, 128.4, 128.2,**

128.0, 127.91, 127.9, 127.74, 127.70, 86.6 (C-1), 78.8, 75.6, 74.7, 73.6, 72.9, 71.9, 70.9, 69.3. HRMS (ESI) *m/z* calcd for (M+Na) C₄₀H₃₈O₆SNa: 669.2281. Found: 669.2278.

Phenyl 3,4,6-tri-O-benzyl-2-O-methyl-1-thio-α-D-mannopyranoside (PGL-67). To a solution of PGL-66 (175 mg, 271 µmol) in 1:1 CH₂Cl₂-CH₃OH (4 mL) at rt was added sodium methoxide (9 mg, 166 µmol). The reaction mixture was stirred at rt for 2 d, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated to yield a colorless oil. To asolution of oil (134 mg, 247 µmol) and CH₃I (20 µL, 321 µmol) in dry DMF (4 mL) at 0 °C (ice bath) was added NaH (60% dispersion in mineral oil, 13 mg, 321 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of AcOH and concentrated. The resulting residue was purified by chromatography (7:93 EtOAc-hexane) to yield PGL-67 (112 mg, 82%, two steps) as a colorless oil. $R_f 0.46$ (2:8 EtOAc-hexane); $[\alpha]_D + 167.2$ (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.51–7.47 (m, 2 H), 7.43–7.39 (m, 2 H), 7.38–7.20 (m, 16 H), 5.64 (d, 1 H, J = 1.4 Hz, H-1), 4.91 (d, 1 H, J = 10.8 Hz), 4.78–4.70 (m, 2 H), 4.63 (d, 1 H, J = 12.0 Hz), 4.52 (d, 1 H, J = 10.8 Hz), 4.47 (d, 1 H, J = 12.0 Hz), 4.28 (ddd, 1 H, J = 9.7, 5.1, 1.5 Hz), 3.97 (app t, 1 H, J = 9.6 Hz), 3.86 (dd, 1 H, J = 9.3, 3.1 Hz), 3.81 (dd, 1 H, J = 10.9, 5.1 Hz), 3.76-3.69 (m, 2 H), 3.46 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃, $\delta_{\rm C}$) 138.6, 138.5, 138.3, 134.7, 131.6, 129.2, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.5, 85.1 (C-1), 80.3, 79.7, 75.5, 75.2, 73.5, 72.8, 72.6, 69.3, 58.6. HRMS (ESI) m/z calcd for (M+Na) C₃₄H₃₆O₅SNa: 579.2176. Found: 579.2166.

4-(8-Azidooctyl)phenyl 3,4,6-tri-*O*-benzyl-2-*O*-methyl-α-D-mannopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl-2-*O*-methyl-α-L-fucopyranosyl-(1 \rightarrow 3)-4-*O*-benzyl-2-*O*-methyl-α-Lrhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl-α-L-rhamnopyranoside (PGL-68). A solution of PGL-67 (43 mg, 77 µmol), PGL-59 (56 mg, 64 µmol), and crushed 4Å molecular sieves (60 mg) in CH₂Cl₂ (5 mL) was stirred at 0 °C for 30 min. To this solution at -20 °C was added *N*iodosuccinimide (17 mg, 77 µmol) and silver triflate (3.3 mg, 13 µmol). The reaction mixture was stirred at -20 °C for another 30 min, Et₃N (100 µL) and a satd aq soln of Na₂S₂O₃ (0.5 mL) were added, and then solution was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by chromatography (2:8 EtOAc-toluene) to yield PGL-68 (45 mg, 53%) as a colorless oil. R_f 0.50 (3:7 EtOAc-toluene); [α]_D -53.9 (*c* = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.38 (m, 6 H), 7.35-7.24 (m, 14 H), 7.12 (d, 2 H, *J* = 8.6 Hz), 7.00 (d, 2 H, *J* = 8.6 Hz), 5.49 (d, 1 H, *J* = 1.4 Hz, H-1), 5.29 (d, 1 H, *J* = 3.0 Hz), 5.20-5.22 (m, 3 H, H-1, H-1), 5.17 (d, 1 H, J = 11.2 Hz), 4.89 (d, 1 H, J = 11.3 Hz), 4.79–4.68 (m, 3 H), 4.62–4.49 (m, 3 H), 4.32 (d, 1 H, J = 6.8 Hz), 4.28 (dd, 1 H, J = 10.3, 3.4 Hz), 4.12 (dd, 1 H, J = 9.6, 3.2 Hz), 4.04 (dd, 1 H, J = 9.5, 3.1 Hz), 4.00–3.94 (m, 1H), 3.90 (m, 2 H), 3.80–3.69 (m, 6 H), 3.56 (s, 3 H), 3.55–3.48 (m, 6 H), 3.47 (s, 3 H), 3.46 (s, 3 H), 3.28 (app t, 2 H, J = 6.9 Hz), 3.26–3.20 (m, 4 H), 2.62–2.54 (m, 2 H), 2.08 (s, 3 H), 1.66–1.58 (m, 4 H), 1.42–1.32 (m, 11H), 1.30 (d, 3 H, J = 6.2 Hz), 1.10 (d, 3 H, J = 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 170.5, 154.8, 139.4, 139.1, 138.8, 136.9, 129.5, 128.5, 128.4, 128.4, 128.0, 128.0, 127.9, 127.8, 127.6, 127.54, 127.52, 127.5, 116.4, 99.7 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 99.3 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 98.6 ($^{1}J_{C-1,H-1} = 171$ Hz, C-1), 95.2 ($^{1}J_{C-1,H-1} = 170$ Hz, C-1), 82.3, 81.8, 80.8, 80.5, 80.0, 79.5, 79.4, 78.8, 78.7, 75.3, 75.0, 74.9, 74.0, 73.5, 73.4, 72.5, 72.3, 69.4, 69.0, 68.9, 65.7, 61.4, 59.1, 59.0, 58.7, 57.9, 51.7, 35.3, 31.8, 29.5, 29.4, 29.3, 29.0, 26.9, 20.9, 18.4, 18.1, 16.5. HRMS (ESI) *m/z* calcd for (M+Na) C₇₃H₉₇N₃O₁₉Na: 1342.6608. Found: 1342.6593.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2-*O*-methyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -4-*O*-acetyl-2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2-*O*-methyl- α -Lrhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (42 Squaramide). Treatment of PGL-68 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 42 Squaramide (69%, chromatography 5:95 CH₃OH-CH₂Cl₂) as a light yellow foam. $R_f 0.42$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –74.0 (c = 1.1, CHCl₃); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) δ 7.08 (m, 2 H), 6.99–6.94 (m, 2 H), 6.04 (s, 1H), 5.47 (d, 1 H, J = 1.6 Hz, H-1), 5.25 (dd, 1 H, J = 3.4, 0.8 Hz), 5.20 (d, 1 H, J = 1.0 Hz, H-1), 5.19 (d, 1 H, J = 1.0Hz, H-1), 5.12 (d, 1 H, J = 3.7 Hz, H-1), 4.81–4.71 (m, 2 H), 4.30 (q, 1 H, J = 6.5 Hz), 4.21 (dd, 1 H, J = 10.1, 3.5 Hz), 4.12 (dd, 1 H, J = 9.6, 3.3 Hz), 3.92–3.84 (m, 2 H), 3.81 (m, 1H), 3.77 (dd, 1 H, J = 9.6, 3.3 Hz), 3.74-3.60 (m, 8 H), 3.58 (dd, 1 H, J = 10.1, 3.6 Hz), 3.54 (s, 3 H),3.53 (s, 3 H), 3.52 (s, 3 H), 3.48 (dd, 1 H, J = 3.3, 1.5 Hz), 3.47 (s, 3 H), 3.46 (s, 3 H), 3.44–3.40 (m, 1H), 3.23 (app t, 1 H, J = 9.6 Hz), 2.78 (br s, 1H), 2.57 (br s, 1H), 2.55–2.51 (m, 2 H), 2.36 (s, 1H), 2.17 (s, 3 H), 1.75 (br s, 1H), 1.59 (m, 4 H), 1.45 (app t, 3 H, J = 7.1 Hz), 1.36 (d, 3 H, J= 6.2 Hz), 1.31 (s, 8 H), 1.27 (d, 3 H, J = 6.2 Hz), 1.11 (app t, 3 H, J = 6.2 Hz); ¹³C NMR (175) MHz, CDCl₃, $\delta_{\rm C}$) 189.4, 183.2, 177.5, 172.7, 171.0, 154.7, 136.9, 129.5, 116.4, 100.6 (${}^{1}J_{\rm C-1\,H-1}$ = 169 Hz, C-1), 99.4 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 98.4 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 95.2 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 83.5, 82.5, 80.7, 80.6, 80.3, 79.8, 79.2, 74.3, 73.4, 72.7, 71.8, 71.5, 69.9, 69.3, 69.1, 69.0, 66.0, 62.9, 61.3, 59.8, 59.2, 58.9, 58.8, 45.1, 35.3, 31.8, 29.5, 29.4, 29.3, 26.5, 21.1, 18.1,

18.0, 16.4, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₅₁H₇₉NO₂₂Na: 1080.4986. Found: 1080.4973.

Scheme S45. Synthesis of **43 Squaramide**. a) NaOCH₃, CH₂Cl₂, CH₃OH, 93%; b) Propionic anhydride, pyridine, 93%; c) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 65%.

p-(8-Azidooctylphenyl) 2,6-dideoxy-3-O-benzyl-4-O-Me-a-L-arabino-hexopyranosyl- $(1\rightarrow 3)$ -*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-methyl- α -L-rhamnopyranoside (PGL-69). To a solution of PGL-60 (71 mg, 64 µmol) in 1:1 CH₂Cl₂-CH₃OH (6 mL) was added sodium methoxide (20 mg, 370 µmol). The reaction mixture was stirred overnight at rt, neutralized by the addition of Amberlite IR-120 H⁺ resin, filtered and concentrated. The resulting residue was purified by chromatography (1:1 EtOAc-hexane) to yield PGL-69 (63 mg, 93%) as a colorless oil. $R_f 0.38$ (1:1 EtOAc-hexane); $[\alpha]_{\rm D}$ -126.7 (c = 0.6, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 7.38–7.30 (m, 8 H), 7.29–7.24 (m, 2 H), 7.11–7.05 (m, 2 H), 6.98–6.94 (m, 2 H), 5.45 (d, 1 H, J = 1.8 Hz, H-1), 5.21–5.14 (m, 3 H, H-1, H-1), 5.06 (d, 1 H, J = 2.9 Hz, H-1), 4.68 (q, 2 H, J = 11.6 Hz), 4.55 (d, 1 H, J = 11.1 Hz), 4.23 (dd, 1 H, J = 11.8, 5.1 Hz), 4.21 (dd, 1 H, J = 10.3, 3.2 Hz), 4.08 (dd, 1 H, J = 9.6, 3.2 Hz), 4.02 (dd, 1 H, J = 9.5, 3.2 Hz), 3.97 (app dq, 1 H, J = 9.5, 6.4 Hz), 3.93 (app dq, 1 H, J = 9.4, 6.2 Hz), 3.89-3.87 (m, 1H), 3.86-3.82 (ddd, 1 H, J = 11.3, 9.1, 5.3 Hz), 3.78 (dd, 1 H, J = 3.1, 1.9Hz), 3.72-3.65 (m, 2 H), 3.57 (s, 3 H), 3.55 (s, 3 H), 3.51-3.48 (m, 7 H), 3.47 (dd, 1 H, J = 6.6, 3.7 Hz), 3.30 (s, 3 H), 3.27–3.20 (m, 3 H), 2.86–2.81 (m, 1H), 2.57–2.52 (m, 2 H), 2.24–2.17 (m, 2 H), 1.72 (ddd, 1 H, J = 13.1, 11.5, 3.7 Hz), 1.62–1.55 (m, 4 H), 1.38–1.29 (m, 14 H), 1.26 (d, 3 H, J = 6.2 Hz), 1.14 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.7, 139.3, 139.0, 136.9, 129.5, 128.6, 128.4, 128.1, 127.8, 127.8, 127.6, 116.4, 100.2 (${}^{1}J_{C-1 H-1} = 170 Hz, C-1$),

98.6 (${}^{1}J_{C-1,H-1} = 169$ Hz, C-1), 95.3 (${}^{1}J_{C-1,H-1} = 171$ Hz, C-1), 93.0 (${}^{1}J_{C-1,H-1} = 169$ Hz, C-1), 86.6, 82.3, 82.0, 80.9, 80.5, 80.0, 79.5, 76.9, 76.5, 75.3, 72.6, 72.3, 69.0, 68.9, 68.6, 67.6, 65.8, 61.4, 61.0, 59.2, 59.1, 57.8, 51.7, 36.1, 35.3, 31.8, 29.5, 29.4, 29.3, 29.1, 26.9, 18.4, 18.2, 18.1, 16.8. HRMS (ESI) *m/z* calcd for (M+Na) C₅₇H₈₃N₃O₁₆Na: 1088.5666. Found: 1088.5655.

p-(8-Azidooctylphenyl) 2,6-dideoxy-3-O-benzyl-4-O-Me-α-L-arabino-hexopyranosyl- $(1\rightarrow 3)$ -4-*O*-propionyl-2-*O*-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -4-*O*-benzyl-2-*O*-methyl- α -L**rhamnopyranosyl-(1\rightarrow3)-2,4-di-***O***-methyl-\alpha-L-rhamnopyranoside (PGL-70)**. To a solution of PGL-69 (39 mg, 37 µmol) in pyridine (4 mL) at rt was added dropwise propionic anhydride (1 mL, 7.8 mmol). The reaction mixture was stirred at rt for 5 d and concentrated and then the residue was co-evaporated with toluene. The resulting residue was purified by chromatography (3:7 EtOAc-toluene) to yield PGL-70 (38 mg, 93%) as a light yellow oil. Rf 0.42 (3:7 EtOActoluene); $[\alpha]_D - 121.1$ (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.38–7.30 (m, 8 H), 7.28–7.24 (m, 2 H), 7.08 (d, 2 H, J = 8.6 Hz), 6.96 (d, 2 H, J = 8.6 Hz), 5.45 (d, 1 H, J = 1.3 Hz, H-1), 5.28 (d, 1 H, J = 2.7 Hz), 5.19–5.17 (m, 3 H), 5.04 (d, 1 H, J = 3.0 Hz), 4.62 (s, 2 H), 4.54 (d, 1 H, J = 11.0 Hz), 4.35 (q, 1 H, J = 7.0 Hz), 4.27 (dd, 1 H, J = 10.4, 3.3 Hz), 4.08 (dd, 1 H, J)= 9.7, 3.2 Hz), 4.01 (dd, 1 H, J = 9.5, 3.0 Hz), 3.96–3.88 (m, 2 H), 3.79–3.72 (m, 2 H), 3.68 (m, 2 H), 3.55 (s, 3 H), 3.54 (s, 3 H), 3.51–3.48 (m, 4 H), 3.47 (s, 3 H), 3.42 (dd, 1 H, J = 10.4, 3.6 Hz), 3.32 (s, 3 H), 3.28-3.18 (m, 3 H), 2.80 (app t, 1 H, J = 9.2 Hz), 2.59-2.51 (m, 2 H), 2.44 (q, 2 H, J = 7.4 Hz), 2.00 (dd, 1 H, J = 12.9, 5.1 Hz), 1.67–1.54 (m, 5 H), 1.39–1.29 (m, 11H), 1.26 (d, 3 H, J = 6.2 Hz), 1.19 (app t, 3 H, J = 7.6 Hz), 1.14 (d, 3 H, J = 6.6 Hz), 1.11 (d, 3 H, J = 6.2Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 174.5, 154.8, 139.3, 139.1, 136.9, 129.5, 128.5, 128.4, 128.2, 127.8, 127.7, 127.6, 116.4, 100.4 (${}^{1}J_{C-1,H-1} = 170$ Hz, C-1), 98.5 (${}^{1}J_{C-1,H-1} = 170$ Hz, C-1), 95.3 (${}^{1}J_{C-1 H-1} = 171 \text{ Hz}, \text{ C-1}$), 93.5 (${}^{1}J_{C-1 H-1} = 170 \text{ Hz}, \text{ C-1}$), 86.7, 82.4, 82.2, 80.9, 80.5, 79.8, 79.5, 77.0, 76.8, 75.4, 71.9, 70.6, 69.9, 69.0, 68.8, 67.4, 65.1, 61.4, 60.9, 59.4, 59.2, 57.7, 51.7, 35.6, 35.3, 31.8, 29.5, 29.3, 29.29, 29.0, 27.8, 26.9, 18.4, 18.3, 18.1, 16.7, 9.8. HRMS (ESI) m/z calcd for (M+Na) C₆₀H₈₇N₃O₁₇Na: 1144.5928. Found: 1144.5920.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,6-dideoxy-4-*O*-Me-α-L-*arabino*-hexopyranosyl-(1 \rightarrow 3)-4-*O*-propionyl-2-*O*-methyl-α-L-fucopyranosyl-(1 \rightarrow 3)-2-*O*methyl-α-L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-methyl-α-L-rhamnopyranoside (43 Squaramide). Treatment of PGL-70 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 43 Squaramide (65%, chromatography 3:97

CH₃OH–CH₂Cl₂) as a light vellow foam. $R_f 0.59$ (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –111.1 (c = 0.7, CHCl₃); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.10–7.07 (m, 2 H), 6.99–6.95 (m, 2 H), 5.88 (s, 1H), 5.46 (d, 1 H, J = 1.7 Hz, H-1), 5.28 (dd, 1 H, J = 3.3, 1.1 Hz), 5.16 (d, 1 H, J = 1.2 Hz, H-1), 5.08 (d, 1 H, J = 3.7 Hz, H-1), 5.05 (d, 1 H, J = 3.5 Hz, H-1), 4.82–4.71 (m, 2 H), 4.28 (qd, 1 H, J = 6.4, 0.8 Hz), 4.25 (dd, 1 H, J = 10.2, 3.3 Hz), 4.12 (dd, 1 H, J = 9.6, 3.3 Hz), 3.90–3.87 (m, 1H), 3.86-3.83 (m, 1H), 3.79 (app dq, 1 H, J = 9.4, 6.2 Hz), 3.76 (dd, 1 H, J = 9.6, 3.3 Hz), 3.71–3.67 (m, 2 H), 3.63–3.59 (m, 2 H), 3.56 (s, 3 H), 3.54 (s, 3 H), 3.52 (s, 3 H), 3.50 (s, 3 H), 3.49-3.46 (m, 4 H), 3.46-3.37 (m, 2 H), 3.23 (app t, 1 H, J = 9.6 Hz), 2.71 (app t, 1 H, J = 9.2Hz), 2.58–2.52 (m, 2 H), 2.44 (qd, 2 H, J = 7.6, 2.6 Hz), 2.27 (d, 1 H, J = 2.8 Hz), 1.95–1.89 (m, 1H), 1.68 (ddd, 1 H, J = 13.2, 11.8, 3.8 Hz), 1.58 (dt, 4 H, J = 14.5, 7.2 Hz), 1.45 (app t, 3 H, J = 7.1 Hz), 1.35 (d, 3 H, J = 6.2 Hz), 1.31 (s, 8 H), 1.29 (d, 3 H, J = 6.3 Hz), 1.27 (d, 3 H, J = 6.2Hz), 1.19 (app t, 3 H, J = 7.6 Hz), 1.13 (d, 3 H, J = 6.6 Hz); ¹³C NMR (175 MHz,CDCl₃, $\delta_{\rm C}$) 189.3, 183.3, 177.5, 174.4, 172.7, 154.7, 136.8, 129.5, 116.4, 101.3 (${}^{1}J_{C-1 H-1} = 169 Hz, C-1$), 99.8 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}, C-1$), 95.3 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}, C-1$), 93.3 (${}^{1}J_{C-1 H-1} = 172 \text{ Hz}, C-1$), 88.2, 83.7, 82.5, 80.8, 80.6, 78.9, 78.3, 71.9, 69.8, 69.5, 69.2, 69.0, 68.9, 67.4, 65.7, 61.2, 61.0, 60.6, 59.2, 59.1, 45.1, 37.2, 35.3, 31.8, 29.6, 29.4, 29.3, 27.7, 26.5, 18.3, 18.1, 18.06, 16.6, 16.1, 9.7. HRMS (ESI) *m/z* calcd for (M+Na) C₅₂H₈₁NO₂₀Na: 1062.5244. Found: 1062.5229.

Scheme S46. Synthesis of **45 Azide**. a) CCI₃CN, DBU, CH₂Cl₂; then **LAM-99**, TMSOTf, CH₂Cl₂, quant; b) NaOCH₃, CH₃OH, CH₂Cl₂, quant.

8-Azidooctyl 2,3,5-tri-*O*-benzoyl-β-D-arabinofuranosyl-(1→2)-3,5-di-*O*-benzoyl-α-Darabinofuranosyl-(1→3)-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzoylα-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*benzoyl-α-D-arabinofuranosyl-(1→5)-2,3-di-*O*-benzoyl-α-D-arabinofuranosyl-(1→5)-2,3di-*O*-benzoyl-α-D-arabinofuranoside (LAM-158). The trichloroacetimidate derivative of hemiacetal LAM-146 (0.21 g, 0.19 mmol) was prepared using DBU (10 µL) and trichloroacetonitrile (0.1 mL, 1 mmol) as described for the synthesis of LAM-42 (Scheme S7). This was immediately subjected to coupling with alcohol LAM-99¹ (0.25 g, 0.13 mmol) as described for the synthesis of LAM-43, to afford LAM-158 (0.4 g, quantitative) as a foam. *R*_f 0.34 (3:2 hexanes–EtOAc); [α]_D +6.8 (c = 0.34, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$), 8.10– 7.80 (m, 34 H), 7.60–7.14 (m, 51 H), 5.91 (dd, 1 H, *J* = 5.4, 6.7 Hz), 5.70 (d, 1 H, *J* = 4.9 Hz), 5.70–5.60 (m, 7 H), 5.58–5.54 (m, 3 H), 5.49 (d, 1 H, *J* = 1.5 Hz), 5.43–5.36 (m, 6 H), 5.34–5.31 (m, 3 H), 5.22 (s, 1 H), 4.76–4.56 (m, 8 H), 4.54–4.40 (m, 6 H), 4.30 (dd, 1 H, *J* = 1.2, 6.0 Hz), 4.24–4.12 (m, 6 H), 4.08 (dd, 1 H, *J* = 4.6, 11.6 Hz), 4.00 (dd, 1 H, *J* = 3.4, 11.5 Hz), 3.96–3.87 (m, 4 H), 3.76 (ddd, 1 H, J = 6.7, 9.6, 13.5 Hz), 3.50 (ddd, 1 H, J = 6.2, 9.6, 12.5 Hz), 3.22 (dd, 3 H, J = 7.0, 7.0 Hz), 1.68–1.51 (m, 4 H), 1.42–1.25 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.3, 166.2, 166.1, 166.0, 165.9, 165.8(8), 165.8(3), 165.7, 165.5, 133.9, 133.8, 133.7, 133.5, 133.3, 133.2, 130.4, 130.2, 130.1, 130.0, 129.9, 129.8(7), 129.8(2), 129.6, 129.4, 128.9, 128.8, 128.7, 106.2 (6 × C-1), 105.9 (C-1), 100.9 (C-1), 85.6, 83.8, 82.4, 82.3, 82.1, 82.0, 81.3, 80.9, 79.6, 78.4, 77.7, 77.6, 76.9, 67.7, 66.4, 66.3, 66.2, 66.1, 64.7, 63.2, 54.3, 54.1, 53.8, 53.6, 53.4, 51.9, 29.9, 29.7, 29.5, 29.2, 27.0, 26.5. HRMS (ESI) *m/z* calcd for (M+Na) C₁₆₇H₁₄₉N₃O₅₀Na: 3018.9101. Found: 3018.9065.

8-Azidooctyl β-D-arabinofuranosyl- $(1\rightarrow 2)$ -α-D-arabinofuranosyl- $(1\rightarrow 3)$ - α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α-Darabinofuranosyl- $(1\rightarrow 5)$ -α-D-arabinofuranosyl- $(1\rightarrow 5)$ -α

Scheme S47. Synthesis of 46 Trifluoroacetamide. a) TBDPSCI, imidazole, pyridine; then BnBr, NaH, THF, DMF, 82%; b) 8-Azido-1-octanol, NIS, TMSOTf, CH_2CI_2 ; then CF_3CO_2H , Et_3SiH , CH_2CI_2 , 45%; c) GLU-21, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH_2CI_2 , 21%; d) CF_3CO_2H , CH_2CI_2 ; then NaOCH₃, CH₃OH, CH_2CI_2 ; then *n*-Bu₄NF, THF; then H₂, Pd(OH)₂–C, pyridine; then trifluoroacetic anhydride, pyridine, 45%; e) H₂, Pd(OH)₂–C, EtOAc, THF, CH₃OH, quant.

p-Tolyl 2,3-di-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranosyl-(1→4)-2,3-di-*O*-benzyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-glucopyranoside (GLU-19). To a solution of GLU-3 (2.0 g, 3.7 mmol) in pyridine (22 mL) at 0 °C was added imidazole (27 mg, 0.4 mmol) followed by TBDPSCl (1.3 mL, 5.0 mmol). The solution was then stirred overnight while warming to rt before CH₃OH (0.1 mL) was added. The solution was stirred for 30 min and concentrated to a syrup that was purified by chromatography (97:3 CH₂Cl₂–CH₃OH) to yield the corresponding silyl ether (2.82 g, 97%) as a thick syrup; HRMS (ESI) *m/z* calcd for (M+Na) C₄₂H₅₀O₁₀SSiNa: 797.2786. Found: 797.2788. This compound (2.8 g, 3.6 mmol) was dissolved in THF–DMF (32 mL, 3:1) at 0 °C, NaH (60% dispersion in mineral oil, 0.72 g, 18.0 mmol) was added in portions and the solution was stirred for 16 h while warming to rt. The solution was then

cooled to 0 °C, and then CH₃OH (3 mL) was added carefully. The mixture stirred for 10 min before being poured into chilled water (350 mL) and extracted with CH₂Cl₂ (100 mL × 2). The combined organic layer was washed with water (100 mL × 2) and brine (100 mL). The organic layer was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (9:1 hexanes–EtOAc) to yield **GLU-19** (3.36 g, 82%) as a thick syrup. R_f 0.26 (9:1 hexane–EtOAc); [α]_D +7.2 (c = 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃, δ _H) 7.80–7.71 (m, 4 H), 7.49–7.43 (m, 4 H), 7.41–7.19 (m, 29 H), 7.03–7.00 (m, 2 H), 5.58 (d, 1 H, J = 3.9 Hz, H-1 α), 5.52 (s, 1 H), 4.94–4.82 (m, 4 H), 4.74–4.62 (m, 4 H), 4.54 (d, 1 H, J = 12.0 Hz), 4.12–3.99 (m, 4 H), 3.93 (dd, 1 H, J = 9.4, 9.4 Hz), 3.82–3.75 (m, 2 H), 3.60–3.48 (m, 5 H), 2.32 (s, 3 H), 1.09 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ _C) 138.8, 138.7, 138.1, 138.0, 137.5, 137.2, 135.9, 135.7, 133.7, 131.8, 130.8, 129.7, 129.6, 128.8, 128.4, 128.2(9), 128.2(8), 128.2, 128.1, 128.0, 127.8(0), 127.8, 127.7(0), 127.7, 127.5(8), 127.5(6), 127.2, 126.8, 126.1, 101.1, 98.3 (C-1), 88.2 (C-1), 86.4, 82.3, 81.1, 79.6, 78.9, 78.5, 75.3, 75.2, 75.0, 74.5, 73.6, 68.8, 63.8, 63.5, 27.1, 21.1, 19.4. HRMS (ESI) *m/z* calcd for (M+Na) C₇₀H₇₄O₁₀SSiNa: 1157.4664. Found: 1157.4673.

8-Azidooctyl 2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3-di-O-benzyl-6-O-tertbutyldiphenylsilyl-α-D-glucopyranoside (GLU-20). 8-Azido-1-octanol (1.0 g, 5.8 mmol) and thioglycoside GLU-19 (4.4 g, 3.9 mmol) were dried under vacuum in the presence of P₂O₅ for 6 h. After drying, CHCl₃-Et₂O (1:1, 100 mL) was added followed by powdered 4 Å molecular sieves (1.15 g) and the mixture was stirred for 30 min. The reaction mixture was then cooled to 0 °C and N-iodosuccinimide (1.6 g, 7.1 mmol) and TMSOTf (0.07 mL, 0.39 mmol) were added. The solution was stirred for 1 h and then Et₃N was added until the pH of the solution was slightly basic (as determined by wet pH paper) before the mixture was diluted with CH₂Cl₂ (40 mL) and filtered through Celite. The filtrate was washed with a satd ag soln of Na₂S₂O₃ (50 mL), water (50 mL) and brine (25 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (9:1 hexanes-EtOAc) to give GLU-20 (3.98 g, 87%) as an inseparable α : β mixture; R_f 0.34 (85:15 hexanes-EtOAc). This compound (3.98 g, 3.37 mmol) was dried overnight under vacuum, dissolved in CH2Cl2 (60 mL), and then triethylsilane (6.45 mL, 40.4 mmol) was added. The solution was cooled to 0 °C and trifluoroacetic acid (2.57 mL, 33.7 mmol) was added dropwise. After stirring at 0 °C, for 2 h, CH₃OH (10 mL) was added followed by Et₃N (6 mL). After warming to rt, the mixture was concentrated to a syrup that was purified by chromatography (87:13 hexanes-EtOAc) to yield GLU-20 (2.07 g, 45% over two

steps) as a thick syrup. R_f 0.15 (85:15 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.75–7.65 (m, 4 H), 7.42–7.16 (m, 31 H), 5.77 (d, 1 H, J = 3.7 Hz, H-1 α), 5.10 (d, 1 H, J = 11.7 Hz), 4.92 (d, 1 H, J = 11.2 Hz), 4.83 (d, 1 H, J = 11.7 Hz), 4.77 (d, 1 H, J = 3.7 Hz, H-1 α), 4.75–4.68 (m, 2 H), 4.62 (d, 1 H, J = 11.9 Hz), 4.58 (br. s, 2 H), 4.44 (d, 1 H, J = 12.1 Hz), 4.33 (d, 1 H, J = 12.1 Hz), 4.17–4.12 (m, 1 H), 4.02–3.88 (m, 4 H), 3.74–3.56 (m, 5 H), 3.49–3.34 (m, 4 H), 3.28 (dd, 2 H, J = 7.0, 7.0 Hz), 2.22 (d, 1 H, J = 1.8 Hz), 1.72–1.60 (m, 4 H), 1.43– 1.30 (m, 8 H), 1.07 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 139.1, 138.9, 138.2, 138.0, 137.9, 135.9, 135.7, 134.0, 133.6, 129.6, 129.5, 128.5, 128.4, 128.3(2), 128.3(0), 128.3, 128.1, 127.8(4), 127.8, 127.7(0), 127.7, 127.6(1), 127.6, 127.1, 126.7, 96.8 (C-1), 95.8 (C-1), 81.9, 81.4, 80.7, 78.9, 75.3, 74.1, 73.5, 73.0(2), 73.0, 72.9, 71.1, 70.9, 70.7, 69.3, 67.8, 63.9, 51.5, 29.4, 29.3, 29.2, 28.9, 27.0, 26.7, 26.1, 19.4. HRMS (ESI) *m/z* calcd for (M+Na) C₇₁H₈₅N₃O₁₁SiNa: 1206.5846. Found: 1206.5847.

8-Azidooctyl 2-O-[(1*S*)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3-O-acetyl-4-O-fluorenylmethoxycarbonyl-6-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-tert-butyldiphenylsilyl- α -D-

glucopyranoside (GLU-22). A mixture of sulfoxide donor GLU-21²² (0.35 g, 0.53 mmol), 1,3,5-trimethoxybenzene (0.33 g, 1.96 mmol), 2,6-di-t-butyl-4-methyl pyridine (0.33 g, 1.6 mmol), and activated 4 Å molecular sieves (0.16 g) in CH_2Cl_2 (3.5 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.1 mL, 0.59 mmol) was added. After 30 min, the reaction mixture was cooled to -40 °C and a solution of GLU-20 (0.5 g, 0.42 mmol) in CH_2Cl_2 (1.8 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (10 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (3:1 hexanes-EtOAc) to yield GLU-22 (0.17 g, 21%) as a foam. R_f 0.18 (3:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.81-7.65 (m, 7 H), 7.61-7.58 (m, 2 H), 7.55-7.14 (m, 44 H), 7.00-6.94 (m, 2 H), 6.11 (d, 1 H, J = 3.3 Hz), 6.07 (s, 2 H), 5.62 (d, 1 H, J = 3.9 Hz), 5.55 (dd, 1 H, J = 9.7, 9.7 Hz), 5.07 (d, 1 H, J = 11.7 Hz), 5.00–4.76 (m, 5 H), 4.72 (d, 1 H, J = 11.9 Hz), 4.64 (d, 2 H, J = 12.8 Hz), 4.55 (d, 1 H, J = 11.9 Hz), 4.44–4.14 (m, 11 H), 4.12-4.02 (m, 2 H), 4.01-3.84 (m, 6 H), 3.82 (s, 3 H), 3.80-3.64 (m, 8 H), 3.58-3.52 (m, 2 H), 3.46 (ddd, 1 H, J = 7.1, 9.9, 13.9 Hz), 3.35 (dd, 1 H, J = 2.6, 10.8 Hz), 3.30–3.20 (m, 4 H), 2.92–2.82 (m, 2 H), 1.76–1.60 (m, 4 H), 1.46–1.30 (m, 8 H), 1.10 (s, 9 H); ¹³C NMR (125 MHz,
CDCl₃, $\delta_{\rm C}$) 170.0, 161.8, 161.6, 154.4, 143.5, 143.3, 142.0, 141.3, 141.2, 139.2, 139.1, 138.5, 138.3(8), 138.3(5), 138.1, 135.8, 135.7, 134.0, 133.5, 129.9, 129.7, 128.4(1), 128.4, 128.3(3), 128.3, 128.1(8), 128.1(5), 128.1(0), 128.1, 128.0(3), 128.0, 127.9, 127.7(8), 127.7(6), 127.7(5), 127.7, 127.6(3), 127.6, 127.5, 127.4, 127.3(2), 127.3, 127.2(4), 127.2, 127.0, 126.9, 126.3, 125.3, 125.2, 120.0, 101.6, 97.3 (C-1), 96.2 (C-1), 95.9 (C-1), 90.9, 84.0, 81.7, 80.5, 80.0, 78.9, 78.7, 75.1, 74.5, 73.8, 73.3, 73.2(1), 73.2, 73.0, 72.9, 72.4, 72.1, 71.2(1), 71.2, 70.1, 68.7, 68.3, 67.9, 67.7, 64.0, 55.9, 55.3, 51.5, 46.7, 42.9, 29.4, 29.3, 29.2, 28.9, 27.0, 26.9, 26.7, 26.1, 20.3, 19.4. HRMS (ESI) *m/z* calcd for (M+Na) C₁₁₈H₁₃₁N₃O₂₂SSiNa: 2024.8606. Found: 2024.8602.

8-Trifluoroacetamidooctyl 6-*O*-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-*O*benzyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3-di-O-benzyl- α -D-glucopyranoside (GLU-23). To a solution of GLU-22 (0.39 g, 0.2 mmol) in CH₂Cl₂ (15 mL) under argon at 0 °C was added trifluoroacetic acid (0.75 mL). The mixture was stirred at that temperature for 25 min before being poured into a satd aq NaHCO₃ soln (20 mL) and extracted with CH₂Cl₂ (20 mL). The organic layer was washed with water (10 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was dried under vacuum for 2 h. This compound was dissolved in CH₂Cl₂-CH₃OH (6:1, 7 mL) and 1M methanolic sodium methoxide was added until the pH of the reaction mixture indicated 8–9 (as determined by wet pH paper). The reaction mixture was stirred for 16 h, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and the filtrate concentrated to give a crude residue that was dried under vacuum for 2 h. This compound was then dissolved in THF (15 mL) and *n*-Bu₄NF (2.5 mL, 1M in THF) was added and the solution stirred at rt for 24 h. The reaction mixture was then concentrated to a syrup that was purified by chromatography (6:94 CH₃OH–CH₂Cl₂); R_f 0.38 (6:94 CH₃OH–CH₂Cl₂). To a solution of this compound (0.15 g, 0.088 mmol) in pyridine (5 mL) was added 20% Pd(OH)₂-C (25 mg) and the solution was stirred under H₂ (1 atm) for 16 h. The solution was filtered off and the filter cake washed with pyridine (5 mL). The combined filtrate was then cooled to 0 °C before trifluoroacetic anhydride (0.5 mL, 3.6 mmol) was added dropwise. After stirring at rt overnight, the solution was diluted with CH₂Cl₂ (30 mL) and poured into a 1:1 solution of water and satd aq NaHCO₃ soln (40 mL). The organic layer was washed with water (30 mL) containing about 5-6 drops of aq ammonia for 10 min and then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (1:3 hexanes-EtOAc) to give GLU-23 (0.11 g, 45% over five steps) as a foam. $R_f 0.28$ (1:3 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.40-7.10 (m, 30 H), 6.50 (br. s,

1 H), 5.57 (d, 1 H, J = 3.7 Hz), 5.14 (d, 1 H, J = 11.9 Hz), 5.10 (d, 1 H, J = 3.5 Hz), 5.00 (d, 1 H, J = 10.8 Hz), 4.80 (d, 1 H, J = 3.7 Hz), 4.77 (d, 1 H, J = 11.9 Hz), 4.72–4.44 (m, 9 H), 4.17 (dd, 1 H, J = 9.0, 9.0 Hz), 4.06 (dd, 1 H, J = 9.5, 9.5 Hz), 3.98–3.90 (m, 2 H), 3.90–3.42 (m, 15 H), 3.40–3.22 (m, 3 H), 2.94 (br. s, 1 H), 2.73 (br. s, 1 H), 2.60 (br. s, 1 H), 1.91 (br. s, 1 H), 1.75–1.55 (m, 4 H), 1.48–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 157.2 (q, J = 36.6 Hz), 139.0, 138.0, 137.9, 137.7, 137.5, 137.4, 128.4(9), 128.4(6), 128.4, 128.3, 128.1, 128.0(0), 128.0, 127.8, 127.7(3), 127.7, 127.1, 126.4, 115.9 (q, J = 287.9 Hz), 100.3 (C-1), 96.6 (C-1), 96.5 (C-1), 81.7, 80.4, 80.2, 79.3, 75.2, 74.4, 74.0, 73.6, 73.5, 72.9(4), 72.9(1), 72.8, 72.3, 71.8, 71.5, 70.7, 70.2, 69.7, 68.7, 68.3, 61.4, 40.0, 29.4, 29.3, 29.0(8), 29.0, 26.7, 26.1. HRMS (ESI) *m/z* calcd for (M+Na) C₇₀H₈₄F₃NO₁₇Na: 1290.5584. Found: 1290.5560.

8-Trifluoroacetamidooctyl α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranoside (46 Trifluoroacetamide). To a solution of GLU-23 (0.11 g, 0.087 mmol) in EtOAc–THF–CH₃OH (15 mL 1:1:1) at rt was added 20% Pd(OH)₂–C (60 mg) and the reaction mixture was stirred under H₂ (1 atm) for 24 h. The reaction mixture was filtered and the filtrate was concentrated to give a syrup that was re-dissolved in distilled water (8 mL) and extracted with CH₂Cl₂ (3 mL × 3). The aqueous phase was filtered using a 13 mm Nylon 0.2 µm syringe filter unit and the filtrate was lyophilized to give 46 Trifluoroacetamide (0.063 g, quantitative) as a fluffy solid. *R_f* 0.21 (7:3 CH₂Cl₂–CH₃OH; ¹H NMR (500 MHz, D₂O, δ_H) 5.38–5.34 (m, 2 H, 2 × H-1α), 4.89 (d, 1 H, *J* = 3.9 Hz, H-1α), 3.98–3.90 (m, 2 H), 3.88–3.48 (m, 17 H), 3.40 (dd, 1 H, *J* = 9.7, 9.7 Hz), 3.30 (dd, 2 H, *J* = 7.0, 7.0 Hz), 1.66–1.52 (m, 4 H), 1.40–1.26 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_C) 160.4 (q, *J* = 36.8 Hz), 116.0 (q, *J* = 285.8 Hz), 100.0 (C-1), 99.7 (C-1), 98.0 (C-1), 77.4, 77.1, 73.6, 73.4, 72.9, 72.8, 71.8, 71.6, 71.3, 71.2, 70.3, 69.3, 68.5, 67.9, 60.5(1), 60.5, 39.8, 28.6, 28.3, 28.2, 27.7, 25.8, 25.3, 25.1. HRMS (ESI) *m/z* calcd for (M+Na) C₂₈H₄₈F₃NO₁₇Na: 750.2767. Found: 750.2753.

39. Synthesis of 47

Scheme S48. Synthesis of monosaccharide building blocks required for the synthesis of 47. a) *n*-Bu₂SnO, CH₃OH then CH₃I, DMF, 71%; b) Ac₂O, pyridine, 89%; c) H₂, Pd(OH)₂–C, CH₃OH, 86%; d) *p*-TsOH, (CH₃)₂C(OCH₃)₂, 86%; e) CH₃I, DMF, 81%; f) HOAc–H₂O (4:1), 87%; g) *n*-Bu₂SnO, CH₃OH then CH₃I, DMF, 77%; h) Ac₂O, pyridine, 93%; i) H₂, Pd(OH)₂–C, CH₃OH, 89%.

Benzyl 3-*O***-methyl-α-L-rhamnopyranoside (GPL-2)**. Rhamnopyranoside **GPL-1**³⁶ (1.96 g, 7.71 mmol) and *n*-Bu₂SnO (2.16 g, 8.48 mmol) were suspended in dry CH₃OH (15 mL) and heated at reflux until a clear solution was obtained and then an additional 2 h. The mixture was cooled, the solvent was evaporated and the residue was dried under vacuum overnight. The colorless foam was dissolved in dry DMF (12 mL), CH₃I (2.41 mL, 38.56 mmol) was added and the solution was stirred at 65 °C for 7 h. The solution was then cooled, filtered and the filtrate was concentrated to give a residue that was purified by chromatography (EtOAc) to give **GPL-2** (1.47 g, 71%) as a yellow oil R_f 0.53 (EtOAc) ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37–7.30 (m, 5 H), 4.92 (d, 1 H, *J* = 1.6 Hz, H-1), 4.72 (d, 1 H, *J* = 11.8 Hz), 4.50 (d, 1 H, *J* = 11.8 Hz), 4.08-4.12 (m, 1 H), 3.75 (dq, 1 H, *J* = 9.4, 6.2 Hz), 3.54 (app dt, 1 H, *J* = 9.4, 2.6 Hz), 3.46–3.44 (m, 4 H), 2.41 (d, 1 H, *J* = 2.7 Hz), 2.40 (d, 1 H, *J* = 2.7 Hz), 1.33 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 137.3, 128.6, 128.2, 128.1, 98.7 (C-1), 81.4, 71.8, 69.3, 68.0, 67.1, 57.2, 17.8.

Benzyl 2,4-di-*O***-acetyl-3**-*O***-methyl-***α***-L-rhamnopyranoside (GPL-3)** Compound **GPL-2** (320 mg, 1.19 mmol) was dissolved in pyridine (2 mL) and Ac₂O (2 mL) and stirred at rt overnight. The mixture was diluted with EtOAc and washed with 5% HCl, satd aq NaHCO₃ soln

and water and then dried (Na₂SO₄), filtered and concentrated to give **GPL-3** (376 mg, 89%) as a colorless solid, R_f 0.42 (3:1 hexane–EtOAc) $[\alpha]_D$ –53.7 (*c* = 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39–7.31 (m, 5 H), 5.36 (dd, 1 H, *J* = 3.4, 1.8 Hz), 4.99 (app t, 1 H, *J* = 9.8 Hz), 4.85 (d, 1 H, *J* = 1.8 Hz, H-1), 4.69 (d, 1 H, *J* = 11.8 Hz), 4.52 (d, 1 H, *J* = 11.8 Hz), 3.82 (dq, 1 H, *J* = 9.8, 6.2 Hz), 3.64 (dd, 1 H, *J* = 9.9, 3.5 Hz), 3.33 (s, 3 H), 2.13 (s, 3 H), 2.08 (s, 3 H), 1.20 (d, 3 H, *J* = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.5, 170.2, 137.0, 128.7, 128.2, 128.2, 97.2 (C-1), 77.1, 72.7, 69.7, 68.2, 66.8, 57.8, 21.2, 21.1, 17.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₈H₂₄O₇Na: 375.1414. Found: 375.1410.

2,4-Di-O-acetyl-3-O-methyl-α-L-rhamnopyranose (GPL-4). Benzyl glycoside **GPL-3** (745 mg, 2.11 mmol) was dissolved in CH₃OH (20 mL) and 20% Pd(OH)₂–C (370 mg) was added. The mixture was degassed and stirred under H₂ (1 atm) at rt overnight. The solution was filtered, the filtrate was concentrated and the resulting residue was purified by chromatography (1:1 hexanes–EtOAc) to give **GPL-4** (474 mg 86%) as a colorless syrup (9:1 α : β ratio). R_f 0.42 (1:1 hexanes–EtOAc). Data for α -isomer ¹H NMR (400 MHz, CDCl₃, δ_{H}) 5.33 (dd, 1 H, *J* = 3.3, 1.9 Hz), 5.16 (dd, 1 H, *J* = 3.9, 1.8 Hz), 4.97 (app t, 1 H, *J* = 9.8 Hz), 4.02 (dq, 1 H, *J* = 9.8, 6.3 Hz), 3.67 (dd, 1 H, *J* = 9.8, 3.3 Hz), 3.35 (s, 3 H), 2.14 (s, 3 H), 2.09 (s, 3 H), 1.19 (d, 3 H, *J* = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, δ_{C}) 170.7, 170.4, 92.5 (C-1), 76.6, 72.7, 68.6, 66.7, 57.8, 21.2, 21.1, 17.6.

Benzyl 2,3-*O***-isopropylidene-***α***-L-rhamnopyranoside (GPL-5)**. Monosaccharide GPL-**1** (3.12 g, 12.27 mmol) and *p*-TsOH·H₂O (74 mg, 0.38 mmol) were dissolved in 2,2dimethoxypropane (11.5 mL). After stirring at rt for 2.5 h, the solution was diluted with CH₂Cl₂ and poured into a 5% aq NaHCO₃ soln. The organic phase was washed with water, dried (Na₂SO₄), filtered and concentrated to yield **GPL-5** (3.11 g, 86%) as a colorless solid. R_f 0.57 (EtOAc–hexane 1:1). ¹H NMR (400 MHz, CDCl₃, δ_H) 7.38–7.28 (m, 5 H), 5.05 (s, 1 H, H-1), 4.72 (d, 1 H, *J* = 11.8 Hz), 4.53 (d, 1 H, *J* = 11.8 Hz), 4.19 (dd, 1 H, *J* = 5.8, 0.6 Hz), 4.11 (dd, 1 H, *J* = 7.2, 5.8 Hz), 3.74 (dq, 1 H, *J* = 9.3, 6.3 Hz), 3.42 (ddd, 1 H, *J* = 9.2, 7.2, 4.5 Hz), 2.43 (d, 1 H, *J* = 4.5 Hz), 1.52 (s, 3 H), 1.35 (s, 3 H), 1.30 (d, 3 H, *J* = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, δ_C) 137.2, 128.7, 128.3, 128.1, 109.6, 96.4 (C-1), 78.5, 76.0, 74.7, 69.3, 66.2, 28.1, 26.3, 17.6.

Benzyl 2,3-*O***-isopropylidene-4**-*O***-methyl-α**-**L**-**rhamnopyranoside (GPL-6)**. NaH (60% in oil, 159 mg, 3.93 mmol) was added at 0 °C to a solution of **GPL-5** (1.05 g, 3.57 mmol)

and CH₃I (446 µL, 7.15 mmol) in DMF (6 mL). The solution was stirred overnight while warming to rt before CH₃OH (2 mL) was added and the mixture was diluted with CH₂Cl₂. The solution was washed with water, dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (3:1 hexanes–EtOAc) to give **GPL-6** (895 mg, 81%) as a colorless syrup. R_f 0.57 (1:1 EtOAc–hexanes). [α]_D –61.3 (c = 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.28 (m, 5 H), 5.04 (s, 1 H, H-1), 4.70 (d, 1 H, J = 11.8 Hz), 4.50 (d, 1 H, J = 11.8 Hz), 4.18–4.14 (m, 2 H), 3.68 (dq, 1 H, J = 9.8, 6.3 Hz), 3.54 (s, 3 H), 2.96–3.04 (m, 1 H), 1.54 (s, 3 H), 1.35 (s, 3 H), 1.28 (d, 3 H, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 137.3, 128.6, 128.3, 128.1, 109.2, 96.3 (C-1), 83.8, 78.5, 76.2, 69.2, 65.0, 59.6, 28.2, 26.4, 17.8. HRMS (ESI) *m/z* calcd for (M+H) C₁₇H₂₄O₅Na: 331.1516. Found: 331.1514.

Benzyl 4-*O*-methyl-α-L-rhamnopyranoside (GPL-7). Monosaccharide GPL-6 (875 mg, 3.26 mmol) was dissolved in HOAc–H₂O (4:1, 8 mL) stirred at 55 °C for 5 h, cooled to rt and then concentrated. The resulting oil was diluted with Et₂O and filtered through a pad of silica to give GPL-7 (757 mg, 87%) as a colorless syrup. R_f 0.26 (EtOAc). [α]_D –83.1 (c = 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.27 (m, 5 H), 4.84 (d, 1 H, J = 1.6 Hz, H-1), 4.70 (d, 1 H, J = 11.9 Hz), 4.49 (d, 1 H, J = 11.9 Hz), 3.97 (dd, 1 H, J = 3.4, 1.6 Hz), 3.90 (dd, 1 H, J = 9.3, 3.4 Hz), 3.70 (dqd, 1 H, J = 9.5, 6.3, 0.5 Hz), 3.56 (s, 3 H), 3.10 (app t, 1 H, J = 9.4 Hz), 2.64–2.56 (m, 2 H), 1.33 (d, 3 H, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 137.4, 128.6, 128.0, 128.0, 98.7 (C-1), 83.5, 71.5, 71.3, 69.2, 67.6, 61.0, 18.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₄H₂₀O₅Na: 291.1203. Found: 291.1198.

Benzyl 3,4-di-*O*-methyl-α-L-rhamnopyranoside (GPL-8). Monosaccharide GPL-7 (735 mg, 2.74 mmol) and *n*-Bu₂SnO (766 mg, 3.01 mmol) were suspended in dry CH₃OH (15 mL) and heated at reflux until a clear solution resulted and then an additional 2 h. After cooling, the solvent was evaporated and the residue was dried under vacuum overnight. The colorless foam was dissolved in dry DMF (7 mL) and CH₃I (856 µL, 13.70 mmol) was added. The solution was heated at 65 °C for 7 h, cooled, filtered and then the filtrate was concentrated and the resulting residue purified by chromatography (2:1 EtOAc–hexanes) to give GPL-8 (593 mg, 77%) as a light-yellow oil. R_f 0.64 (2:1 EtOAc–hexanes). [α]_D –94.0 (c = 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.27 (m, 5 H), 4.89 (d, 1 H, J = 1.6 Hz), 4.70 (d, 1 H, J = 11.8 Hz), 4.48 (d, 1 H, J = 11.8 Hz), 4.03–4.07 (m, 1 H), 3.68 (dq, 1 H, J = 9.6, 6.2 Hz), 3.54 (s, 3 H), 3.51–3.47 (m, 4 H), 3.09 (app t, 1 H, J = 9.4 Hz), 2.42 (d, 1 H, J = 2.2 Hz), 1.31 (d, 3 H, J = 6.3

Hz); ¹³C NMR (100 MHz, CDCl₃, δ_C) 137.4, 128.6, 128.2, 128.0, 98.4 (C-1), 82.0, 81.4, 69.2, 68.1, 67.6, 61.0, 57.6, 17.9. HRMS (ESI) *m/z* calcd for (M+Na) C₁₅H₂₂O₅Na: 305.1359. Found: 305.1356.

Benzyl 2-*O***-acetyl-3,4-di-***O***-methyl-α-L-rhamnopyranoside (GPL-9)**. Monosaccharide **GLP-8** (600 mg, 2.13 mmol) was dissolved in pyridine (3 mL) and Ac₂O (3 mL) and the solution was stirred at rt overnight. The mixture was then diluted with CH₂Cl₂ and washed with a 5% HCl, satd aq NaHCO₃ soln and water. After drying (Na₂SO₄), the solution was filtered and the filtrate concentrated to give **GPL-9** (638 mg, 93%) as light-yellow syrup. R_f 0.70 (1:1 EtOAc–hexanes). [α]_D –68.7 (c = 0.8, CHCl₃). ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.28 (m, 5 H), 5.30 (dd, 1 H, J = 3.4, 1.8 Hz), 4.79 (d, 1 H, J = 1.8 Hz, H-1), 4.67 (d, 1 H, J = 11.8 Hz), 4.47 (d, 1 H, J = 11.8 Hz), 3.67 (dq, 1 H, J = 9.5, 6.2 Hz), 3.58 (dd, 1 H, J = 9.4, 3.5 Hz), 3.55 (s, 3 H), 3.07 (s, 3 H), 3.07 (app t, 1 H, J = 9.5 Hz), 2.12 (s, 3 H), 1.30 (d, 2 H, J = 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.5, 137.2, 128.6, 128.2, 128.1, 97.1 (C-1), 82.1, 79.7, 69.5, 68.8, 68.0, 61.1, 21.2, 18.0. HRMS (ESI)(M+Na): calcd for C₁₇H₂₄NaO₆ 347.1465. Found: 347.1461.

2-O-Acetyl-3,4-di-O-methyl-α-L-rhamnopyranose (GPL-10). Benzyl glycoside **GPL-9** (600 mg, 1.850 mmol) was dissolved in CH₃OH (20 mL) and 20% Pd(OH)₂–C (300 mg) was added. The mixture was degassed and stirred under H₂ (1 atm) overnight and then the reaction mixture was filtered and the filtrate was concentrated to give **GPL-10** (368 mg, 89%) as a colorless syrup (4:1 α:β-ratio). R_f 0.46 (1:1 hexanes–EtOAc). Data for α isomer: ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 5.27 (dd,1 H, *J* = 3.4, 1.9 Hz), 5.11 (d, 1 H, *J* = 1.9 Hz, H-1), 3.87 (dqd, 1 H, *J* = 9.5, 6.2, 0.5 Hz), 3.62 (dd, 1 H, *J* = 9.4, 3.6 Hz), 3.55 (s, 3 H), 3.42 (s, 3 H), 3.07 (app t, 1 H, *J* = 9.5 Hz), 2.13 (s, 3 H) 1.30 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 170.7, 92.4 (C-1), 82.1, 79.1, 69.2, 67.8, 61.0, 57.7, 21.2, 18.0.

Scheme S49. Synthesis of GPL-12 and GPL-14, intermediates required for the synthesis of 47. a) Cl₃CCN, DBU, CH₂Cl₂ then GPL-8, TMSOTf, CH₂Cl₂, 38%; b) H₂, Pd(OH)₂–C, CH₃OH, 89%; c) Cl₃CCN, DBU, CH₂Cl₂; then GPL-13, TMSOTf, CH₂Cl₂, 57%.

Benzyl 2,4-di-O-acetyl-3-O-methyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -3,4-di-O-methyl- α -L-rhamnopyranoside (GPL-11). Reducing sugar GPL-4 (450 mg, 1.72 mmol) was dissolved in CH_2Cl_2 and trichloroacetonitrile (342 µL, 3.43 mmol) and DBU (54 µL, 0.34 mmol) were added. The solution was stirred at rt for 1 h and then concentrated. The resulting oil was purified by chromatography (EtOAc) to give the corresponding glycosyl trichloroacetimidate (693 mg (1.71 mmol) 99%) as a colorless syrup, which was used immediately in the glycosylation; $R_f 0.60$ (EtOAc). A solution of the trichloroacetimidate derived from GPL-4 (669 mg, 1.65 mmol) and GPL-8 (Scheme S48, 519 mg, 1.84 mmol) were dissolved in dry CH₂Cl₂ (4 mL) containing 4Å molecular sieves and cooled to -20 °C. A 0.5 M solution of TMSOTf in dry CH₂Cl₂ (1.32 mL, 0.66 mmol) was added dropwise. The mixture was stirred for 3 h while warming to rt before being filtered. The filtrate was diluted with CH₂Cl₂ and the resulting solution was washed with a satd aq NaHCO₃ soln and water. The organic phase was dried (Na_2SO_4), filtered, evaporated and the resulting residue was purified by chromatography (3:1 toluene-acetone) to give GPL-11 as colorless syrup, as a 9:1 α : β mixture. To purify the compound, the mixture was deacetylated, and then reacetylated. Thus, impure GPL-11 (536 mg, 1.02 mmol) was dissolved in CH₂Cl₂-CH₃OH (4:1, 5 mL) and sodium methoxide (12 mg, 0.22 mmol) was added. After stirring at rt for 4 h, the solution was neutralized by the addition of Amberlite IR 120 H⁺. The resin was filtered and the filtrate was concentrated to give a residue that was purified by chromatography (3:1 tolueneacetone) to give the product as a colorless syrup. Next, the deacetylated derivative of **GPL-11** (296 mg, 0.67 mmol) was dissolved in pyridine (2 mL) and Ac₂O (2 mL) and stirred at rt overnight. The solution was diluted with CH₂Cl₂ and washed with 5% HCl, a satd aq NaHCO₃ soln and water. The organic phase was dried (Na₂SO₄), filtered and concentrated to yield pure **GPL-11** (330 mg, 38%) as a colorless syrup. R_f 0.52 (3:1 toluene–acetone). [α]_D –71.5 (*c* = 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃, δ _H) 7.32 (m, 5 H), 5.42 (dd, 1 H, *J* = 3.3, 1.9 Hz), 4.98 (d, 1 H, *J* = 1.7 Hz, H-1), 4.93 (app t, 1 H, *J* = 9.8 Hz), 4.79 (d, 1 H, *J* = 1.8 Hz), 4.69 (d, 1 H, *J* = 12.0 Hz), 4.47 (d, 1 H, *J* = 12.0 Hz), 4.01 (dd, 1 H, *J* = 3.0, 2.0 Hz), 3.72 (dq 1 H, *J* = 9.8, 6.2 Hz), 3.64 (dq, 1 H, *J* = 9.5, 6.3 Hz), 3.60–3.56 (m, 4 H), 3.53 (dd, 1 H, *J* = 9.3, 3.2 Hz), 3.44 (s, 3 H), 3.36 (s, 3 H), 3.11 (app t, 1 H, *J* = 9.4 Hz), 2.13 (s, 3 H), 2.07 (s, 3 H), 1.32 (d, 3 H, *J* = 6.2 Hz), 1.07 (d, 3 H, *J* = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, δ _C) 170.2, 170.1, 137.2, 128.6, 128.0, 99.2 (C-1), 97.9 (C-1), 82.3, 81.2, 76.9, 74.2, 72.6, 69.1, 68.3, 68.2, 67.0, 61.0, 58.1, 57.9, 21.3, 21.2, 18.1, 17.5. HRMS (ESI) *m/z* calcd for (M+Na) C₂₆H₃₈O₁₁Na: 549.2306. Found: 549.2293.

2,4-Di-*O*-acetyl-3-*O*-methyl-α-L-rhamnopyranosyl-(1→2)-3,4-di-*O*-methyl-α-Lrhamnopyranose (GPL-12). Disaccharide GPL-11 (142 mg, 0.27 mmol) was dissolved in CH₃OH (15 mL) and 20% Pd(OH)₂–carbon (40 mg) was added. The mixture was degassed and stirred under H₂ (1 atm) overnight. The reaction mixture was filtered and the filtrate was concentrated to give a residue that was purified by chromatography (2.5:1 EtOAc–hexanes) to give GPL-12 (105 mg, 89%) as a colorless syrup (6:4 α:β ratio). R_f 0.38 (2.5:1 EtOAc–hexanes). ¹H NMR (400 MHz, CDCl₃, δ_H) 5.42 (dd, 1 H, *J* = 3.3, 1.9 Hz), 5.16 (d, 1 H, *J* = 1.9 Hz), 5.02 (d, 1 H, *J* = 1.8 Hz), 4.95 (app t, 1 H, *J* = 9.8 Hz), 4.03 (app t, 1 H, *J* = 2.5 Hz), 3.86–3.79 (m, 2 H), 3.61 (dd, 1 H, *J* = 9.7, 3.3 Hz), 3.55 (m, 4 H), 3.45 (s, 3 H), 3.36 (s, 3 H), 3.10 (app t, 1 H, *J* = 9.4 Hz), 2.13 (s, 3 H), 2.08 (s, 3 H), 1.30 (d, 3 H, *J* = 6.2 Hz), 1.17 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (100 MHz, CDCl₃, δ_C) 170.4, 170.3, 99.2 (C-1), 93.7 (C-1), 82.3, 80.8, 76.9, 74.3, 72.7, 68.1(6), 68.1(5), 67.1, 60.9, 58.1, 57.9, 21.2, 21.1, 18.1, 17.6. HRMS (ESI) *m/z* calcd for (M+Na) C₁₉H₃₂O₁₁Na: 459.1837. Found: 459.1829.

2,4-Di-O-acetyl-3-O-methyl- α -L-rhamnopyranosyl (1 \rightarrow O) *N*-(9-Fluorenylmethoxycarbonyl)-D-allo-threonine pentafluorophenyl ester (GPL-14). Reducing sugar GPL-4 (552 mg, 2.10 mmol) was dissolved in CH₂Cl₂ and trichloroacetonitrile (420 µL, 4.21 mmol) and DBU (67 µL, 0.42 mmol) were added. The solution was stirred at rt for 1 h and then concentrated. The resulting oil was purified by chromatography (EtOAc) to give the

corresponding glycosyl trichloroacetimidate (854 mg, 99%) as a light yellow oil, which was used immediately in the glycosylation; $R_f 0.60$ (EtOAc). A solution of the trichloroacetimidate derived from **GPL-4** (604 mg, 1.83 mmol) and **GPL-13**³⁷ (906 mg, 1.79 mmol) in dry CH₂Cl₂ (4 mL) containing 4Å molecular sieves was cooled to -20 °C. A 0.5 M solution of TMSOTf in dry CH₂Cl₂ (298 µL, 0.15 mmol) was added dropwise. The mixture was stirred for 4 h while warming to rt before being filtered. The filtrate was diluted with CH₂Cl₂ and the resulting solution was washed with a satd aq NaHCO₃ soln. The organic phase was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (2:1 hexanes-EtOAc) to give GPL-14 (765 mg, 57%) as a colorless syrup (9:1 α : β mixture). R_f 0.46 (2:1 hexanes–EtOAc). Data for α -isomer: ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.77 (d, 2 H, J = 7.4 Hz), 7.60 (d, 2 H, J = 7.6 Hz), 7.40 (app t, 2 H, J = 7.5 Hz), 7.33–7.29 (m, 2 H), 5.97 (d, 1 H, J = 8.4Hz), 5.26 (br s, 1 H), 4.98 (app t, 1 H, J = 9.7 Hz), 4.88 (br s, 1 H, H-1), 4.78 (m, 1 H), 4.48 (d, 2 H, J = 6.8 Hz), 4.24 (t, 2 H, J = 6.9 Hz), 4.17–4.21 (m, 1 H), 3.89 (dq, 1 H, J = 9.8 6.2 Hz), 3.50– 3.53 (m, 1 H), 3.32 (s, 3 H), 2.16 (s, 3 H), 2.07 (s, 3 H), 1.49 (d, 3 H, J = 6.4 Hz), 1.17 (d, 3 H, J = 6.4 Hz)= 6.3 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 170.5, 170.3, 166.3, 155.9, 143.7, 142.1, 141.0, 140.1, 139.0, 137.1, 124.6, 141.5, 127.9, 127.2, 125.0, 120.2, 97.5 (C-1), 76.7, 76.4, 72.2, 68.7, 67.9, 67.6, 58.8, 57.7, 47.3, 21.1(4), 20.9(7), 17.4. HRMS (ESI) m/z calcd for (M+Na) C₃₆H₃₄F₅NO₁₁Na: 774.1944. Found: 774.1927.

Scheme S50. Synthesis of lipid building block. a) CH₃I, DMF, then NaN₃, DMF, 63%; b) LiOH·H₂O, CH₃OH-H₂O (4:1), 89%.

(*R*)-Methyl 11-azido-3-methoxyundecanoate (GPL-16). A solution of GPL-15³⁸ (1.66 g, 5.61 mmol) and CH₃I (699 μ L, 11.23 mmol) in DMF (10 mL) was cooled to 0 °C and 60% NaH (237 mg, 6.17 mmol) was added. The solution was stirred overnight while warming to rt. To this solution was added CH₃OH (4 mL) and then CH₂Cl₂ before being washed with 5% HCl, water, dried (Na₂SO₄), filtered, and concentrated. The resulting residue was purified by chromatography (3:1 hexanes–EtOAc) to yield a mixture of (*R*)-methyl 11-bromo-3-

methoxyundecanoate and (*R*)-methyl 11-iodo-3-methoxyundecanoate in a 1:1 ratio as a colorless oil. R_f 0.59 (hexanes–EtOAc 3:1). The mixture of these two compounds (968 mg) was converted to the azide by stirring with NaN₃ (407 mg, 6.26 mmol) in DMF (15 mL) at 80 °C for 3 d. The mixture was cooled, diluted with CH₂Cl₂, washed with water, dried (Na₂SO₄), filtered and concentrated to yield **GPL-16** (962 mg, 63%) as a yellow oil. R_f 0.64 (3:1 hexanes–EtOAc) [α]_D –2.5 (c = 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 3.69 (s, 3 H), 3.62 (m, 1 H), 3.34 (s, 3 H), 3.25 (t, 2 H, J = 7.0 Hz), 2.54 (dd, 1 H, J = 15.1, 7.3 Hz), 2.41 (dd, 1 H, J = 15.1, 7.3 Hz), 1.63–1.55 (m, 2 H), 1.54–1.30 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 172.4, 77.9, 57.1, 51.7, 51.6, 39.4, 34.0, 29.7, 29.5, 29.2, 26.8, 25.2, 29.0. HRMS (ESI) m/z calcd for (M+Na) C₁₃H₂₅N₃O₃Na: 294.1788. Found: 294.1783.

(*R*)-11-azido-3-methoxyundecanoic acid (GPL-17). To a solution of GPL-16 (435 mg, 1.60 mmol) in CH₃OH–H₂O (4:1, 5 mL) was added LiOH·H₂O (37 mg, 0.89 mmol). The solution was stirred at rt for 4 h and then the CH₃OH was evaporated before the remaining aqueous mixture was acidified with 5% aqueous HCl. The aqueous solution was extracted with CH₂Cl₂, and the combined organic extracts were dried (Na₂SO₄), filtered, and concentrated to yield GPL-17 (367 mg, 89%) as a light-yellow oil. R_f 0.63 (9:1 CH₂Cl₂–CH₃OH). [α]_D –2.7 (c = 0.7, CHCl₃). ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 3.62–3.66 (m, 1 H), 3.39 (s, 3 H), 3.27 (t, 2 H, J = 6.9 Hz), 2.57 (dd, 1 H, J = 15.4, 7.0 Hz), 2.51 (dd, 1 H, J = 15.4, 7.0 Hz), 1.63–1.56 (m, 2 H), 1.54–1.31 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 176.6, 77.7, 57.1, 51.6, 39.2, 33.8, 29.7, 29.6, 29.2, 29.0, 26.9, 25.2. HRMS (ESI) m/z calcd for (M+Cl) C₁₂H₂₃N₃O₃Cl: 292.1433. Found: 292.1435.

Scheme S51. Solid-phase synthesis of core glycopeptidolipid.

N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(2,4-di-O-acetyl-3-O-

methyl-α-L-rhamnopyranosyl)-D-allo-threoninyl-D-alaninyl-L-alaninol (GPL-18). 2-Chlorotrityl chloride resin (500 mg, loading 1.22 mmol/g) was incubated overnight with a solution of Fmoc-D-alaniol³⁹ (907 mg, 3.05 mmol) and DIPEA (1.33 mL, 7.63 mmol) in CH₂Cl₂–DMF (1:1, 4 mL) before CH₃OH was added and shaking of the resin was continued for 10 min. The resin was washed $(3 \times DMF, 3 \times CH_2Cl_2)$ and then the loading (0.32 mmol/g) was determined via UV-Vis absorption of the Fmoc-cleavage product of a small sample. Fmoccleavage of the remaining was done by treatment of the resin with 20% piperidine in DMF (2 \times 10 min) followed by washing the resin (3 \times DMF, 3 \times CH₂Cl₂). Subsequently, the resin was incubated for 4 h with L-alanine (949 mg, 3.05 mmol), HOBt H₂O (413 mg, 3.05 mmol) and diisopropyl carbodiimide (DIC, 478 μ L, 3.05 mmol) in DMF. The resin was washed (3 × DMF, $3 \times CH_2Cl_2$) and the Fmoc group was cleaved using 20% piperidine in DMF (2 × 10 min). After washing of the resin (3 \times DMF, 3 \times CH₂Cl₂), it was incubated with GPL-14 (487 mg, 0.65 mmol) and HOBt H₂O (88 mg, 0.65 mmol) in DMF (3 mL) for 4 h. The resin was washed (3 \times DMF, $3 \times CH_2Cl_2$) and the Fmoc group was cleaved using 20% piperidine in DMF (2 × 10 min). The resin was washed $(3 \times DMF, 3 \times CH_2Cl_2)$ and then shaken for 4 h in a solution of Fmoc-Dphenylalanine (314 mg, 0.82 mmol), HOBt·H₂O (127 mg, 0.82 mmol) and DIC (110 µL, 0.82 mmol) in DMF (4 mL). The Fmoc group was cleaved using 20% piperidine in DMF (2 \times 10 min). The resin was washed the resin was washed $(3 \times DMF, 3 \times CH_2Cl_2)$ and then shaken for 4 h in a solution of GPL-17 (240 mg, 0.82 mmol), HOBt H₂O (127 mg, 0.82 mmol) and DIC (110 μ L, 0.82 mmol) in DMF (4 mL). The resin was washed (3 × DMF, 3 × CH₂Cl₂) and the product was cleaved from the resin using TFA-CH₂Cl₂-TIS-H₂O (47.5:47.5:2.5:2.5, 3 mL) for 2 h. The resin was filtered off and washed with AcOH (2×3 mL) and the combined filtrates were concentrated and purified by chromatography to give GPL-18 (92 mg 65%) as a colorless powder. $R_f 0.43$ (9:1 CH₂Cl₂-CH₃OH). ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.38 (app t, 2 H, J = 7.3Hz), 7.32 (d, 1 H, J = 7.3 Hz), 7.24 (d, 2 H, J = 7.0 Hz), 7.17 (d, 1 H, J = 8.6 Hz), 6.95 (d, 1 H, J = 3.7 Hz, 6.83 (d, 1 H, J = 5.5 Hz), 6.68 (d, 1 H, J = 8.0 Hz), 5.25 (dd, 1 H, J = 3.3, 2.1 Hz), 4.97 (app t, 1 H, J = 9.6 Hz), 4.90 (d, 1 H, J = 2.0 Hz), 4.56–4.60 (m, 1 H), 4.51–4.55 (m, 1 H), 4.42-4.46 (m, 1 H), 4.26-4.30 (m, 1 H), 4.05-4.09 (m, 1 H), 3.76 (dq, 1 H, J = 9.3, 6.3 Hz), 3.70 (dq, 1 H)(dd, 1 H, J = 11.5, 3.1 Hz), 3.58–3.52 (m, 2 H), 3.45–3.49 (m, 1 H), 3.35 (s, 3 H), 3.29–3.24 (m, 3 H), 3.21 (s, 3 H), 2.94 (dd, 1 H, J = 14.1, 9.4 Hz), 2.48 (dd, 1 H, J = 15.3, 3.4 Hz), 2.30 (dd, 1

H, J = 15.3, 6.9 Hz), 2.15 (s, 3 H), 2.06 (s, 3 H), 1.63–1.57 (m, 2 H), 1.42–1.17 (m, 24 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 174.1, 173.0, 171.9, 170.6, 170.1, 168.1, 135.5, 129.3, 129.1, 127.8, 95.8 (C-1), 77.6, 76.8, 72.5, 71.6, 68.4, 67.8, 66.4, 59.1, 57.8, 56.8, 56.2, 51.6, 48.8, 48.1, 40.5, 37.2, 29.8, 29.6, 29.4, 29.2, 28.9, 26.8, 25.1, 21.2, 21.1, 17.7, 17.6, 16.7, 14.7. HRMS (ESI) *m/z* calcd for (M+H) C₄₂H₆₈N₇O₁₃: 878.4870. Found: 878.4861.

Scheme S52. Synthesis of 47. a) CCl₃CN, DBU, CH₂Cl₂, then GPL-18, TMSOTf, CH₂Cl₂, 64%; b) NaOCH₃, CH₃OH, CH₂Cl₂, quant.; c) H₂, Pd(OH)₂–C, EtOAc, THF, CH₃OH, 82%.

 N^{α} -(*R*)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(2,4-di-*O*-acetyl-3-*O*methyl-α-L-rhamnopyranosyl)-D-*allo*-threoninyl-D-alaninyl-L-alaninolyl 2-*O*-(2,4-di-*O*acetyl-3-*O*-methyl-α-L-rhamnopyranosyl)-3,4-di-*O*-methyl-α-L-rhamnopyranoside (GPL-19). A solution of GPL-12 (50 mg, 0.115 mmol), trichloroacetonitrile (22 µL, 0.230 mmol) and DBU (4.0 µL, 0.023 mmol) in CH₂Cl₂ (2 mL) was stirred at rt for 2 h and then concentrated. The resulting oil was purified by chromatography (2.5:1 EtOAc–hexanes) to give the corresponding glycosyl trichloroacetimidate (63 mg, 94%) as a colorless syrup, which was used immediately in the glycosylation; R_f 0.69 (2.5:1 EtOAc–hexanes). The trichloroacetimidate derived from GPL-12 (8.1 mg, 0.014 mmol) and GPL-18 (Scheme S51, 10 mg, 0.011 mmol) in CH₂Cl₂ (2 mL) containing 4Å molecular sieves was cooled to 0 °C. A 0.5 M solution of TMSOTf (1.2 µL, 0.0006 mmol) was added. The mixture was stirred for 3 h while warming to rt, neutralized with DIPEA (1 µL), concentrated and the resulting residue was purified by chromatography over (3:1

 \rightarrow 2:1 toluene-acetone) to give GPL-19 (9 mg, 64%) as a colorless powder after freeze drying $(\alpha:\beta 9:1)$. $R_f 0.58$ (9:1 CH₂Cl₂-CH₃OH). ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.36 (app t, 2 H, J =7.4 Hz), 7.30 (d, 1 H, J = 7.4 Hz), 7.25 (d, 2 H, J = 7.3 Hz), 7.03 (d, 1 H, J = 7.5 Hz), 6.78 (d, 1 H, J = 4.7 Hz), 6.75 (d, 1 H, J = 6.5 Hz), 6.45 (d, 1 H, J = 8.0 Hz), 5.42 (dd, 1 H, J = 3.3, 1.9Hz), 5.24 (dd, 1 H, J = 3.3, 2.0 Hz), 5.01 (d, 1 H, J = 1.6 Hz), 4.98–4.93 (m, 2 H), 4.87 (d, 1 H, J = 1.8 Hz), 4.73 (d, 1 H, J = 1.7 Hz), 4.49–4.53 (m, 1 H), 4.48–4.44 (m, 1 H), 4.38–4.42 (m, 1 H), 4.24-4.38 (m, 1 H), 4.12-4.17 (m, 1 H), 4.01 (app t, 1 H, J = 2.6 Hz), 3.81 (dq, 1 H, J = 9.9, 6.2Hz), 3.74 (dd, 1 H, J = 9.6, 6.1 Hz), 3.61–3.43 (m, 13 H), 3.36 (s, 3 H), 3.33 (s, 3 H), 3.27–3.22 (m, 6 H) 3.09 (app t, 1 H, J = 9.3 Hz), 2.99 (dd, 1 H, J = 14.0, 9.0 Hz), 2.44 (dd, 1 H, J = 15.3, 3.4 Hz), 2.28 (dd, 1 H, J = 15.2, 7.1 Hz), 2.14 (s, 3 H), 2.13 (s, 3 H), 2.09 (s, 3 H), (s, 3 H), 1.62– 1.56 (m, 2 H), 1.41–1.18 (m, 27 H), 1.14 (d, 3 H, J = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 173.1, 172.3, 171.5, 170.6, 170.4, 170.3, 170.1, 168.3, 135.9, 129.21, 129.18, 127.7, 99.3, 99.1, 95.7, 82.3, 81.2, 77.7, 76.8(1), 76.7(6), 73.8, 72.7, 72.5, 71.7, 70.6, 68.4, 68.22, 68.22, 67.6, 67.2, 61.0, 57.9, 57.8, 58.6, 57.7, 56.3, 51.6, 49.5, 45.0, 40.5, 37.2, 32.3, 29.60, 29.50, 29.2, 26.8, 25.1, 29.0, 21.2(2), 21.1(6), 21.1(3), 21.1(2), 18.2, 17.9, 17.6(8), 17.6(6), 17.6(3), 14.7. HRMS (ESI) *m/z* calcd for (M+H) C₆₁H₉₈N₇O₂₃: 1296.6709. Found: 1296.6712.

 N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(3-O-methyl- α -Lrhamnopyranosyl)-D-allo-threoninyl-D-alaninyl-L-alaninolyl 2-0-(3-0-methyl-α-Lrhamnopyranosyl)-3,4-di-O-methyl-α-L-rhamnopyranoside (GPL-20). To a solution of GPL-19 (6.0 mg, 0.005 mmol) in CH₂Cl₂-CH₃OH (4:1, 5 mL) was added 1M sodium methoxide solution (0.016 mmol) and the mixture was stirred at rt for 20 h. The reaction mixture was carefully neutralized by adding Amberlite IR-120 H⁺ resin and then filtered. The filtrate was concentrated to a residue that was purified by chromatography (10:1 CH₂Cl₂-CH₃OH) to obtain the **GPL-20** (5.0 mg, quant.) as an oil; ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 7.46 (d, 1 H, J = 7.7 Hz), 7.36–7.20 (m, 5 H), 6.90 (d, 1 H, J = 7.7 Hz), 6.36 (d, 1 H, J = 5.5 Hz), 5.16 (s, 1 H), 5.02 (d, 1 H, J = 1.6 Hz), 4.91 (d, 1 H, J = 1.8 Hz), 4.82–4.70 (m, 1 H), 4.43–4.36 (m, 1 H), 4.23–3.98 (m, 7 H), 3.94 (ddd, 1 H, J = 6.1, 9.6, 12.6 Hz), 3.78–3.70 (m, 2 H), 3.67–3.35 (m, 18 H), 3.32–3.22 (m, 4 H), 3.22–3.00 (m, 3 H), 2.60–2.50 (m, 1 H), 2.48–2.38 (m, 2 H), 2.35–2.28 (m, 1 H), 2.10 (s, 1 H), 1.68–1.58 (m, 4 H), 1.46–1.15 (m, 27 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.1, 171.7, 171.1, 169.5, 136.3, 129.2(4), 129.2, 129.1, 128.7(0), 128.7, 128.6, 127.0, 100.9, 100.6, 95.0, 82.3, 81.1, 80.9, 80.3, 77.9, 73.1, 73.0, 72.3, 71.7, 70.2, 68.7, 68.5, 68.1, 68.0, 66.7, 60.7,

58.1, 57.6, 57.2, 56.9, 56.7, 56.6, 53.9, 51.5, 50.2, 45.3, 40.5, 37.4, 32.8, 29.5, 29.4, 29.1, 28.8, 26.7, 25.2, 18.1, 17.9(8), 17.9(5), 17.8, 17.3, 14.3.

 N^{a} -(*R*)-11-amino-3-methoxyundecanoyl-D-phenylalaninyl-(3-*O*-methyl- α -Lrhamnopyranosyl)-D-allo-threoninyl-D-alaninyl-L-alaninolyl 2-*O*-(3-*O*-methyl- α -Lrhamnopyranosyl)-3,4-di-*O*-methyl- α -L-rhamnopyranoside (47). Compound GPL-20 (5.0 mg) was dissolved in EtOAc (3 mL), THF (2 mL), CH₃OH (0.5 mL), H₂O (30 μ L), and pyridine (40 μ L) and then 20% Pd(OH)₂–C (6 mg) was added. The mixture was stirred under H₂ (1 atm) for 1 h. The catalyst was filtered off and then washed with THF. The combined filtrate was concentrated and dried under vacuum for 4 h to obtain the title compound 47 (4 mg, 82%). HRMS (ESI) *m*/*z* calcd for (M+Na) C₅₃H₉₁N₅O₁₉Na: 1124.6200. Found: 1124.6191.

40. Synthesis of 48

Scheme S53. Synthesis of **48 Trifluoroacetamide**. a) **GLU-12**, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH_2Cl_2 , 59%; b) CF_3CO_2H , Et_3SiH , CH_2Cl_2 ; then NaOCH₃, CH_3OH , CH_2Cl_2 ; then TrCl, pyridine; then *n*-Bu₄NF, THF; then BzCl, pyridine, 59%; c) p-TsOH·H₂O, H₂O, CH₃OH, CH₂Cl₂, 86%; d) **GLU-8**, 1,3,5-trimethoxybenzene, Tf₂O, 2,6-di-*t*-butyl-4-methyl-pyridine, CH_2Cl_2 , 72%; e) CF_3CO_2H , CH_2Cl_2 85%; f) NaOCH₃, CH_3OH , CH_2Cl_2 ; then H₂, Pd(OH)₂–C, pyridine; then trifluoroacetic anhydride, pyridine, 59%; g) H₂, Pd(OH)₂–C, EtOAc, THF, CH₃OH, 86%.

8-Azidooctyl 2-O-[(1*S*)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3,6-di-O-acetyl-4-O-naphthyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-tert-butyldiphenylsilyl- α -D-glucopyranoside (GLU-24). A

mixture of sulfoxide donor GLU-12²² (0.53 g, 0.97 mmol), 1,3,5-trimethoxybenzene (0.25 g, 1.49 mmol), 2,6-di-t-butyl-4-methyl pyridine (0.4 g, 1.95 mmol), and activated 4 Å molecular sieves (0.3 g) in CH₂Cl₂ (6.5 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.18 mL, 1.06 mmol) was added. After 30 min, the reaction mixture was cooled to -40 °C and a solution of GLU-20 (0.92 g, 0.78 mmol), in CH₂Cl₂ (3.2 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (20 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (7:3 hexanes-EtOAc) to yield GLU-24 (0.87 g, 59%) as a foam. R_f 0.10 (4:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.84-7.80 (m, 3 H), 7.67-7.76 (m, 5 H), 7.52-7.25 (m, 17 H), 7.25-7.12 (m, 17 H), 7.00-6.96 (m, 2 H), 6.07 (s, 2 H), 6.00 (d, 1 H, J =3.3 Hz, H-1 α), 5.61 (d, 1 H, J = 3.3 Hz, H-1 α), 5.58 (dd, 1 H, J = 9.7, 9.7 Hz), 5.10 (d, 1 H, J = 11.9 Hz), 4.93 (d, 1 H, J = 11.4 Hz), 4.85 (d, 1 H, J = 12.1 Hz), 4.81-4.76 (m, 2 H), 4.70 (dd, 1 H, J = 11.9, 11.9 Hz), 4.66–4.56 (m, 4 H), 4.54 (d, 1 H, J = 11.9 Hz), 4.33, 4.35 (ABq, 2 H, J = 12.3 Hz), 4.27 (dd, 1 H, J = 4.8, 7.7 Hz), 4.20–4.10 (m, 2 H), 4.10–3.82 (m, 10 H), 3.80 (s, 3 H), 3.77-3.66 (m, 8 H), 3.65-3.51 (m, 3 H), 3.50-3.40 (m, 3 H), 3.30-3.20 (m, 3 H), 2.97 (dd, 1 H, J = 8.1, 13.5 Hz, 2.82 (dd, 1 H, J = 4.8, 13.7 Hz), 2.57 (br. s, 1 H), 1.85 (s, 3 H), 1.75–1.58 (m, 4 H), 1.47 (s, 3 H), 1.42–1.30 (m, 8 H), 1.06 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.4, 169.7, 161.8, 161.6, 141.8, 139.3, 139.2, 138.4, 138.3, 135.8, 135.6, 135.2, 133.9, 133.4, 133.2, 133.0, 129.9, 129.6, 128.4, 128.2(3), 128.2(1), 128.2, 128.1(3), 128.1, 128.0(2), 128.0, 127.9, 127.7(3), 127.7, 127.5, 127.4, 127.3, 127.1, 127.0, 126.9(3), 126.9, 126.8, 126.7, 126.6, 126.2, 126.0, 125.9, 101.9, 97.2 (C-1), 96.2 (C-1), 95.8 (C-1), 90.9, 83.9, 81.7, 80.5, 80.2, 79.2, 78.7, 76.4, 75.0, 74.4, 74.1, 73.5, 73.3, 73.2, 73.1, 73.0, 72.9, 71.3, 71.2, 68.6, 68.5, 67.7, 63.9, 62.8, 55.8, 55.3, 51.5, 42.7, 37.4, 30.0, 29.4, 29.3, 29.2, 28.9, 26.9, 26.7, 26.1, 20.7, 19.4. HRMS (ESI) m/z calcd for (M+Na) C₁₀₉H₁₂₅N₃O₂₁SSiNa: 1894.8188. Found: 1894.8162.

8-Azidooctyl 2,3-di-*O*-benzoyl-4-*O*-naphthyl-6-*O*-trityl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-*O*-benzyl-6-*O*-benzoyl- α -Dglucopyranoside (GLU-25). To a solution of GLU-24 (0.85 g, 0.45 mmol) in CH₂Cl₂ (40 mL) at 0 °C was added trifluoroacetic acid (2.0 mL) and the solution was stirred at 0 °C for 30 min. The reaction mixture was then poured into a satd aq NaHCO₃ soln (30 mL) and extracted with CH₂Cl₂ (30 mL). The organic layer was separated, washed with water (20 mL), dried (Na₂SO₄),

filtered and concentrated to a syrup that was dried under vacuum for 3 h. This compound was dissolved in CH₂Cl₂–CH₃OH (4:1, 10 mL) and 1M methanolic sodium methoxide solution was added until the pH of the reaction mixture was 8-9 (as determined by wet pH paper). The reaction mixture was stirred for 24 h, carefully neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was dried under vacuum overnight; $R_f 0.04$ (3:1 hexanes-EtOAc). This trisaccharide was dissolved in pyridine (10 mL) before TrCl (0.24 g, 0.86 mmol) was added and the mixture was stirred at 45 °C for 48 h. During this period, additional TrCl (0.24 g, 0.86 mmol) was added to push the reaction to completion. The reaction mixture was cooled to rt and then ice water (1.0 mL) was added and the solution was stirred for 15 min before being poured into water (20 mL) and extracted with CH₂Cl₂ (60 mL). The CH₂Cl₂ layer was washed with 12% aq copper sulphate solution (until all of the pyridine was removed as determined by TLC), water (25 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (hexanes-EtOAc, 3:1) to yield the corresponding trityl derivative, $R_f 0.25$ (3:1 hexane–EtOAc); HRMS (ESI) m/z calcd for (M+Na) C₁₀₇H₁₁₇N₃O₁₆SiNa: 1750.8095. Found: 1750.8068, which was dried under vacuum for 2 h. This compound was dissolved in THF (15 mL) and *n*-Bu₄NF (2.5 mL, 1M in THF) was added and the solution was stirred at rt for 36 h. The reaction mixture was then concentrated to a syrup that was purified by chromatography (1:1 hexane–EtOAc); $R_f 0.2$ (3:2 hexane–EtOAc) and dried under vacuum for 4 h. To a solution of this compound in pyridine (4 mL) was added benzoyl chloride (0.4 mL, 3.45 mmol) and the mixture was heated at 50 °C overnight. The reaction mixture was cooled to rt, CH₃OH (0.5 mL) was added and then the solution was poured into a satd aq NaHCO₃ soln (20 mL) and extracted with CH₂Cl₂ (30 mL). The organic layer was separated, washed with water (20 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (4:1 hexanes-EtOAc) to yield GLU-25 (0.48 g, 59% over five steps) as a thick syrup, $R_f 0.39$ (3:1 hexane:EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.12–8.08 (m, 2 H), 8.0–7.93 (m, 2 H), 7.87–7.81 (m, 2 H), 7.67–7.61 (m, 1 H), 7.60–7.02 (m, 54 H), 6.98–6.92 (m, 1 H), 6.05 (d, 1 H, J = 3.9 Hz), 5.97 (dd, 1 H, J = 10.0, 10.0 Hz), 5.64 (d, 1 H, J = 3.7 Hz, H-1 α), 5.47 (dd, 1 H, J = 3.9, 10.2 Hz), 5.04 (d, 1 H, J = 11.5 Hz), 4.82–4.70 (m, 6 H), 4.62 (d, 1 H, J = 11.9 Hz), 4.60–4.42 (m, 6 H), 4.41 (d, 1 H, J = 11.2 Hz), 4.40–4.22 (m, 4 H), 4.21-4.05 (m, 3 H), 3.90-3.86 (m, 1 H), 3.75-3.50 (m, 6 H), 3.43 (ddd, 1 H, J = 7.3, 9.9, 14.1 Hz), 3.29 (dd, 2 H, J = 7.0, 7.0 Hz), 3.12 (dd, 1 H, J = 2.5, 10.6 Hz), 1.79–1.61 (m, 4 H),

1.45–1.32 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.0, 165.9, 165.6, 144.0, 138.9, 138.4, 138.1(2), 138.1(0), 137.7, 135.2, 133.1, 133.0, 132.9, 132.8(2), 132.8, 130.2, 130.0, 129.8, 129.6, 129.2, 128.9, 128.6, 128.4, 128.3(3), 128.2(9), 128.2(5), 128.2, 128.1(4), 128.1, 127.9(2), 127.9, 127.8, 127.7, 127.6(0), 127.6, 127.2, 127.1, 127.0, 126.9, 126.8, 126.2, 125.8, 125.7, 96.9 (C-1), 96.3 (C-1), 95.6 (C-1), 86.4, 81.6, 81.2, 80.5, 79.5, 75.8, 74.5, 74.2(9), 74.2(7), 74.0, 73.2(3), 73.2, 73.0, 72.6, 72.4, 71.8, 71.1(7), 71.1(5), 68.7, 68.4(1), 68.4, 63.6, 61.7, 51.5, 29.4, 29.3, 29.1, 28.9, 26.7, 26.0.

8-Azidooctyl 2,3-di-O-benzoyl-4-O-naphthyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-Obenzyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3-di-O-benzyl-6-O-benzoyl- α -D-glucopyranoside (GLU-26). To a solution of GLU-25 (0.47 g, 0.26 mmol) in CH₂Cl₂-CH₃OH (25:4, 29 mL) was added p-TsOH H₂O (0.057 g, 0.30 mmol) followed by water (50 µL) and the mixture was stirred at rt for 24 h. The solution was poured into water (25 mL) and extracted with CH₂Cl₂ (25 mL). The organic layer was washed with water, a satd aq NaHCO₃ soln, water, dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (7:3 hexane-EtOAc) to yield GLU-26 (0.35 g, 86%) as a foam. Rf 0.19 (3:1 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.20-8.14 (m, 2 H), 8.00-7.92 (m, 2 H), 7.90-7.86 (m, 2 H), 7.77-7.70 (m, 2 H), 7.68-7.55 (m, 3 H), 7.50-7.40 (m, 6 H), 7.36-7.18 (m, 26 H), 7.15-7.06 (m, 4 H), 6.01 (dd, 1 H, J = 8.8, 10.6 Hz, 5.88 (d, 1 H, J = 4.0 Hz, H-1 α), 5.67 (d, 1 H, J = 3.7 Hz), 5.28 (dd, 1 H, J = 3.7 \text{ Hz}), 5.28 (dd, 1 H, J = 3.7 \text{ Hz}), 5.28 (dd, 1 4.0, 10.2 Hz), 5.07 (d, 1 H, J = 11.6 Hz), 4.83 (d, 1 H, J = 3.7 Hz, H-1 α), 4.82–4.70 (m, 6 H), 4.64 (d, 1 H, J = 11.9 Hz), 4.58–4.44 (m, 5 H), 4.40 (d, 1 H, J = 12.1 Hz), 4.20–4.02 (m, 4 H), 3.98-3.80 (m, 4 H), 3.78-3.60 (m, 5 H), 3.53-3.42 (m, 3 H), 3.30 (dd, 1 H, J = 7.0, 7.0 Hz), 1.93–1.86 (m, 1 H), 1.80–1.60 (m, 4 H), 1.44–1.30 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 166.1, 165.8, 165.5, 138.9, 138.2, 138.1, 138.0, 137.6, 135.1, 133.2, 133.1(3), 133.1, 133.0, 132.9, 130.1, 130.0, 129.9, 129.7, 129.6, 129.1, 128.5, 128.3, 128.3(4), 128.3(1), 128.2(8), 128.2(7), 128.2(4), 128.2, 128.1, 128.0, 127.9, 127.7(0), 127.6(9), 127.6(7), 127.6(5), 127.5, 127.3, 127.2, 127.0, 126.7, 126.1, 125.9, 96.8 (C-1), 96.3 (C-1), 95.7 (C-1), 81.6, 81.4, 80.5, 79.5, 75.8, 74.8, 74.5, 74.4, 73.8, 73.7, 73.2, 73.1, 72.7, 72.5, 71.7, 71.3, 71.2, 68.4(4), 68.4(0), 68.3, 63.7, 61.4, 51.5, 29.4, 29.3, 29.1, 28.9, 26.7, 26.0. HRMS (ESI) m/z calcd for (M+Na) C₉₃H₉₇N₃O₁₉Na: 1582.6608. Found: 1582.6584.

8-Azidooctyl 2-*O*-[(1*S*)-phenyl-2-(2,3,5-trimethoxyphenylsulfanyl)-ethyl]-3,6-di-*O*acetyl-4-*O*-benzyl-α-D-glucopyranosyl-(1→6)-2,3-di-*O*-benzoyl-4-*O*-naphthyl-α-D-

 $glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-\textit{O}-benzyl-\alpha-D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-\textit{O}-benzyl-6-benzyl-6-ben$ benzoyl-α-D-glucopyranoside (GLU-27). A mixture of sulfoxide donor GLU-8²² (0.14 g, 0.28 mmol), 1,3,5-trimethoxybenzene (0.07 g, 0.42 mmol), 2,6-di-t-butyl-4-methyl pyridine (0.11 g, 0.54 mmol), and activated 4 Å molecular sieves (0.27 g) in CH₂Cl₂ (1.9 mL) was stirred for 1 h. After cooling to -10 °C, trifluoromethanesulfonic anhydride (0.052 mL, 0.31 mmol) was added. After 30 min, the reaction mixture was cooled to -40 °C and a solution of GLU-26 (0.35 g, 0.22 mmol) in CH₂Cl₂ (1 mL) was added slowly. The temperature of the reaction mixture was kept at -40 °C for 60 min and then warmed to rt. After stirring for 15 h at rt, the reaction mixture was diluted with CH₂Cl₂ (10 mL), filtered, and the filtrate was concentrated to a residue that was purified by chromatography (3:1 hexanes-EtOAc) to yield GLU-27 (0.35 g, 72%) as a foam. R_f 0.37 (3:2 hexane-EtOAc); $[\alpha]_D$ +113.5 (c = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.18-8.14 (m, 2 H), 7.92-7.88 (m, 2 H), 7.83-7.78 (m, 2 H), 7.75-7.72 (m, 1 H), 7.70-7.66 (m, 2 H), 7.61–7.54 (m, 2 H), 7.47–7.06 (m, 47 H), 6.97–6.94 (m, 1 H), 6.20 (s, 2 H), 6.06 (dd, 1 H, J = 9.9, 9.9 Hz), 6.00 (d, 1 H, J = 3.9 Hz), 5.83 (d, 1 H, J = 3.3 Hz), 5.72 (dd, 1 H, J = 9.5, 9.5Hz), 5.63 (d, 1 H, J = 3.5 Hz), 5.42 (dd, 1 H, J = 3.9 Hz), 5.02 (d, 2 H, J = 11.6 Hz), 4.90 (d, 1 H, J = 11.6 Hz, 4.81 (d, 1 H, J = 11.6 Hz), 4.80–4.34 (m, 14 H), 4.30–4.19 (m, 2 H), 4.19–4.10 (m, 3 H), 4.10–4.01 (m, 2 H), 4.00–3.51 (m, 19 H), 3.50–3.42 (m, 2 H), 3.35–3.25 (m, 3 H), 3.00 (dd, 1 H, J = 9.0, 14.3 Hz), 2.35 (s, 3 H), 2.02 (s, 3 H), 1.77-1.60 (m, 4 H), 1.46-1.30 (m, 8 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 170.5, 169.9, 167.5, 166.0, 165.7, 165.5, 162.0, 161.5, 142.5, 140.0, 138.3, 138.2, 138.1, 137.8, 137.5, 135.9, 133.0, 132.9, 132.8, 132.6, 130.2, 129.9, 129.8, 129.6, 129.4, 128.5, 128.4(4), 128.4(2), 128.3, 128.2(3), 128.1(8), 128.1(5), 128.1(2), 128.1, 128.0, 127.9, 127.7, 127.5, 127.4(2), 127.4, 127.3, 127.1, 127.0, 126.8, 126.5, 126.0(9), 126.0(6), 125.6, 125.4, 116.2, 101.8, 98.2 (C-1), 96.9 (C-1), 96.3 (C-1), 95.9 (C-1), 91.0, 84.3, 81.7, 81.3, 80.6, 80.5, 79.5, 76.7, 76.4, 75.0, 74.4, 74.3, 74.1(2), 74.1, 73.8, 73.4, 73.2, 73.1(4), 73.1, 72.8, 72.0, 71.8, 71.3, 69.0, 68.4(1), 68.3(9), 68.3(6), 64.8, 63.7, 63.1, 55.9, 55.4, 51.5, 43.1, 37.4, 30.2, 29.4, 29.3, 29.1, 28.9, 26.7, 26.0, 20.8, 20.4. HRMS (ESI) m/z calcd for (M+Na) C₁₂₇H₁₃₅N₃O₂₉SNa: 2220.8794. Found: 2220.8807.

8-Azidooctyl 3,6-di-*O*-acetyl-4-*O*-benzyl- α -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3-di-*O*-benzyl-4-*O*-naphthyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3-di-*O*-benzyl- α -D-glucopyranoside (GLU-28). To a solution of GLU-27 (0.35 g, 0.16 mmol) in CH₂Cl₂ (10 mL) under argon at 0 °C was added trifluoroacetic acid

(0.6 mL) and the solution was stirred at that temperature for 50 min. The reaction mixture was then poured into a satd aq NaHCO₃ soln (25 mL) and extracted with CH₂Cl₂ (20 mL). The organic layer was washed with water (15 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (65:35 hexanes-EtOAc) to yield GLU-28 (0.26 g, 85%) as a foam. $R_f 0.37$ (3:2 hexanes-EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.20-8.12 (m, 2 H), 8.0-7.92 (m, 4 H), 7.80-7.61 (m, 4 H), 7.60-7.53 (m, 1 H), 7.50-7.06 (m, 41 H), 6.05 (dd, 1 H, J = 10.0, 10.0 Hz), 5.89 (d, 1 H, J = 3.9 Hz), 5.69 (d, 1 H, J = 3.7 Hz), 5.47 (dd, 1 H, J = 9.7, 9.7 Hz), 5.30 (dd, 1 H, J = 3.9, 10.0 Hz), 5.06 (d, 1 H, J = 11.6 Hz), 4.88 (d, 1 H, J = 3.7 Hz), 4.90-4.40 (m, 15 H), 4.20-4.10 (m, 4 H), 4.10-3.96 (m, 4 H), 3.96-3.75 (m, 7 H), 3.75-3.50 (m, 6 H), 3.47 (ddd, 1 H, J = 7.1, 9.7, 14.1 Hz), 3.30 (dd, 2 H, J = 7.0, 7.0 Hz), 2.57 (d, 1 H, J = 7.0, 7.0 Hz), 3.0 (d, 2 H, J = 7.0, 7.0 Hz), 3.0 (d, 2 H, J = 7.0, 7.0 Hz), 3.0 (d, 2 H, J = 7.0, 7.0 Hz), 3.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 Hz), 7.0 (d, 2 H, J = 7.0, 7.0 (d, 2 H, J = 7.0), 7.0 (d, 2 H, J = 7.0 (d, 2 H, J = 7.0), 7.0 (d, 2 H, J = 7.0 (d, 2 H, 11.0 Hz), 2.15 (s, 3 H), 2.02 (s, 3 H), 1.80–1.60 (m, 4 H), 1.50–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.9, 170.6, 166.1, 165.7, 138.9, 138.3, 138.2, 138.1, 137.8, 137.5, 135.1, 133.1(6), 133.1, 132.9, 130.1, 130.0, 129.9, 129.7, 129.6, 129.2, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.7, 127.6, 127.5(3), 127.5, 127.3, 127.2, 126.8, 126.6, 126.0, 125.8(4), 125.8, 99.2 (C-1), 96.7 (C-1), 96.3 (C-1), 95.6 (C-1), 81.7, 81.3, 80.5, 79.5, 76.3, 75.8, 75.5, 74.0, 74.7, 74.4(0), 74.4, 73.7, 73.6, 73.2, 73.1, 72.9, 72.8, 71.5(4), 71.5, 71.4, 70.5, 69.1, 68.8, 68.4, 68.3, 66.4, 63.9, 62.7, 56.3, 51.5, 29.4, 29.3, 29.2, 28.9, 26.7, 26.1, 21.3, 20.8. HRMS (ESI) m/z calcd for (M+Na) C₁₁₀H₁₁₇N₃O₂₆Na: 1918.7818. Found: 1918.7800.

8-Trifluoroacetamidooctyl 4-*O*-Benzyl-α-D-glucopyranosyl-(1→6)-4-*O*-naphthyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-*O*-benzyl-α-D-glucopyranosyl-(1→4)-2,3-di-*O*-benzyl-α-D-glucopyranoside (GLU-29). Compound GLU-28 (0.26 g, 0.13 mmol) was dissolved in CH₂Cl₂–CH₃OH (8:1, 9 mL) and 1M methanolic sodium methoxide solution was added until the pH of the reaction mixture was 8–9 (as determined by wet pH paper). The reaction mixture was stirred at rt overnight, carefully neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was purified by chromatography (93:7 CH₂Cl₂–CH₃OH) to yield the deacylated compound (0.2 g) as a thick syrup; R_f 0.05 (1:1 hexane– EtOAc). This compound (0.14 g, 0.09 mmol) was dissolved in pyridine (6 mL), 20% Pd(OH)₂–C (80 mg) was added the mixture was stirred under H₂ (1 atm) for 5 h. The catalyst was filtered off and the filter cake washed with pyridine (2 mL). The combined filtrate was then cooled to 0 °C. Trifluoroacetic anhydride (0.4 mL, 2.9 mmol) was then added dropwise and the solution was stirred at rt overnight before being diluted with CH₂Cl₂ (25 mL) and poured into a 1:1 solution of

water and satd ag NaHCO₃ soln (25 mL). The organic layer was washed with water (1×20 mL) containing 5-6 drops of aq ammonia for 10 min and was then dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (1:4 hexanes-EtOAc) to give **GLU-29** (0.086 g, 59% over three steps) as a foam. R_f 0.30 (1:4 hexanes–EtOAc); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.94–7.80 (m, 5 H), 7.52–7.48 (m, 4 H), 7.38–7.19 (m, 26 H), 7.15–7.10 (m, 2 H), 6.44 (br. s, 1 H), 5.87 (d, 1 H, J = 3.9 Hz), 5.17 (d, 1 H, J = 12.0 Hz), 5.13 (d, 1 H, J = 11.3Hz), 5.06 (d, 1 H, J = 11.0 Hz), 4.90 (d, 1 H, J = 11.4 Hz), 4.88 (d, 1 H, J = 3.5 Hz), 4.82 (d, 1 H, J = 3.8 Hz), 4.78–4.67 (m, 4 H), 4.66–4.52 (m, 4 H), 4.52–4.44 (m, 2 H), 4.40 (d, 1 H, J =11.7 Hz), 4.17 (dd, 1 H, J = 9.1, 9.1 Hz), 4.07 (dd, 1 H, J = 9.3, 9.3 Hz), 3.95–3.57 (m, 20 H), 3.54 (dd, 1 H, J = 3.7, 9.5 Hz), 3.47-3.40 (m, 3 H), 3.38-3.32 (m, 3 H), 3.25-3.18 (m, 2 H),1.70–1.50 (m, 4 H), 1.42–1.30 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 157.1 (g, J = 36.9Hz), 138.9, 138.3, 137.9(4), 137.9(0), 137.4, 137.2, 137.1, 135.6, 133.3, 133.1, 128.8, 128.6, 128.5(3), 128.5, 128.4, 128.3(4), 128.3, 128.2, 128.1,(4), 128.1(0), 128.0(3), 128.0, 127.9(3), 127.9, 127.8(0), 127.8, 127.6, 127.2, 126.9, 126.3(2), 126.3, 126.2, 126.1, 121.0, 115.8 (q, J = 10.1)287.7 Hz), 100.0 (C-1), 98.4 (C-1), 96.6 (C-1), 96.1 (C-1), 82.0, 80.5, 80.1, 79.6, 77.8, 77.2, 75.8, 75.7, 75.1, 75.0, 74.8, 74.6(9), 74.6(6), 73.9, 73.7, 73.5, 72.9, 72.7(1), 72.7, 71.5, 71.2, 71.0, 69.8, 68.6, 68.5(2), 68.5, 67.6, 61.8, 61.2(8), 61.2(6), 40.0, 29.7, 29.4, 29.2, 29.0, 28.9, 26.6, 26.0. HRMS (ESI) *m/z* calcd for (M+Na) C₈₇H₁₀₂F₃NO₂₂Na: 1592.6738. Found: 1592.6730.

8-Trifluoroacetamidooctyl α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranoside (48 Trifluoroacetamide). Prepared from GLU-29 (0.086 g, 0.05 mmol) and 20% Pd(OH)₂–C (60 mg) in EtOAc–CH₃OH–THF (18 mL, 1:1:1) as described for the synthesis of 46 Trifluoroacetamide to afford 48 Trifluoroacetamide (0.042 g, 86%) as a foam. R_f 0.1 (7:3 CH₂Cl₂–CH₃OH; ¹H NMR (500 MHz, D₂O, δ_H) 5.37–5.32 (m, 2 H, 2 × H-1α), 4.95 (d, 1 H, *J* = 3.7 Hz, H-1α), 4.89 (d, 1 H, *J* = 3.9 Hz, H-1α), 4.00–3.45 (m, 26 H), 3.41 (dd, 1 H, *J* = 9.5, 9.5 Hz), 3.30 (dd, 1 H, *J* = 7.0, 7.0 Hz), 1.70–1.52 (m, 4 H), 1.40–1.28 (m, 8 H); ¹³C NMR (125 MHz, D₂O, δ_C) 158.7 (q, *J* = 36.6 Hz), 116.0 (q, *J* = 285.5 Hz, 100.1 (C-1), 99.8 (C-1), 98.1 (C-1), 98.0 (C-1), 77.6, 77.5, 73.6, 73.3, 73.2, 73.1, 71.8(4), 71.8, 71.6, 71.5, 71.4, 71.3, 71.2, 70.3, 69.6, 69.4, 68.5, 66.0, 60.6, 60.5(1), 60.5, 39.8, 28.6, 28.4, 28.2, 27.7, 25.8, 25.3. HRMS (ESI) *m*/*z* calcd for (M+Na) C₃₄H₅₈F₃NO₂₂Na: 912.3295. Found: 912.3293.

41. Synthesis of 49

Scheme S54. Synthesis of **49 Trifluoroacetamide**. a) PivCl, pyridine, then I₂, pyridine, water, 69%; b) H₂, Pd(OH)₂-C, EtOH-CH₂Cl₂, 90%.

8-Trifluoroacetamidooctyl D-1,2,4,5,6-Penta-*O*-benzyl-*myo*-inositol-3-phosphate- $(3\rightarrow 5)$ -2,3-di-*O*-benzyl- β -D-arabinofuranosyl- $(1\rightarrow 2)$ -3,5-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-arabinofuranosyl- $(1\rightarrow 5)$ -2,3-di-*O*-benzyl- α -D-

arabinofuranoside (LAM-160) A mixture of **LAM-159**⁴⁰ (29.2 mg, 0.04 mmol), **LAM-12** (65.7 mg, 0.04 mmol) and powdered 4Å molecular sieves was dissolved in pyridine (2 mL) and stirred at rt for 0.5 h before pivaloyl chloride (26 μ L, 0.22 mmol) was added. After stirring at rt for 2 h, a solution of I₂ (23mg, 0.09 mmol) in 95% aqueous pyridine (1 mL) was added and the reaction mixture was stirred for 0.5 h. The reaction mixture was then filtered through Celite, the filtrate was concentrated and the resulting residue was redissolved in CH₂Cl₂. After washing with a satd aq soln of Na₂S₂O₃, the organic layer was dried (Na₂SO₄), filtered and the filtrate was concentrated. The crude residue was purified by chromatography (50:1 CH₂Cl₂–CH₃OH) to afford LAM-160 (64.5 mg, 69%) as colorless film. [α]_D = +17.1 (*c* 0.4, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ _H) 7.55–6.65 (m, 65 H), 5.24–3.38 (m, 60 H), 3.22 (t, *J* = 7.2 Hz, 2 H), 1.65–

1.41 (m, 4 H), 1.36–1.18 (m, 8 H); ¹³C NMR (126 MHz, CD₃OD, δ_{C}) 138.9, 138.6, 138.4, 138.2, 137.9, 137.8, 137.8, 137.5, 137.4, 128.8, 128.8, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.6, 127.5, 127.3, 127.2 (78 C), 106.4 (C-1), 106.1 (C-1), 106.0 (C-1), 101.1 (C-1), 88.4, 88.0, 86.0, 84.4, 84.3, 83.3, 83.3, 83.1, 83.0, 81.4, 81.4, 80.5, 80.2, 77.0, 76.9, 75.7, 75.6, 74.9, 73.1, 72.3, 72.2, 72.2, 72.0, 71.9, 71.8, 70.0, 67.6, 65.9, 65.3, 39.8, 29.3, 29.2, 29.0, 28.6, 26.6, 26.0. ³¹P NMR (162 MHz, CDCl₃) δ 1.76. HRMS (ESI) *m*/*z* calcd for (M–H) C₁₂₇H₁₃₈F₃NO₂₆P: 2180.9202. Found: 2180.9231.

8-Trifluoroacetamidooctyl D-*myo*-inositol-3-phosphate- $(3 \rightarrow 5)$ - β -D-

arabinofuranosyl-(1→2)-α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl-(1→5)-α-Darabinofuranoside (49 Trifluoroacetamide). A solution of LAM-160 (16 mg, 0.007 mmol), Pd(OH)₂–C in EtOH–CH₂Cl₂ (1.2 mL, 5:1) was stirred under H₂ (1 atm) for 48 h. The mixture was filtered through Celite and the filtrate was concentrated to afford 49 Trifluoroacetamide (6.7 mg, 90%) as a colorless film. ¹H NMR (700 MHz, CD₃OD, δ_H) 5.06 (s, 1 H, H-1), 4.98 (d, *J* = 4.5 Hz, 1 H, H-1), 4.93 (d, *J* = 1.4 Hz, 1 H, H-1), 4.83 (d, *J* = 1.7 Hz, 1 H, H-1), 4.25–3.58 (m, 22 H), 3.42–3.37 (m, 2 H), 3.25 (t, *J* = 7.2 Hz, 2 H), 1.63–1.49 (m, 4 H), 1.44–1.19 (m, 8 H); ¹³C NMR (176 MHz, CD₃OD, δ_C) 108.1 (C-1), 108.1 (C-1), 106.1 (C-1), 100.5 (C-1), 87.2, 83.5, 82.6, 82.2, 82.1, 81.8, 77.6, 77.4, 77.2, 77.1, 77.1, 75.6, 75.6, 74.8, 74.4, 72.6, 71.9, 71.8, 71.7, 71.4, 71.4, 67.5, 66.7, 61.0, 39.3, 29.2, 28.9, 28.8, 28.4, 26.3, 25.7 (octyl CH₂); ³¹P NMR (162 MHz, CDCl₃) 0.49, 0.35 (diasteromers, 3:1 ratio). HRMS (ESI) *m/z* calcd for (M–H) C₃₆H₆₀F₃NO₂₆P: 1010.3099. Found: 1010.3111.

42. Synthesis of 50

Scheme S55. Synthesis of 50 Azide. a) TBSOTf, CH_2Cl_2 , 40%; b) BzCl, pyridine, 81%; c) $HO(CH_2)_8N_3$, NIS, AgOTf, CH_2Cl_2 , 60%; d) HF–pyridine, THF, pyridine, 87%; e) LAM-50-G, NIS, NIS, AgOTf, CH_2Cl_2 , 91%; f) HF–pyridine, THF, pyridine, 44%; g) LAM-50-D, NIS, NIS, AgOTf, CH_2Cl_2 , 61%; h) *n*-Bu₄NF, CH₃CN, then NaOCH₃, CH₃OH, 70%.

p-Tolyl 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-6-*O*-*t*-butyldiphenylsilyl-1thio- α -D-mannopyranoside (LAM-163). Monosaccharides LAM-161²⁴ (416 mg, 0.84 mmol) and LAM-162²⁶ (422 mg, 0.80 mmol) were stirred with 4Å molecular sieves in CH₂Cl₂ at -78 °C for 1 h and then TBSOTf (0.05 mL, 0.22 mmol) was added and the reaction was stirred while warming to rt over 2 h. The mixture was neutralized by addition of Et₃N, filtered through Celite and the filtrate was concentrated. The crude residue was purified by chromatography (2:1 hexanes–EtOAc) to afford **LAM-163** (254.8 mg, 40%) as a white foam: ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.83–7.64 (m, 4 H), 7.54–7.19 (m, 8 H), 7.04 (d, 2 H, *J* = 7.9 Hz), 5.45–5.34 (m, 3 H), 5.27 (d, 1 H, *J* = 1.7 Hz, H-1), 5.26 (app t, 1 H, *J* = 9.8 Hz), 4.35–4.12 (m, 5 H), 4.11 (app dt, 1 H, *J* = 9.4, 2.8 Hz), 3.99–3.86 (m, 3 H), 2.88 (d, 1 H, *J* = 2.7 Hz), 2.51 (d, 1 H, *J* = 5.3 Hz), 2.31 (s, 3 H), 2.18 (s, 3 H), 2.15 (s, 3 H), 2.07 (s, 3 H), 2.02 (s, 3 H), 1.08 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃, $\delta_{\rm C}$) 170.7, 170.0, 170.0, 169.8, 137.8, 135.7, 135.6, 133.0, 132.8, 132.1, 130.0, 129.9, 129.9, 127.8, 127.8, 99.1 (¹*J*_{C-1,H-1} = 176.7 Hz, C-1), 88.3 (¹*J*_{C-1,H-1} = 170.4 Hz C-1), 79.7, 72.3, 71.7, 69.4, 69.1, 68.7, 66.4, 64.6, 63.0, 26.9, 21.1, 20.9, 20.8, 20.7, 20.7, 19.2. HRMS (ESI) *m/z* calcd for (M+Na): C₄₃H₅₄O₁₄SSiNa: 877.2896. Found: 877.2891.

2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-O-benzoyl-6-O-t*p*-Tolyl butyldiphenylsilyl-1-thio-α-D-mannopyranoside (LAM-164). Disaccharide LAM-163 (250 mg, 0.29 mmol) and BzCl (337 µL, 2.9 mmol) were dissolved in pyridine (3 mL) and the mixture was heated at 50 °C overnight before being cooled and concentrated. The resulting residue was purified by chromatography (2.5:1 hexanes-EtOAc) to afford LAM-164 (251.3 mg, 81%) as a white foam: $[\alpha]_D$ +33.7 (c = 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.26–7.93 (m, 6 H), 7.77-7.00 (m, 18 H), 5.95 (app t, 1 H, J = 9.9 Hz), 5.77 (dd, 1 H, J = 3.2, 1.7 Hz), 5.71(d, 1 H, J = 1.5 Hz, H-1), 5.17 (dd, 1 H, J = 9.6, 3.3 Hz), 5.12 (app t, 1 H, J = 9.7 Hz), 5.00 (d, 1 H, J = 1.9 Hz, H-1), 4.95 (dd, 1 H, J = 3.2, 1.9 Hz), 4.54 (ddd, 1 H, J = 10.2, 4.6, 2.2 Hz), 4.42 (dd, 1 H, J = 9.7, 3.2 Hz), 4.20 (dd, 1 H, J = 11.9, 6.0 Hz), 4.13 (ddd, 1 H, J = 9.2, 6.2, 1.9 Hz),4.01 (dd, 1 H, J = 12.0, 1.9 Hz), 3.90 (dd, 1 H, J = 11.6, 4.5 Hz), 3.82 (dd, 1 H, J = 11.7, 2.2 Hz), 2.34 (s, 3 H), 2.19 (s, 3 H), 1.96 (s, 3 H), 1.89 (s, 3 H), 1.87 (s, 3 H), 1.01 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃, δ_C) 170.8, 169.8, 169.2, 169.1, 165.9, 164.9, 138.1, 135.7, 135.5, 133.7, 133.6, 133.2, 133.1, 132.9, 132.2, 130.2, 130.1, 130.0, 129.9, 129.6, 129.5, 129.5, 129.3, 129.2, 128.6, 128.5, 128.4, 127.6, 127.5, 99.4 (C-1), 86.4 (C-1), 76.2, 73.5, 72.7, 69.4, 69.3, 68.5, 68.3, 66.1, 62.6, 62.5, 26.6, 21.2, 20.9, 20.7, 20.5, 20.5, 19.2. HRMS (ESI) m/z calcd for (M+Na): C₅₇H₆₂O₁₆SSiNa: 1085.3420. Found: 1085.3410.

8-Azidooctyl 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl-6-*O*-t-butyldiphenylsilyl- α -D-mannopyranoside (LAM-165). A mixture of thioglycoside LAM-

164 (115 mg, 0.11 mmol), 8-azidooctanol (185 mg, 1.10 mmol) and powdered 4Å molecular sieves were dissolved in CH₂Cl₂ (2.5 mL) and stirred at rt for 1 h. Then N-iodosuccinimide (15.0 mg, 0.06 mmol) and silver triflate (2.0 mg, 0.01 mmol) were added. After stirring at rt for 3 h, Et₃N (0.2 mL) was added and the reaction mixture was filtered through Celite. The filtrate was concentrated and the resulting crude residue was purified by chromatography (2.5:1 hexane-EtOAc) to afford LAM-165 (71.8 mg, 60%) as a pale yellow syrup. $[\alpha]_D = -11.0$ (c 0.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃, $\delta_{\rm H}$) 8.17 (dd, 2 H, J = 8.3, 1.2 Hz), 7.98 (dd, 2 H, J = 8.3, 1.2 Hz), 7.71–7.15 (m, 16 H), 5.80 (app t, 1 H, J = 10.0 Hz), 5.49 (dd, 1 H, J = 3.3, 1.8 Hz), 5.19–5.08 (m, 2 H'), 5.07 (d, 1 H, J = 1.6 Hz, H-1), 4.98 (d, 1 H, J = 1.7 Hz, H-1), 4.91 (dd, 1 H, J = 2.8, 2.0 Hz), 4.44 (dd, 1 H, J = 9.8, 3.3 Hz), 4.20 (dd, 1 H, J = 12.2, 5.4 Hz, 4.12–4.07 (m, 1 H), 4.02-3.94 (m, 2 H, H-5), 3.88 (dd, 1 H, J = 11.5, 5.3 Hz, H-6a), 3.81 (dd, 1 H, J = 11.5, 2.1 Hz), 3.78 (dt, 1 H, J = 9.7, 5.7 Hz), 3.51 (dt, 1 H, J = 9.8, 6.7 Hz), 3.28 (t, 2 H, J = 7.0 Hz), 2.12 (s, 3 H), 1.94 (s, 3 H), 1.89 (s, 3 H), 1.86 (s, 3 H), 1.70-1.58 (m, 4 H), 1.46-1.30 (m, 8 H), 1.04 (s, 9 H); ¹³C NMR (151 MHz, CDCl₃, δ_C) 170.6, 169.7, 169.2, 169.0, 166.0, 165.0, 135.6, 135.6, 133.5, 133.2, 133.1, 133.1, 130.0, 129.9, 129.5, 129.4, 129.3, 128.6, 128.3, 127.5, 99.4 (¹J_{C-1.H-1} = 173.6 Hz, C-1), 97.1 (${}^{1}J_{C-1,H-1}$ = 171.9 Hz, C-1), 76.3, 72.1, 71.6, 69.5, 69.2, 68.5, 68.4, 68.1, 66.0, 63.0, 62.2, 51.5, 29.4, 29.3, 29.1, 28.8, 26.7, 26.1, 20.7, 20.6, 20.5, 19.2. HRMS (ESI) m/z calcd for (M+Na): C₅₈H₇₁N₃O₁₇SiNa: 1132.4445. Found: 1132.4436.

8-Azidooctyl 2,3,4,6-tetra-*O*-acetyl-α-D-mannopyranosyl-(1→3)-2,4-di-*O*-benzoyl-α-D-mannopyranoside (LAM-166). Disaccharide LAM-165 (30 mg, 0.03 mmol) was dissolved in THF–pyridine (4:1, 1.5 mL) and cooled to 0 °C before 70% HF · pyridine (50 µL) was added. The solution was stirred overnight while warming to rt and then another portion of 70% HF · pyridine (25 µL) was added. After stirring for another 24 h, the mixture was concentrated, the residue was dissolved in CH₂Cl₂ and washed with a satd aq NaHCO₃ soln. The organic layer was concentrated and the resulting residue was purified by chromatography (1.7:1 hexane–EtOAc) to afford LAM-166 (120.4 mg, 87%) as white foam: $[\alpha]_D$ –26.4 (c = 0.1, CHCl₃); ¹H NMR (498 MHz, CDCl₃, δ_H) 8.17–8.05 (m, 4 H), 7.68–7.43 (m, 6 H), 5.63 (app t, 1 H, J = 10.0 Hz), 5.49 (dd, 1 H, J = 3.3, 1.8 Hz), 5.19–5.11 (m, 2 H), 5.10 (d, 1 H, J = 1.7 Hz, H-1), 5.08 (d, 1 H, J = 1.5 Hz, H-1), 4.93 (dd, 1 H, J = 2.8, 2.0 Hz), 4.53 (dd, 1 H, J = 9.8, 3.4 Hz), 4.22 (dd, 1 H, J = 12.2, 5.5 Hz), 4.07 (ddd, 1 H, J = 9.3, 5.4, 1.8 Hz), 4.01 (dd, 1 H, J = 12.2, 2.2 Hz), 3.89 (app dt, 1 H, J = 10.2, 3.0 Hz), 3.81–3.69 (m, 3 H), 3.52 (dt, 1 H, J = 9.7, 6.6 Hz), 3.28 (t, 2 H, J = 6.9 Hz), 2.67 (t, 1 H, J = 7.0 Hz), 2.13 (s, 3 H), 1.93 (s, 3 H), 1.93 (s, 3 H), 1.85 (s, 3 H), 1.71–1.56 (m, 4 H), 1.46–1.31 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) δ 170.6, 169.7, 169.3, 169.1, 166.4, 166.0, 133.7, 133.6, 130.0, 130.0, 129.2, 128.8, 128.7, 128.5, 99.6 (C-1), 97.4 (C-1), 75.8, 72.0, 71.0, 69.4, 69.3, 69.0, 68.4, 68.3, 66.0, 62.2, 61.4, 51.4, 29.4, 29.3, 29.0, 28.8, 26.7, 26.0, 20.7, 20.6, 20.5, 20.5. HRMS (ESI) *m/z* calcd for (M+Na): C₄₂H₅₃O₁₇Na: 894.3267. Found: 894.3260.

8-Azidooctyl 2,3,4-tri-*O*-benzoyl-6-*O*-*t*-butyldiphenylsilyl-α-D-mannopyranosyl-(1→6)-[2,3,4,6-tetra-*O*-acetyl-α-D-mannopyranosyl-(1→3)]-2,4-di-*O*-benzoyl-α-D-

mannopyranoside (LAM-168). A mixture of LAM-167³ (21 mg, 0.026 mmol), LAM-166 (20 mg, 0.023 mmol) and powdered 4Å molecular sieves were dissolved in CH₂Cl₂ (1.5 mL) and stirred at rt for 1 h. Then N-iodosuccinimide (10.0 mg, 0.04 mmol) and silver trifluoromethanesulfonate (1.5 mg, 0.006 mmol) were added. After stirring at rt for 2 h, Et₃N (0.2 mL) was added and the reaction mixture was filtered through Celite. The filtrate was concentrated and the resulting crude residue was purified by chromatography (2:1 hexane-EtOAc) to afford LAM-168 (33.2 mg, 91%) as a colorless oil: $[\alpha]_D$ –43.3 (c = 0.1, CHCl₃); ¹H NMR (498 MHz, CDCl₃, $\delta_{\rm H}$) δ 8.16 (dd, 2 H, J = 8.3, 1.2 Hz), 8.11 (dd, 2 H, J = 8.3, 1.2 Hz), 8.07 (dd, 2 H, J = 8.3, 1.2 Hz), 7.94 (dd, 2 H, J = 8.3, 1.2 Hz), 7.87 (dd, 2 H, J = 8.3, 1.2 Hz), 7.67-7.22 (m, 23 H), 7.12 (app t, 2 H, J = 7.6 Hz), 6.19 (app t, 1 H, J = 10.2 Hz), 5.84 (dd, 1 H, J= 10.2, 3.3 Hz), 5.71 (app t, 1 H, J = 10.0 Hz), 5.68 (dd, 1 H, J = 3.2, 1.6 Hz), 5.53 (dd, 1 H, J = 3.4, 1.7 Hz), 5.17–5.12 (m, 2 H), 5.11 (d, 1 H, J = 1.6 Hz, H-1), 5.08 (d, 1 H, J = 1.4 Hz, H-1), 5.05 (d, 1 H, J = 1.7 Hz, H-1), 4.93 (dd, 1 H, J = 2.9, 1.9 Hz), 4.52 (dd, 1 H, J = 9.7, 3.4 Hz), 4.29–4.17 (m, 3 H), 4.10 (ddd, 1 H, J = 9.5, 5.4, 2.2 Hz), 4.04 (dd, 1 H, J = 10.7, 7.0 Hz), 4.01 (dd, 1 H, J = 12.2, 2.1 Hz), 3.92 (dt, 1 H, J = 9.6, 6.8 Hz), 3.78 (dd, 1 H, J = 11.6, 3.7 Hz), 3.74(dd, 1 H, J = 11.5, 2.0 Hz), 3.69 (dd, 1 H, J = 10.6, 1.9 Hz), 3.61 (dt, 1 H, J = 9.9, 6.6 Hz), 3.16 (t, 2 H, J = 7.0 Hz), 2.14 (s, 3 H), 1.94 (s, 3 H), 1.90 (s, 3 H), 1.86 (s, 3 H), 1.80-1.22 (m, 12 H),1.01 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃, δ_C) 170.6, 169.7, 169.2, 169.0, 166.2, 165.5, 165.4, 165.3, 165.2, 135.7, 135.5, 133.5, 133.4, 133.3, 133.1, 133.0, 132.9, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.5, 128.4, 128.3, 127.6, 127.5, 99.6 (C-1), 97.3 (C-1), 97.3 (C-1), 76.1, 72.1, 71.3, 70.7, 70.6, 69.7, 69.4, 69.3, 68.9, 68.4, 68.4, 66.7, 66.4, 66.1, 62.3, 62.3, 51.4, 29.4, 29.4, 29.2, 28.8, 26.7, 26.6), 26.1, 20.7, 20.6, 20.5, 20.5, 19.1. HRMS (ESI) m/z calcd for (M+Na) C₈₅H₉₃N₃O₂₅SiNa: 1606.5760. Found: 1606.5740.

8-Azidooctyl 2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -[2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$]-2,4-di-*O*-benzoyl- α -D-mannopyranoside (LAM-169).

Trisaccharide LAM-168 (32 mg, 0.02 mmol) was dissolved in THF-pyridine (4:1, 1 mL) and cooled to 0 °C before 70% HF pyridine (50 µL) was added and the solution was stirred for 3 d while warming to rt. At this point, another portion of HF pyridine (30 µL) was added and the reaction was stirred for 24 h before being concentrated. The mixture was dissolved in CH₂Cl₂, washed with a satd aq NaHCO₃ soln and the organic layer was concentrated and purified by chromatography (1.7:1 hexane-EtOAc) to afford LAM-169 (12 mg, 44%) as a colorless foam: $[\alpha]_{\rm D}$ -36.8 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) δ 8.25–8.18 (m, 2 H), 8.13–7.98 (m, 6 H), 7.85 (d, 2 H, J = 7.3 Hz), 7.67–7.27 (m, 15 H), 6.01 (dd, 1 H, J = 10.1, 3.3 Hz), 5.85 (app t, 1 H, J = 10.1 Hz), 5.77 (app t, 1 H, J = 10.0 Hz), 5.69 (dd, 1 H, J = 3.1, 1.6 Hz), 5.56 (dd, 1 H, J = 3.0, 1.6 Hz, 5.19-5.15 (m, 2 H), 5.14 (d, 1 H, J = 1.4 Hz, H-1), 5.11 (d, 1 H, J = 1.3 Hz,H-1), 5.07 (d, 1 H, J = 1.3 Hz, H-1), 4.95 (dd, 1 H, J = 2.9, 2.0 Hz), 4.53 (dd, 1 H, J = 9.7, 3.3 Hz), 4.29-4.20 (m, 2 H), 4.16-4.09 (m, 2 H), 4.06 (dd, 1 H, J = 9.2, 4.8 Hz), 4.03 (dd, 1 H, J =11.9, 2.1 Hz), 3.92 (dt, 1 H, J = 9.6, 6.9 Hz), 3.82–3.68 (m, 2 H, H-6b), 3.67–3.58 (m, 2 H), 3.23 (t, 2 H, J = 7.0 Hz), 2.55 (br s, 1 H), 2.16 (s, 3 H), 1.96 (s, 3 H), 1.91 (s, 3 H), 1.88 (s, 3 H), 1.82–1.24 (m, 12 H); ¹³C NMR (126 MHz, CDCl₃, δ_C) δ 170.6, 169.7, 169.2, 169.1, 166.5, 166.1, 165.4, 165.1, 133.6, 133.5, 133.1, 130.1, 129.9, 129.7, 129.3, 128.9, 128.8, 128.6, 128.5, 128.3, 99.6 (C-1), 97.5 (C-1), 97.4 (C-1), 76.0, 72.0, 71.0, 70.5, 69.6, 69.5, 69.4, 69.3, 68.8, 68.5, 68.4, 67.1, 66.9, 66.1, 62.3, 61.1, 51.4, 29.5, 29.4, 29.1, 28.8, 26.7, 26.1, 20.7, 20.6, 20.5, 20.5. HRMS (ESI) *m/z* calcd for (M+Na) C₆₉H₇₅N₃O₂₅Na: 1368.4582. Found: 1368.4564.

8-Azidooctyl 2,3,4,6-tetra-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-benzoyl-6-*O*-*t*-butyldiphenylsilyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzoyl- α -D-

mannopyranosyl- $(1\rightarrow 6)$ -[2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$]-2,4-di-O-

benzoyl-α-D-mannopyranoside (LAM-170). A mixture of **LAM-164** (25 mg, 0.026 mmol), **LAM-169** (21.4 mg, 0.016 mmol) and powdered 4Å molecular sieves were dissolved in CH₂Cl₂ (2.7 mL) and stirred at rt for 0.5 h. Then *N*-iodosuccinimide (9.8 mg, 0.04 mmol) and silver triflate (2.2 mg, 0.008 mmol) were added. After stirring at rt overnight, Et₃N (0.2 mL) was added and the reaction mixture was filtered through Celite. The filtrate was concentrated and the resulting residue was purified by chromatography (1:1 hexane–EtOAc) to afford **LAM-170** (25.8 mg, 61%) as a colorless film: $[\alpha]_D = -15.0$ (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) δ

8.27-7.82 (m, 14 H), 7.68-7.09 (m, 31 H), 6.10 (app t, 1 H, J = 10.2 Hz), 5.96 (app t, 1 H, J =10.0 Hz), 5.89 (dd, 1 H, J = 10.2, 3.3 Hz), 5.82 (app t, 1 H, J = 10.0 Hz), 5.75 (dd, 1 H, J = 3.1, 1.4 Hz), 5.61–5.53 (m, 2 H), 5.22–5.13 (m, 4 H), 5.10–5.12 (m, $2 \times H-1$), 5.07 (d, 1 H, J = 1.7Hz, H-1), 5.05 (d, 1 H, J = 1.5 Hz, H-1), 5.03–4.98 (m, 2 H), 4.95 (dd, 1 H, J = 2.9, 1.9 Hz), 4.55 (dd, 1 H, J = 9.8, 3.3 Hz), 4.49 (dd, 1 H, J = 9.8, 3.1 Hz), 4.32 (br d, 1 H, J = 10.4 Hz), 4.294.21 (m, 2 H), 4.15–4.10 (m, 1 H), 4.10–4.00 (m, 4 H), 3.96-3.88 (m, 2 H), 3.85 (dd, 1 H, J =11.5, 3.4 Hz), 3.81–3.71 (m, 2 H), 3.66–3.56 (m, 2 H), 3.53 (dd, 1 H, J = 11.7, 3.7 Hz), 3.43 (dd, 1 H, J = 11.9, 1.4 Hz), 3.20 (t, 2 H, J = 7.0 Hz), 2.16 (s, 3 H), 2.02 (s, 3 H), 1.96 (s, 3 H), 1.94 (s, 3 H), 1.92 (s, 3 H), 1.91 (s, 3 H), 1.88 (s, 3 H), 1.87 (s, 3 H), 1.81–1.25 (m, 12 H), 0.95 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃, δ_C) δ 177.0, 170.6, 170.5, 169.8, 169.7, 169.2, 169.1, 169.0, 166.2, 165.7, 165.4, 165.4, 165.2, 165.2, 164., 135.6, 135.5, 133.6, 133.5, 133.3, 133.0, 130.1, 130.0, 129.9, 129.8, 129.7, 129.7, 129.4, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.6, 127.5, 127.4, 99.6 (${}^{1}J_{C-1,H-1} = 170.4 \text{ Hz}, \text{ C-1}$), 99.7 (${}^{1}J_{C-1,H-1} = 172.3 \text{ Hz}, \text{ C-1}$), 97.9 $({}^{1}J_{C-1 H-1} = 173.2 \text{ Hz}, C-1), 97.5 ({}^{1}J_{C-1 H-1} = 173.0 \text{ Hz}, C-1), 97.4 ({}^{1}J_{C-1 H-1} = 173.0 \text{ Hz}, C-1), 77.3,$ 76.1, 72.1, 71.8, 71.3, 70.5, 70.5, 69.6, 69.5, 69.4, 69.4, 69.3, 69.1, 68.7, 68.7, 68.5, 68.4, 67.4, 66.9, 66.27, 66.08, 65.94, 65.5, 62.3, 62.0, 62.0, 51.4, 29.4, 29.4, 29.1, 28.8, 26.7, 26.6), 26.1, 20.7, 20.6, 20.6, 20.5, 19.1. HRMS (ESI) *m/z* calcd for (M+Na) C₁₁₉H₁₂₉N₃O₄₁SiNa: 2306.7763. Found: 2306.7737.

8-Azidooctyl α-D-mannopyranosyl-(1→3)-α-D-mannopyranosyl-(1→6)-α-Dmannopyranosyl-(1→6)-[α-D-mannopyranosyl-(1→3)]-α-D-mannopyranoside (50 Azide). To a solution of LAM-170 (13 mg, 0.005 mmol) in CH₃CN was added *n*-Bu₄NF (1M in THF, 30 μ L). The resulting solution was stirred a rt for 3 h. Another portion of 1M *n*-Bu₄NF in THF (20 μ L) was added and the reaction mixture was heated at 40 °C for 3 h until all starting material disappeared as determined by TLC. The solution was then concentrated and co-evaporated with toluene. The crude product was dissolved in CH₃OH and to this solution was added 3M methanolic sodium methoxide until the pH of the solution was 8-9. After stirring at rt for 72 h, the mixture was neutralized by the addition of Amberlite IR120 H⁺ ion exchange resin, filtered and then concentrated. The crude product was dissolved in H₂O and washed with CH₂Cl₂. The aqueous layer was loaded onto a Sep-Pak C₁₈ cartridge and the product was eluted with 50% CH₃OH in H₂O to afford **50 Azide** (6.5 mg, 70%) as a pale yellow foam. ¹H NMR (600 MHz, D₂O, δ_H) 5.09 (s, 1 H, H-1), 5.07 (s, 1 H, H-1), 4.86 (s, 1 H, H-1), 4.84 (s, 1 H, H-1), 4.79 (s, 1 H, H-1), 4.10–4.01 (m, 4 H), 3.97–3.59 (m, 28 H), 3.52 (dt, 1 H, J = 10.1, 5.9 Hz), 3.28 (t, 2 H, J = 7.0 Hz), 1.70–1.50 (m, 4 H), 1.45–1.23 (m, 8 H); ¹³C NMR (126 MHz, D₂O, δ_{C}) 102.4 (C-1), 102.3 (C-1), 99.9(C-1), 99.4(C-1), 99.2 (C-1), 78.7, 78.3, 73.4, 72.9, 71.1, 70.9, 70.6, 70.4, 70.4, 70.1, 70.0, 69.8, 69.6, 68.1, 66.8, 66.7, 66.2, 65.9, 65.7, 65.4, 61.1, 60.9, 51.3, 28.5, 28.3, 28.2, 28.0, 25.9, 25.3. HRMS (ESI) *m*/*z* calcd for (M+Na) C₃₈H₆₇N₃O₂₆Na: 1004.3905. Found: 1004.3901.

43. Synthesis of 51

Scheme S56. Synthesis of 51 Squaramide. a) PGL-71, NIS, AgOTf, CH₂Cl₂, 76%; b) HBF₄, CH₂Cl₂, CH₃OH, 86%; c) PGL-15, NIS, AgOTf, CH₂Cl₂, 42%; d) NaOCH₃, CH₃OH, CH₂Cl₂, 77%; e) H₂, Pd(OH)₂– C, CH₂Cl₂, CH₃OH; then diethyl squarate, CH₃CH₂OH, 61%.

p-(8-Azidooctylphenyl) 3-*O*-acetyl-2,4-di-*O*-benzyl-α-L-rhamnopyranosyl-(1→3)-2-*O*-benzoyl-4-*O*-benzyl-α-L-rhamnopyranoside (PGL-72). A solution of PGL-10 (0.160 g, 0.27 mmol) and PGL-71⁴¹ (0.152 g, 0.30 mmol) in CH₂Cl₂ (3.5 mL) was stirred at rt for 1 h. The solution was then cooled to -20 °C and 30 min *N*-iodosuccinimide (0.092 g, 0.41 mmol) and silver triflate (0.012 g, 0.054 mmol) were added. The reaction mixture was stirred at -20 °C for 30 min, Et₃N was added and the solution was filtered and concentrated. The resulting residue was purified by chromatography (5:1 hexanes–EtOAc) to give PGL-72 (0.20 g, 76%) as an oil. ¹H NMR (500 MHz, CDCl₃, δ_H) 8.14 (d, 2 H, *J* = 7.0 Hz), 8.05 (d, 2 H, *J* = 7.0 Hz), 7.36–7.61 (m, 2 H), 7.55–7.48 (m, 4 H), 7.45 (d, 2 H, *J* = 8.0 Hz), 7.33 (app t, 2 H, *J* = 7.0 Hz), 7.32–7.24 (m, 8 H), 7.14 (dd, 2 H, *J* = 8.0, 2.5 Hz), 7.08 (d, 2 H, *J* = 10.0 Hz), 6.97 (d, 2 H, *J* = 11.5 Hz), 5.66 (s, 1 H), 5.61 (s, 1 H), 5.58 (s, 1 H), 5.42 (dd, 1 H, *J* = 10.0, 3.5 Hz), 5.25 (s, 1 H), 5.05 (d, 1 H, J = 11.0 Hz), 4.76 (d, 1 H, J = 9.5 Hz), 4.58 (q, 2 H, J = 11.5 Hz), 4.50 (dd, 1 H, J = 9.0, 3.5 Hz), 3.95–3.99 (m, 2 H), 3.75 (t, 1 H, J = 9.5 Hz), 3.59 (t, 1 H, J = 9.5 Hz), 3.27 (t, 2 H, J = 7.0 Hz), 2.55 (app t, 2 H, J = 7.5 Hz), 1.93 (s, 3 H), 1.36–1.27 (m, 12 H), 1.23 (d, 3 H, J = 6.0 Hz). HRMS (ESI) *m*/*z* calcd for (M+Na) C₅₆H₆₃N₃O₁₂Na: 992.4304. Found: 992.4287.

p-(8-Azidooctylphenyl) 2,4-di-*O*-benzyl-α-L-rhamnopyranosyl-(1→3)-2-*O*-benzyl-4-*O*-benzyl-α-L-rhamnopyranoside (PGL-73). To a solution of PGL-72 (0.739 g, 0.76 mmol) and fluoroboric acid (4.0 mL) in dry CH₃OH and CH₂Cl₂ (4:1, 20 mL) was stirred at rt for 21 h. A satd aq soln of NaHCO₃ was added carefully, followed by CH₂Cl₂. The layers were separated and the aqueous layer was extracted with additional CH₂Cl₂. The organic layers were combined, washed with satd aq soln of NaHCO₃, water and then dried (Na₂SO₄). The solution was filtered, concentrated and purified by chromatography (3:1 hexanes–EtOAc) to give PGL-73 (0.605 g, 86%) as an oil. ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.12 (d, 2 H, *J* = 8.0 Hz), 8.03 (d, 2 H, *J* = 8.5 Hz), 7.67–7.60 (m, 2 H), 7.55–7.47 (m, 5 H), 7.41 (d, 2 H, *J* = 7.5 Hz), 7.24–7.34 (m, 7 H), 7.08 (d, 2 H, *J* = 8.5 Hz), 6.97 (d, 2 H, *J* = 8.7 Hz), 5.58 (s, 1 H), 5.56 (s, 1 H), 5.28 (s, 1 H), 4.96 (d, 1 H, *J* = 11.7 Hz), 4.74 (d, 1 H, *J* = 11.7 Hz), 4.69 (ABq, 2 H, *J* = 11.7 Hz), 4.51 (dd, 2 H, *J* = 8.5, 6.0 Hz), 4.29 (app t, 1 H, *J* = 5.5 Hz), 3.90–3.99 (m, 2 H), 3.72 (app t, 1 H, *J* = 9.5 Hz), 3.72 app t, 1 H, *J* = 10.7 Hz), 3.27 (app t, 2 H, *J* = 7.5 Hz), 2.55 (app t, 2 H, *J* = 7.5 Hz), 1.50–1.40 (m, 4 H), 1.26–1.36 (m, 15 H). HRMS (ESI) *m/z* calcd for (M+Na) C₅₄H₆₁N₃O₁₁Na: 950.4198. Found: 950.4190.

p-(8-Azidooctylphenyl) 2,3,4-tri-*O*-methyl-α-L-fucopyranosyl-(1→3)-2,4-di-*O*benzyl-α-L-rhamnopyranosyl-(1→3)-2-*O*-benzoyl-4-*O*-benzyl-α-L-rhamnopyranoside (PGL-74). To a solution of compound PGL-73 (0.148 g, 0.16 mmol) and PGL-15²⁹ (0.055 g, 0.18 mmol) was stirred in CH₂Cl₂ (2m L) at rt for 30 min. The solution was stirred at -30 °C for 10 min and then *N*-iodosuccinimide (0.054 g, 0.24 mmol) and silver triflate (0.007 g, 0.032 mmol) were added. After 15 min, Et₃N was added and the solution was filtered and concentrated. The resulting residue was purified by (3:1 hexanes–EtOAc) to give PGL-74 (0.075 g, 42%) as an oil. $\delta_{\rm H}$) 8.13 (dd, 2 H, *J* = 8.5, 1.5 Hz), 8.08 (dd, 2 H, *J* = 8.0, 1.5 Hz), 7.63 (d, 2 H, *J* = 7.5 Hz), 7.50 (d, 4 H, *J* = 9.5 Hz), 7.46 (d, 2 H, *J* = 7.7 Hz), 7.37 (app t, 2 H, *J* = 8.7 Hz), 7.33–7.24 (m, 4 H), 7.19 (app d, 2 H, *J* = 6.5 Hz), 7.07 (d, 2 H, *J* = 9.7 Hz), 6.96 (d, 2 H, *J* = 9.5 Hz), 5.60 (app s, 1 H), 5.54 (app d, 2 H, *J* = 8.7 Hz), 5.29 (s, 1 H), 5.11 (d, 1 H, *J* = 3.5 Hz), 5.07 (dd, 2 H, *J* = 11.0, 7.5 Hz), 4.72 (d, 1 H, 11.7 Hz), 4.62 (d, 1 H, *J* = 11.5 Hz), 4.50 (dd, 1H, *J* = 9.5, 3.5 Hz), 4.18 (dd, 1 H, J = 9.0, 3.7 Hz), 3.85–3.97 (m, 2 H), 3.73 (app t, 1 H, J = 9.7 Hz), 3.57 (app t, 1H, J = 10.7 Hz), 3.51 (s, 3 H), 3.47 (app qd, 2 H, J = 10.5, 3.5 Hz), 3.40 (s, 3 H), 3.32 (s, 1 H), 3.28, (t, 2 H, J = 7.7 Hz), 3.22 (s, 3 H), 2.54 (t, 2 H, J = 7.5 Hz), 1.50–1.40 (m, 4 H), 1.36–1.27 (m, 12 H), 1.19 (d, 3 H, J = 6.7 Hz), 1.02 (d, 3 H, J = 6.5 Hz). HRMS (ESI) *m/z* calcd for (M+Na) C₆₃H₇₇N₃O₁₅Na: 1138.5247. Found: 1138.5234.

2,3,4-tri-*O*-methyl- α -L-fucopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*Op*-(8-Azidooctylphenyl) benzyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)- 4-O-benzyl- α -L-rhamnopyranoside (PGL-75). To a solution of PGL-74 (0.060 g, 0.05 mmol) was stirred in CH₂Cl₂–CH₃OH (1:1, 1 mL) at rt before a solition of sodium methoxide was added until a pH of 8 was achieved. The mixture was concentrated and the residue was purified by chromatography (5:1 hexanes-EtOAc) to give **PGL-75** (0.04 g, 77%) as an oil. $[\alpha]_D$ –127.9 (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.39-7.24 (m, 16 H), 7.07 (d, 2 H, J = 8.4 Hz), 6.95 (d, 2 H, J = 8.5 Hz), 5.44 (s, 1 H, H-1), 5.27(d, 1 H, J = 3.1 Hz, H-1), 5.16 (s, 1 H, H-1), 5.10 (d, 1 H, J = 11.0 Hz), 4.79 (d, 1 H, J = 10.9 Hz), 4.62 (dd, 2 H, J = 10.9, 6.1 Hz), 4.24–4.14 (m, 2 H), 4.09–3.98 (m, 3 H), 3.92 (app dq, 1 H, J = 9.1, 6.3 Hz), 3.85 (app dq, 1 H, J = 12.6, 6.3 Hz), 3.66–3.60 (m, 2 H), 3.59 (s, 3 H), 3.55– 3.49 (m, 5 H), 3.46 (s, 1H), 3.40 (s, 3 H), 3.25 (app t, 2 H, J = 6.9 Hz), 2.54 (app t, 2 H, J = 7.7 Hz)Hz), 2.31 (s, 1H), 2.27 (s, 1H), 1.58 (dd, 4 H, J = 14.4, 7.2 Hz), 1.37–1.27 (m, 11H), 1.25 (d, 3 H, J = 6.2 Hz), 1.16 (d, 3 H, J = 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.4, 138.7, 138.1, 136.8, 129.5, 128.7, 128.6, 128.1, 128.0, 127.9, 127.8, 116.4, 101.7 (${}^{1}J_{C-1,H-1} = 172$ Hz, C-1), 99.5 (${}^{1}J_{C-1,H-1} = 1171 \text{ Hz}, C-1$), 97.6 (${}^{1}J_{C-1,H-1} = 169 \text{ Hz}, C-1$), 80.8, 80.3, 80.2, 80.0, 79.7, 79.2, 77.8, 75.7, 75.1, 71.7, 71.2, 68.8, 68.4, 67.3, 62.0, 59.7, 58.2, 51.7, 35.3, 31.8, 29.5, 29.3, 29.3, 29.0, 26.9, 18.2, 18.2, 16.8. HRMS (ESI) m/z calcd for (M+Na) C₄₉H₆₉N₃O₁₃Na: 930.4723. Found: 930.4711.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,3,4-tri-*O*-methyl-α-Lfucopyranosyl-(1 \rightarrow 3)-α-L-rhamnopyranosyl-(1 \rightarrow 3)-α-L-rhamnopyranoside (51 Squaramide) Treatment of PGL-75 with H₂ and Pd(OH)₂ and then diethyl squarate and Et₃N as described for the synthesis of 26 Squaramide gave 51 Squaramide (61%, chromatography 4:96 CH₃OH–CH₂Cl₂) as a colorless oil. R_f 0.39 (1:9 CH₃OH–CH₂Cl₂); [α]_D –134.7 (c = 1.3, CHCl₃); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.07 (d, 2 H, J = 8.6 Hz), 6.99–6.94 (m, 2 H), 6.25 (s, 1H), 5.44 (d, 1 H, J = 1.6 Hz, H-1), 5.19 (d, 1 H, J = 1.0 Hz, H-1), 5.14 (d, 1 H, J = 3.1 Hz, H-1), 4.77 (m, 2 H), 4.17 (d, 1 H, J = 1.5 Hz), 4.13 (s, 1H), 4.08 (q, 1 H, J = 6.6 Hz), 4.04 (dd, 1 H, J = 9.4, 3.2 Hz), 3.87 (app dq, 1 H, J = 9.4, 6.2 Hz), 3.82–3.79 (m, 1H), 3.77 (dd, 1 H, J = 9.4, 3.3 Hz), 3.70 (dd, 1 H, J = 9.6, 2.3 Hz), 3.68–3.63 (m, 4 H), 3.59 (s, 3 H), 3.58 (s, 3 H), 3.51 (s, 3 H), 3.47 (d, 1 H, J = 1.1 Hz), 3.40 (m, 1H), 2.60–2.47 (m, 5 H), 1.58 (d, 4 H, J = 5.8 Hz), 1.45 (app t, 3 H, J = 7.1 Hz), 1.34 (d, 3 H, J = 6.2 Hz), 1.30 (s, 8 H), 1.27 (m, 6 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 189.7, 182.8, 177.7, 172.6, 154.5, 136.8, 129.5, 116.5, 102.0 ($^{1}J_{\rm C-1,H-1} = 172$ Hz, C-1), 101.0 ($^{1}J_{\rm C-1,H-1} = 169$ Hz, C-1), 98.1 ($^{1}J_{\rm C-1,H-1} = 172$ Hz, C-1), 83.1, 81.1, 79.4, 79.2, 79.0, 72.2, 71.7, 71.2, 71.0, 69.9, 69.2, 69.0, 67.7, 62.1, 60.4, 57.9, 45.1, 35.3, 31.7, 30.8, 29.5, 29.3, 29.2, 26.5, 17.9, 17.88, 16.9, 16.1. HRMS (ESI) *m*/*z* calcd for (M+Na) C₄₁H₆₃NO₁₆Na: 848.4039. Found: 848.4027.

44. Synthesis of 52

Scheme S57. Synthesis of **52 Azide**. a) PhSTMS, ZnI, ClCH₂CH₂Cl, 95%, b) 8-Azido-octanol, NIS, AgOTf, TfOH, CH₂Cl₂; then CF₃CO₂H, CH₂Cl₂ 48%; c) NaOCH₃, CH₃OH, CH₂Cl₂, 73%.

 $\label{eq:phenyl} Phenyl 2,3,6-tri-O-benzoyl-4-O-acetyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$O$-benzoyl-$\alpha$-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-D-glucopyranosyl-$(1$-4)-$2,3,6-tri-$D$-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$(1$-$4$)-$2,3,6-tri-$D-glucopyranosyl-$

2,3,6-tri-O-benzoyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-1-thio-β-D-

glucopyranoside (**GLU-31**). To a solution of **GLU-30**⁴² (0.29 g, 0.085 mmol) in 1,2dichloroethane (7 mL) was added 4 Å molecular sieves (0.23 g) and the solution was stirred at rt for 30 min. Zinc iodide (0.16 g, 0.5 mmol) was added followed by PhSTMS (0.1 mL, 0.53 mmol) and the mixture was stirred at rt overnight before being diluted with 1,2-dichloroethane (10 mL) and filtered through Celite. The filtrate was washed with a satd aq NaHCO₃ soln (15 mL), water (15 mL), dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (54:46 hexanes–EtOAc) to give **GLU-31** (0.275 g, 95%) as a foam. R_f 0.61 (1:1, hexane–EtOAc); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.30–8.20 (m, 8 H), 8.16–8.12 (m, 2 H), 8.10–8.02 (m, 4 H), 7.90–7.82 (m, 4 H), 7.78–7.06 (m, 92 H), 6.03–5.90 (m, 5 H), 5.86 (dd, 1 H, J = 9.4, 9.4 Hz), 5.77–5.70 (m, 2 H), 5.66–5.61 (m, 4 H), 5.59 (d, 1 H, J = 3.9 Hz), 5.44 (dd, 1 H, J = 9.7, 9.7 Hz), 5.26–5.20 (m, 2 H), 5.14–5.02 (m, 6 H), 5.0 (d, 1 H, J = 9.7 Hz), 4.91 (dd, 2 H, J = 12.1, 12.1 Hz), 4.84–4.70 (m, 3 H), 4.64–4.22 (m, 20 H), 4.21–4.16 (m, 1 H), 4.14–4.08 (m, 1 H), 1.90 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 169.3, 165.8(0), 165.8, 165.6, 165.5(0), 165.5, 165.4, 165.3, 165.1, 164.9, 164.6, 164.5, 133.5, 133.4, 133.3, 133.1, 133.0, 132.9, 132.8, 131.4, 130.2, 130.1, 130.0, 129.9(2), 129.9, 129.8, 129.7(2), 129.7, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.7(3), 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 96.9 (C-1), 96.8(3) (C-1), 96.7 (C-1), 96.6 (C-1), 96.4 (C-1), 85.4, 76.7, 76.2, 73.8, 73.4, 73.3, 73.2, 72.0, 71.9, 71.6, 70.9, 70.8, 70.7(1), 70.7, 70.6, 70.3, 70.2, 70.2 (4), 70.1, 69.9, 69.8, 69.0, 68.2, 63.0, 62.8, 62.4, 62.3, 62.2, 61.8, 20.5. HRMS (ESI) *m/z* calcd for (M+Na₂) C₁₉₇H₁₆₂O₅₇S Na₂:1758.4642. Found: 1758.4671.

 $2,3,6-tri-\textit{O}-benzoyl-\alpha-D-glucopyranosyl-(1\rightarrow 4)-2,3,6-tri-\textit{O}-benzoyl-\beta-D-glucopyranoside$

(GLU-32). 8-Azido-1-octanol (0.017 g, 0.1 mmol) and thioglycoside GLU-31 (0.07 g, 0.02 mmol) were dried under vacuum in the presence of P₂O₅ for 6 h. After drying, 1,2dichloroethane (3.5 mL) was added followed by powdered 4 Å molecular sieves (0.18 g) and the solution was stirred for 30 min. The reaction mixture was then cooled to 0 °C and Niodosuccinimide (0.023 g \times 4 times, 0.1 mmol) and silver triflate (10 mg \times 4 times, 0.08 mmol) were added over 5 h. During this period, 5 μ L of a solution of trifluoromethanesulfonic acid in CH_2Cl_2 (30 µL in 2 mL of CH_2Cl_2 stock solution) was also added five times. When the reaction was complete, Et₃N was added until the pH of the solution was slightly basic (as determined by wet pH paper) and then the mixture was diluted with CH₂Cl₂ (10 mL) and filtered through Celite. The filtrate was washed with a satd ag soln of Na₂S₂O₃ (15 mL), water (15 mL) and brine (15 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated to a syrup that was purified by chromatography (3:2 hexanes-EtOAc) to provide GLU-32 and the corresponding orthoester in an approximately 3.4:1 glycoside–orthoester ratio; R_f 0.37 (3:2 hexane–EtOAc, three runs). This mixture was dissolved in CH₂Cl₂ (6 mL), cooled to 0 °C and trifluoroacetic acid (0.03 mL) was added and the solution was stirred at 0 °C for 3 h. The reaction mixture was poured into a satd aq NaHCO₃ soln (15 mL) and extracted with CH_2Cl_2 (15 mL). The organic layer was washed with water (15 mL), dried (Na₂SO₄), filtered and concentrated to a residue that was purified by chromatography (67:43 hexane-EtOAc) to yield GLU-32 (0.034 g, 48% over two steps) as a foam. ¹H NMR (500 MHz, CDCl₃, δ_H) 8.30-8.18 (m, 8 H), 8.15-8.12 (m, 2 H),
8.08-8.01 (m, 4 H), 7.91-7.82 (m, 4 H), 7.76-7.72 (m, 2 H), 7.70-7.04 (m, 85 H), 6.02-5.86 (m, 8 H), 5.74-5.66 (m, 2 H), 5.65-5.58 (m, 5 H), 5.42 (dd, 1 H, J = 9.7, 9.7 Hz), 5.28 (dd, 1 H, J = 7.5, 9.2 Hz), 5.22 (dd, 1 H, J = 3.9, 10.5 Hz), 5.14–4.96 (m, 6 H), 4.90–4.84 (m, 2 H), 4.82-4.68 (m, 4 H), 4.64-4.34 (m, 13 H), 4.30-4.14 (m, 7 H), 4.09-4.04 (m, 1 H), 3.87 (ddd, 1 H, J = 6.2, 9.7, 12.3 Hz), 3.49 (ddd, 1 H, J = 6.4, 9.5, 13.4 Hz), 3.22 (dd, 1 H, J = 7.0, 7.0 Hz), 1.89 (s, 3 H), 1.56 –1.42 (m, 4 H), 1.27–1.03 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 169.3, 165.9, 165.8(3), 165.7(8), 165.7(6), 165.7(3), 165.7(0), 165.6, 165.5, 165.4(4), 165.4(2), 165.4(0), 165.3, 165.2, 165.0, 164.7, 164.6, (1), 164.6, 164.5(4), 164.5, 133.4, 133.3(3), 133.3(0), 133.3, 133.1, 133.0(0), 133.0, 132.9(3), 132.9, 132.8(6), 132.8, 132.0, 129.9(2), 129.9, 128.7(8), 128.7(6), 129.7(2), 129.7, 129.6(2), 129.6, 129.5(3), 129.5, 129.3, 129.1, 128.8, 128.7(3), 128.7(0), 128.7, 128.6, 128.4(1), 128.4, 128.3(4), 128.3, 128.2(3), 128.2, 128.1(4), 128.1, 128.0(9), 128.0, 127.9, 127.8, 100.6 (C-1), 96.8(8) (C-1), 96.8(5) (C-1), 96.8(2) (C-1), 96.8 (C-1), 96.6(8) (C-1), 96.6(5) (C-1), 96.3 (C-1), 75.1, 73.8, 73.6, 73.4, 73.3(1), 73.3, 73.2, 73.0, 72.4, 71.9(4), 71.8(8), 71.8, 71.6, 70.9(3), 70.9, 70.8(4), 70.8(1), 70.7(9), 70.7(5), 70.7, 70.6, 70.1(7), 70.1(5), 70.1(3), 70.1, 69.9(0), 69.9, 69.0, 68.2, 63.0, 62.8, 62.7, 62.4, 62.3, 62.2, 61.8, 51.4, 29.7, 29.3, 29.0, 28.9, 28.8(0), 28.8, 26.5, 25.7, 20.5. HRMS (ESI) m/z calcd for (M+Na₂)²⁺ C₁₉₉H₁₇₃N₃O₅₈Na₂: 1789.0232. Found: 1789.0245.

 $\label{eq:a-D-glucopyranosyl-(1 \rightarrow 4)-\alpha-D-glucopyranosyl-(1 \rightarrow 4)-\alpha-D-gluco$

glucopyranosyl-(1→4)-β-D-glucopyranoside (52 Azide). To a solution of GLU-32 (0.034 g, 0.01 mmol) in CH₂Cl₂–CH₃OH (7:3, 8 mL) was added 1M methanolic sodium methoxide until the pH of the reaction mixture was 8–9 (as determined by wet pH paper). Additional CH₃OH (12 mL in 2 portions) was added as the reaction progressed to aid solubility of the product as it formed. The reaction mixture was stirred for 24 h, neutralized by the addition of Amberlite IR 120 H+ resin, filtered and then concentrated to give a crude residue that was dried under vacuum for 3 h before purification by C-18 chromatography (1:1 water–CH₃OH) to yield **52 Azide** (9.1 mg, 73%) as a fluffy solid. ¹H NMR (500 MHz, D₂O, $\delta_{\rm H}$) 5.40–5.35 (m, 6 H, 6 × H-1 α), 4.45 (d, 1 H, *J* = 8.1 Hz, H-1β), 3.98–3.54 (m, 42 H), 3.40 (dd, 1 H, *J* = 9.4, 9.4 Hz), 3.34–3.24 (m, 3 H), 1.70–1.55 (m, 4 H), 1.40–1.29 (m, 8 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 102.1 (C-1), 99.8 (C-1), 99.6(9) (C-1), 99.6(5) (C-1), 99.5 (C-1), 77.0, 76.9(3), 76.9, 76.8, 76.3, 74.6, 73.3(8), 73.3(6), 73.1, 72.9, 72.8, 71.8, 71.6, 71.5, 71.3, 71.2, 70.7, 69.4, 60.8, 60.5(2), 60.5, 60.4, 51.3,

28.7, 28.3, 28.2, 28.0, 25.9, 25.0; HRMS (ESI) m/z calcd for $(M+Na)^+ C_{50}H_{87}N_3O_{36}Na$: 1328.4961. Found: 1328.4951.

45. Synthesis of 53

Scheme S58. Synthesis of **53 Squaramide**. a) H₂, Pd(OH)₂–C, CH₂Cl₂, CH₃OH; then NH₃, CH₃OH, Parr apparatus, heat; then diethyl squarate, CH₃CH₂OH, 40%.

4-[8-(2-Ethoxycyclobutene-3,4-dione-1-ylamino)octyl]phenyl 2,6-dideoxy-4-O-Me-α-L-arabino-hexopyranosyl- $(1\rightarrow 3)$ -2-O-methyl- α -L-fucopyranosyl- $(1\rightarrow 3)$ -2-O-methyl- α -Lrhamnopyranosyl- $(1\rightarrow 3)$ -2,4-di-*O*-methyl- α -L-rhamnopyranoside (53 Squaramide). Α suspension of **PGL-60** (50 mg) and 20% Pd(OH)₂-C (50 mg) in 1:1 CH₂Cl₂-CH₃OH (10 mL) was stirred overnight under H_2 (1 atm) at rt. The reaction mixture was filtered and the filtrate was concentrated to give a colorless oil. A solution of the resulting oil in CH₃OH (15 mL) in a Parr apparatus at – 40 °C was bubbled with NH₃ gas for 30 min and sealed. The reaction mixture was stirred at 65 °C for 5 d and concentrated. To the resulting residue in absolute ethanol (4 mL) at rt was added diethyl squarate (67 µL, 455 µmol) and Et₃N (13 µL, 91 µmol). The reaction mixture was stirred at rt for 4 h and concentrated. The resulting residue was purified by chromatography (4:96 CH₃OH–CH₂Cl₂) to yield **53 Squaramide** (18 mg, 40%) as a yellow oil. R_f 0.55 (1:9 CH₃OH–CH₂Cl₂); $[\alpha]_D$ –130.0 (*c* = 1.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 7.08 (d, 2 H, J = 8.6 Hz), 6.97 (d, 2 H, J = 8.6 Hz), 5.46 (d, 1 H, J = 1.6 Hz, H-1), 5.17 (s, 1 H, H-1), 5.07–5.08 (m, 2 H, H-1, H-1), 4.77 (m, 2 H), 4.18 (m, 2 H), 4.12 (dd, 1 H, J = 9.6, 3.3 Hz), 4.01–3.94 (m, 1H), 3.89–3.85 (m, 2 H), 3.83 (m, 1H), 3.77–3.70 (m, 2 H), 3.70–3.66 (m, 2 H), 3.65–3.61 (m, 2 H), 3.60 - 3.42 (m, 17 H), 3.23 (app t, 1 H, J = 9.6 Hz), 2.74 (app t, 1 H, J = 9.2 Hz), 2.54 (app t, 2 H, J = 7.6 Hz), 2.34 (m, 2 H), 2.18–2.09 (m, 2 H), 1.78 (app td, 1 H, J = 13.1, 3.8 Hz), 1.58 (s,

4 H), 1.45 (app t, 3 H, J = 7.1 Hz), 1.35 (d, 3 H, J = 6.2 Hz), 1.33–1.25 (m, 17 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 154.7, 136.8, 129.5, 116.4, 101.0 (${}^{1}J_{\rm C-1,H-1} = 171$ Hz, C-1), 99.8 (${}^{1}J_{\rm C-1,H-1} = 171$ Hz, C-1), 95.3 (${}^{1}J_{\rm C-1,H-1} = 171$ Hz, C-1), 93.0 (${}^{1}J_{\rm C-1,H-1} = 171$ Hz, C-1), 88.1, 83.6, 82.5, 80.8, 80.6, 79.0, 77.8, 73.0, 71.9, 69.9, 69.2, 69.0, 68.8, 68.6, 67.6, 66.4, 61.2, 61.0, 60.3, 59.2, 59.0, 45.1, 37.6, 35.3, 31.8, 30.8, 29.5, 29.3, 29.3, 26.5, 18.3, 18.1, 18.06, 16.7, 16.1. HRMS (ESI) *m/z* calcd for (M+Na) C₄₉H₇₇NO₁₉Na: 1006.4982. Found: 1006.4973.

46. Synthesis of 60 and 61

Scheme S59. Synthesis of **60** and **61**. a) CCl₃CN, DBU, CH₂Cl₂; then **GPL-8**, TMSOTf, CH₂Cl₂, 77%; b) H₂, Pd(OH)₂–C, CH₃OH, 56%; c) CCl₃CN, DBU, CH₂Cl₂; then **GPL-18**, TMSOTf, CH₂Cl₂, 89%; d) NaOCH₃, CH₃OH, CH₂Cl₂, 80%.; e) H₂, Pd(OH)₂–C, EtOAc, THF, CH₃OH, quant.; f) CCl₃CN, DBU, CH₂Cl₂ then **GPL-8**, TMSOTf, CH₂Cl₂, 36%; g) H₂, Pd(OH)₂–C, CH₃OH, 38%; h) CCl₃CN, DBU, CH₂Cl₂ then **GPL-18**, TMSOTf, CH₂Cl₂, 50%; i) NaOCH₃, CH₃OH, CH₂Cl₂, 89%.; j) H₂, Pd(OH)₂–C, EtOAc, THF, CH₃OH, quant.

Benzvl 2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -3,4-di-O-methyl- α -Lrhamnopyranoside (GPL-22). Reducing sugar GPL-21⁴³ (400 mg, 1.38 mmol) was dissolved in CH₂Cl₂ and trichloroacetonitrile (275 µL, 2.76 mmol) and DBU (43 µL, 0.28 mmol) were added. The solution was stirred at rt for 1 h and then concentrated. The resulting oil was purified chromatography (1:1 hexanes–EtOAc) to give the bv corresponding glycosyl trichloroacetimidate (465 mg, 78%) as a colorless syrup, which was used immediately in the glycosylation; $R_f 0.71$ (1:1 hexanes-EtOAc). The trichloroacetimidate derived from GPL-21 (380 mg, 0.87 mmol) and GPL-8 (Scheme S48, 270 mg, 1.05 mmol) were dissolved in dry CH_2Cl_2 (6 mL) containing 4Å molecular sieves and the solution was cooled to -20 °C. To this mixture, a 1.1 M solution of TMSOTf in CH₂Cl₂ (287 µL, 0.26 mmol) was added dropwise and the mixture was stirred for 1 h while warming to rt. The solution was filtered and the filtrate was washed with CH₂Cl₂, a satd aq NaHCO₃ soln and water. The organic phase was dried (Na₂SO₄), filtered, concentrated and the resulting residue was purified by chromatography (1:1 hexanes-EtOAc) to give GPL-22 (372 mg, 77%) as a colorless syrup. $R_f 0.53$ (1:1 hexanes-EtOAc); $[\alpha]_D$ -85.9 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.29 (m, 5 H), 5.38 (dd, 1 H, J = 3.4, 1.8 Hz), 5.29 (dd, 1 H, J = 10.1, 3.5 Hz), 5.02 (app t, J = 9.9 Hz), 4.95 (d, 1 H, J = 1.7 Hz, H-1), 4.79 (d, 1 H, J = 1.8 Hz), 4.69 (d, 1 H, J = 12.0 Hz), 4.47 (d, 1 H, J = 12.0 Hz), 4.00 (dd, 1 H, J = 3.0, 2.0 Hz), 3.85 (dq, 1 H, J = 9.8, 6.2 Hz), 3.63 (dq, 1 H, J = 9.4, 6.2 Hz), 3.55 (s, 3 H), 3.43 (s, 3 H), 3.50 (dd, 1 H, J = 9.3, 3.1 Hz), 3.15 (app t, 1 H, J = 9.4 Hz), 2.14 (s, 3 H), 2.03 (s, 3 H), 1.98 (s, 3 H), 1.31 (d, 3 H, J = 6.2 Hz), 1.09 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.2, 170.1(3), 170.0(6), 137.3, 128.6, 128.1, 128.0, 99.2 (C-1), 97.9 (C-1), 82.3, 81.3, 75.1, 71.3, 69.9, 69.2, 69.0, 68.5, 66.8, 61.1, 58.2, 21.1, 20.9(4), 20.8(8), 17.9, 17.4 (C-6). HRMS (ESI) *m/z* calcd for (M+Na) C₂₇H₃₈NaO₁₂: 577.2255. Found: 577.2242.

2,3,4-Tri-*O*-acetyl-α-L-rhamnopyranosyl-(1→2)-3,4-di-*O*-methyl-α-L-

rhamnopyranose (GPL-23). Disaccharide **GPL-22** (295 mg, 0.53 mmol) was dissolved in CH₃OH (15 mL) and 20% Pd(OH)₂–C (75 mg) was added. The mixture was degassed and stirred under H₂ (1 atm) overnight and then the solution was filtered and the filtrate was concentrated to a residue that was purified by chromatography (3:1 EtOAc–hexanes) to give **GPL-23** (137 mg, 56%) as a colorless syrup (4:1 α:β mixture). R_f 0.52 (3:1 EtOAc–hexanes). Data for α-isomer: ¹H NMR (400 MHz, CDCl₃, δ_H) 5.39 (dd, 1 H, *J* = 3.4, 1.8 Hz, H-1), 5.31 (dd, 1 H, *J* = 10.0, 3.5 Hz), 5.16 (d, 1 H, *J* = 1.8 Hz, H-1), 5.05 (app t, 1 H, *J* = 9.9 Hz), 5.00 (d, 1 H, *J* = 1.8 Hz, H-1),

4.02 (dd, 1 H, J = 2.8, 2.1 Hz), 3.94 (dq, 1 H, J = 9.8, 6.2 Hz), 3.79 (dq, 1 H, J = 9.4, 6.2 Hz, 1 H), 3.55 (s, 3 H), 3.44 (s, 3 H), 3.52 (dd, 1 H, J = 9.3, 3.0 Hz), 3.14 (app t, 1 H, J = 9.4 Hz), 2.15 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 3 H), 1.29 (d, 3 H, J = 6.2 Hz), 1.20 (d, 3 H, J = 6.3 Hz); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 170.1(8), 170.1(5), 170.1, 99.1 (C-1), 93.7 (C-1), 82.3, 80.9, 75.1, 71.3, 69.9, 69.2, 68.4, 66.9, 61.1, 58.2, 21.1, 21.0, 20.9, 18.0, 17.6. HRMS (ESI) *m/z* calcd for (M+Na) C₂₀H₃₂NaO₁₂: 487.1786. Found: 487.1776.

 N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(2,4-di-O-acetyl-3-Omethyl-α-L-rhamnopyranosyl)-D-allo-threoninyl-D-alaninyl-L-alaninolyl 2-O-(2,3,4-tri-Oacetyl-a-L-rhamnopyranosyl)-3,4-di-O-methyl-a-L-rhamnopyranoside (GPL-24). A solution of GPL-23 (50 mg, 0.108 mmol), trichloroacetonitrile (21 µL, 0.216 mmol) and DBU (4.0 µL, 0.023 mmol) in CH₂Cl₂ (3 mL) was stirred at rt for 1 h and then concentrated. The resulting oil was purified by chromatography (2.5:1 EtOAc-hexanes) to give the corresponding glycosyl trichloroacetimidate (65 mg, 98%) as a colorless syrup, which was used immediately in the glycosylation. $R_f 0.74$ (2.5:1 EtOAc-hexanes). The trichloroacetimidate derived from GPL-23 (8.5 mg, 0.014 mmol) and GPL-18 (Scheme S51, 10 mg, 0.011 mmol) in CH₂Cl₂ (1.5 mL) containing 4Å molecular sieves was cooled to 0 °C. A 0.5 solution of TMSOTf (1.2 µL, 0.0006 mmol) was added. The mixture was stirred for 3 h while warming to rt, neutralized with DIPEA $(1 \ \mu L)$, concentrated and the resulting residue was purified by chromatography (CH₂Cl₂-CH₃OH 19:1) to give GPL-24 (13 mg, 89%) as a colorless powder after freeze drying (α : β 3:1). R_f 0.60 $(CH_2Cl_2-CH_3OH 9:1)$. ¹H NMR (400 MHz, CDCl₃, δ_H) 7.37–7.23 (m, 5 H), 7.05 (d, 1 H, J = 7.6Hz), 6.79 (d, 1 H, J = 5.7 Hz), 6.76 (d, 1 H, J = 11.4 Hz), 6.47 (d, 1 H, J = 8.0 Hz), 5.39 (dd, 1 H, J = 3.4, 1.9 Hz, 5.31 (dd, 1 H, J = 10.0, 3.5 Hz), 5.24 (dd, 1 H, J = 3.3, 2.0 Hz), 5.05 (app t, 1 H, J = 10.0 Hz, 4.99 (d, 1 H, J = 1.6 Hz), 4.95 (app t, 1 H, J = 9.7 Hz), 4.87 (d, 1 H, J = 1.6 Hz), 4.72 (d, 1 H, J = 1.6 Hz), 4.49-4.51 (m, 1 H), 4.44-4.47 (m, 1 H), 4.37-4.41 (m, 1 H), 4.23-4.27(m, 1 H), 4.11-4.15 (m, 1 H), 4.00 (app t, 1 H, J = 2.4 Hz), 3.92 (dq, 1 H, J = 9.8, 6.2 Hz), 3.74(dq, 1 H, J = 9.5, 6.4 Hz), 3.59-3.51 (m, 6 H), 3.50-3.42 (m, 6 H), 3.33 (s, 3 H), 3.27-3.20 (m, 6 H)H), 3.14 (app t, 1 H, J = 9.3 Hz), 2.98 (dd, 1 H, J = 14.3, 9.3 Hz), 2.44 (dd, 1 H, J = 15.3, 3.6 Hz), 2.28 (dd, 1 H, J = 15.2, 7.1 Hz), 2.15 (s, 3 H), 2.14 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 3 H), 1.62–1.55 (m, 2 H), 1.40–1.13 (m, 30 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 173.2, 172.3, 171.5, 170.6, 170.1(7), 170.1(5), 170.1(2), 170.1(0), 168.3, 135.9, 129.21, 129.17, 127.7, 99.1(4) (C-1), 99.0(7) (C-1), 95.7 (C-1), 82.3, 81.3, 77.7, 76.8, 74.7, 72.5, 71.7, 71.3, 70.5, 70.0,

69.2, 68.5, 68.4, 67.6, 67.0, 61.1, 58.0, 58.7, 57.7, 56.3(2), 56.3, 51.6, 49.4, 45.0, 40.5, 37.2, 32.3, 29.59, 29.50, 29.2, 26.8, 25.1, 21.2, 21.1(2), 21.1(1), 21.0, 20.9, 18.0, 17.9, 17.7, 17.6(4), 17.6(2), 14.7. HRMS (ESI) *m/z* calcd for (M+H) C₆₂H₉₈N₇O₂₄: 1324.6658. Found: 1324.6650.

 N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(3-O-methyl- α -Lrhamnopyranosyl)-D-*allo*-threoninyl-D-alaninyl-L-alaninolyl 2-O-(α-L-rhamnopyranosyl)-3,4-di-O-methyl-α-L-rhamnopyranoside (GPL-25). To a solution of GPL-24 (6.0 mg, 0.0045 mmol) in CH₂Cl₂-CH₃OH (4:0.5, 4.5 mL) was added 1M sodium methoxide solution (0.02 mmol) and the mixture was stirred at rt for 24 h. The solution was then carefully neutralized by adding Amberlite IR-120 H⁺ resin and filtered. The filtrate was concentrated to a residue that was purified by chromatography (10:1 CH₂Cl₂-CH₃OH) to obtain GPL-25 (4 mg, 80%) as an oil. $R_f 0.05$ (12:1 CH₂Cl₂-CH₃OH); ¹H NMR (500 MHz, CD₃OD + CDCl₃, δ_H) 7.32-7.20 (m, 5) H), 4.92 (d, 1 H, J = 1.6 Hz), 4.88 (d, 1 H, J = 1.6 Hz), 4.78 (d, 1 H, J = 1.6 Hz), 4.70–4.64 (m, 1 H), 4.46–4.40 (m, 1 H), 4.26–4.22 (m, 1 H), 4.12–3.98 (m, 3 H), 3.97–3.90 (m, 2 H), 3.70–3.64 (m, 2 H), 3.58-3.33 (m, 15 H), 3.29-3.23 (m, 7 H), 3.20-3.12 (m, 1 H), 3.08 (dd, 1 H, J = 9.5, 9.5 Hz), 2.94–2.87 (m, 1 H), 2.40 (dd, 1 H, J = 6.7, 14.4 Hz), 2.32–2.27 (m, 2 H), 1.62–1.54 (m, 4 H), 1.40–1.15 (m, 27 H); ¹³C NMR (125 MHz, CD₃OD + CDCl₃, δ_{C}) 172.6(3), 172.6, 172.2, 169.6, 136.6, 129.0(1), 129.0, 128.3, 128.2, 126.7, 101.8 (C-1), 99.2 (C-1), 97.1 (C-1), 84.8, 82.2, 82.0, 80.9, 80.2, 80.0, 73.7, 73.0, 72.6, 71.9, 71.6, 70.9, 70.8, 70.6, 70.4, 70.2, 68.9(0), 68.9, 68.4, 97.8, 67.4, 67.2, 60.2, 60.1, 57.7, 57.4, 57.3, 57.1, 56.6, 56.4, 56.1, 54.6, 51.2, 49.6, 49.4, 45.0, 40.2, 37.1, 33.1, 31.7, 29.4, 29.3, 29.2, 29.1, 28.9, 28.6, 26.5, 24.8, 22.4, 17.8, 17.5, 17.3, 17.1(9), 17.1(5), 17.0, 16.7, 16.3, 14.3, 14.1, 13.4. HRMS (ESI) m/z calcd for (M+Na) C₅₂H₈₇N₇NaO₁₉: 1136.5949. Found: 1136.5940.

 N^{α} -(*R*)-11-amino-3-methoxyundecanoyl-D-phenylalaninyl-(3-*O*-methyl- α -Lrhamnopyranosyl)-D-*allo*-threoninyl-D-alaninyl-L-alaninolyl 2-*O*-(α -L-rhamnopyranosyl)-3,4-di-*O*-methyl- α -L-rhamnopyranoside (60). To a solution of GPL-25 (4.0 mg) in EtOAc (3 mL), THF (2 mL), CH₃OH (0.5 mL), H₂O (30 µL), and pyridine (40 µL) was added 20% Pd(OH)₂-C (8 mg). The mixture was stirred under H₂ (1 atm) for 1 h. The catalyst was filtered off and washed with THF. The combined filtrate was concentrated and dried under vacuum for 4 h to obtain 60 (4.0 mg, quant.) as an oil. HRMS (ESI) *m/z* calcd for (M+H) C₅₂H₈₉N₅O₁₉: 1088.6225. Found: 1088.6222.

Benzyl 2-O-acetyl-3,4,-di-O-methyl-α-L-rhamnopyranosyl-(1→2)-3,4-di-O-methyl-α-L-rhamnopyranoside (GPL-26). Reducing sugar GPL-10 (Scheme S48, 444 mg, 1.90 mmol) was dissolved in CH₂Cl₂ and trichloroacetonitrile (378 µL, 3.79 mmol) and DBU (60 µL, 0.38 mmol) were added. The solution was stirred at rt for 1 h and then concentrated. The resulting oil purified by chromatography (EtOAc) to give the corresponding was glycosyl trichloroacetimidate (695 mg, 97%) as a colorless syrup, which was used immediately in the glycosylation; $R_f 0.78$ (EtOAc). A solution of the trichloroacetimidate derived from GPL-10 (Scheme S48, 622 mg, 1.64 mmol) and GPL-8 (Scheme S48, 695 mg, 2.14 mmol) were dissolved in dry CH₂Cl₂ (4 mL) containing 4Å molecular sieves and cooled to -20 °C. A 0.5 M solution of TMSOTf in dry CH₂Cl₂ (368 µL, 0.18 mmol) was added dropwise. The mixture was stirred for 3 h while warming to rt before being filtered. The filtrate was diluted with CH₂Cl₂ (15 mL) and the resulting solution was washed with satd aq NaHCO₃ (30 mL) and water (30 mL). The organic phase was dried (Na_2SO_4), evaporated and the resulting residue was purified by chromatography (3:1 toluene-acetone) to give GPL-26 as colorless syrup, as a 4:1 α : β mixture. To purify the compound, the mixture was deacetylated, and then reacetylatated. Thus, impure GPL-26 (586 mg, 1.18 mmol) was dissolved in CH₂Cl₂-CH₃OH (4:1, 5 mL) and sodium methoxide (13 mg, 0.24 mmol) was added. After stirring at rt for 4 h, the solution was neutralized by the addition of Amberlite IR 120 H⁺. The resin was filtered off and the filtrate was concentrated to give a residue that was purified by chromatography (3:1 toluene-acetone) to give the product as a colorless syrup; $R_f 0.38$ (3:1 toluene-acetone). Next the deacetylated derivative of GPL-26 (273 mg, 0.60 mmol) was dissolved in pyridine (2 mL) and Ac₂O (2 mL) and stirred at rt overnight. The solution was diluted with CH₂Cl₂ (15 mL) and washed with 5% HCl (20 mL), sat aq NaHCO₃ (20 mL) and water (20 mL). The organic phase was dried (Na₂SO₄) and evaporated to yield pure GPL-26 (296 mg, 36%) as a colorless oil. $R_f = 0.46$ (3:1 tolueneacetone); $[\alpha]_D$ –84.1 (*c* = 0.9, CHCl₃). ¹H NMR (500 MHz, CDCl₃, δ_H) 7.36–7.29 (m, 5 H), 5.36 (dd, 1 H, J = 3.4, 1.9 Hz), 4.94 (d, 1 H, J = 1.8 Hz), 4.79 (d, 1 H, J = 1.8 Hz), 4.67 (d, 1 H, J = 11.9 Hz), 4.44 (d, 1 H, J = 11.9 Hz), 3.99 (dd, 1 H, J = 3.1, 2.0 Hz), 3.63–3.58 (m, 2 H), 3.56– 3.53 (m, 4 H), 3.53-3.50 (m, 4 H), 3.43 (s, 3 H), 3.42 (s, 3 H), 3.09 (app t, 1 H, J = 9.4 Hz), 3.02(app t, 1 H, J = 9.5 Hz), 2.12 (s, 3 H), 1.28 (d, 3 H, J = 6.2 Hz), 1.20 (d, 3 H, J = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.3, 137.4, 128.6, 128.0(4), 127.9(8), 99.1 (C-1), 98.1 (C-1),

82.3, 82.0, 81.3, 79.4, 73.9, 69.1, 68.8, 68.2, 61.0(0), 60.9(6), 57.9, 57.8, 21.3, 18.05, 17.87. HRMS (ESI) *m/z* calcd for (M+Na) C₂₅H₃₈NaO₁₀: 521.2357. Found: 521.2345.

2-O-Acetyl-3,4,-di-O-methyl-α-L-rhamnopyranosyl-(1→2)-3,4-di-O-methyl-α-L-

rhamnopyranose (**GPL-27**). Disaccharide **GPL-26** (100 mg, 0.25 mmol) was dissolved in CH₃OH (15 mL) and 20% Pd(OH)₂–C (25 mg) was added. The mixture was degassed and stirred under H₂ (1 atm) overnight. The solution was filtered and the filtrate was concentrated to give a residue that was purified by chromatography (2.5:1 EtOAc–hexanes) to give **GPL-27** (38 mg, 38%) as a colorless syrup (6:4 α:β ratio). R_f 0.40 (2.5:1 EtOAc–hexanes). ¹H NMR (400 MHz, CDCl₃, δ_H) 5.36 (dd, 1 H, *J* = 3.4, 1.9 Hz), 5.15 (d, 1 H, *J* = 1.9 Hz, H-1), 4.98 (d, 1 H, *J* = 1.8 Hz, H-1), 4.01 (dd, 1 H, *J* = 3.0, 2.1 Hz), 3.79 (dq, 1 H, *J* = 9.4, 6.1 Hz, 1 H), 3.68 (dq, 1 H, *J* = 9.5, 6.2 Hz, 1 H), 3.59–3.52 (m, 8 H), 3.44 (s, 3 H), 3.43 (s, 3 H), 3.09 (app t, 1 H, *J* = 9.6 Hz), 3.05 (app t, 1 H, *J* = 9.5 Hz), 2.13 (s, 3 H), 1.9 (d, 3 H, *J* = 6.2 Hz), 1.28 (d, 3 H, *J* = 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.4, 99.0 (C-1), 93.7 (C-1), 82.3, 81.74, 80.8, 79.4, 73.9, 68.8, 68.1, 61.1, 61.0, 57.9, 57.8, 21.3, 18.1, 18.0. HRMS (ESI) *m/z* calcd for (M+Na) C₁₈H₃₂NaO₁₀: 431.1888. Found: 431.1876.

 N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(2,4-di-O-acetyl-3-Omethyl-α-L-rhamnopyranosyl)-D-allo-threoninyl-D-alaninyl-L-alaninolyl 2-O-(2-O-acetyl-3,4-di-O-methyl-α-L-rhamnopyranosyl)-3,4-di-O-methyl-α-L-rhamnopyranoside (GPL-28). A solution of GPL-27 (24 mg, 0.059 mmol), trichloroacetonitrile (11 µL, 0.012 mmol) and DBU (2.0 µL, 0.012 mmol) in CH₂Cl₂ (2 mL) was stirred at rt for 2 h and then concentrated. The resulting oil was purified by chromatography (2.5:1 EtOAc-hexanes) to give the corresponding glycosyl trichloroacetimidate (29 mg, 90%) as a colorless syrup, which was used immediately in the glycosylation; $R_f 0.57$ (2.5:1 EtOAc-hexanes). The trichloroacetimidate derived from GPL-27 (7.6 mg, 0.014 mmol) and GPL-18 (Scheme S51, 10 mg, 0.011 mmol) in CH₂Cl₂ (1.5 mL) containing 4Å molecular sieves was cooled to 0 °C. A 0.5 M solution of TMSOTf (1.2 µL, 0.0006 mmol) was added. The mixture was stirred for 3 h while warming to rt, neutralized with DIPEA (1 μ L), concentrated and the resulting residue was purified by chromatography (3:1 \rightarrow 1:1 toluene-acetone) to give GPL-28 (7 mg, 50%) as a colorless powder after freeze drying (α : β 4:1); R_f 0.58 (9:1 CH₂Cl₂-CH₃OH). ¹H NMR (500 MHz, CDCl₃, δ_H) 7.37-7.21 (m, 5 H), 7.04 (d, 1 H, J = 7.6 Hz), 6.78–6.75 (m, 2 H), 6.44 (d, 1 H, J = 8.3 Hz), 5.36 (dd, 1 H, J = 3.3, 1.9 Hz), 5.24 (dd, 1 H, J = 3.2, 2.0 Hz), 4.98–4.93 (m, 2 H), 4.87 (d, 1 H, J = 1.6 Hz), 4.72 (d, 1 H,

d, J = 1.8 Hz, 1 H), 4.51–4.45 (m, 2 H), 4.37–4.41 (m, 1 H), 4.21–4.27 (m, 1 H), 4.12–4.17 (m, 1 H), 3.98 (app t, 1 H, J = 2.4 Hz), 3.80–3.66 (m, 3 H), 3.59–3.50 (m, 9 H), 3.47–3.42 (m, 9 H), 3.33 (s, 3 H), 3.27–3.22 (m, 6 H), 3.11–3.05 (m, 2 H), 3.01 (dd, 1 H, J = 14.5, 5.6 Hz), 2.44 (dd, 1 H, J = 15.3, 3.4 Hz), 2.31 (dd, 1 H, J = 15.3, 7.1 Hz), 2.14 (s, 3 H), 2.13 (s, 3 H), 2.06 (s, 3 H), 1.62–1.56 (m, 2 H), 1.40–1.17 (m, 27 H), 1.14 (d, 3 H, J = 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.9, 172.1, 171.2, 170.5, 170.3, 170.0, 168.2, 135.8, 129.1, 127.5, 99.1 (C-1), 98.9 (C-1), 95.5 (C-1), 82.2, 81.9, 81.0, 79.3, 77.6, 76.7, 73.7, 72.4, 71.6, 70.5, 68.7, 68.3, 68.2, 68.1, 67.5, 60.9, 60.8, 58.5, 57.6(1), 57.5(5), 56.2, 56.1, 51.5, 49.3, 44.9, 40.4, 37.1, 32.2, 29.5, 29.4, 29.1, 26.7, 25.0, 28.8, 21.1, 21.0(3), 20.9(8), 18.0(1), 17.9(2), 17.8(5), 17.6, 17.5, 14.5. HRMS (ESI) *m/z* calcd for (M+Na) C₆₀H₉₇N₇NaO₂₂: 1290.6579. Found: 1290.6558.

 N^{α} -(R)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(3-O-methyl- α -Lrhamnopyranosyl)-D-*allo*-threoninyl-D-alaninyl-L-alaninolyl 2-*O*-(3,4-di-*O*-methyl-α-L**rhamnopyranosyl)-3,4-di-O-methyl-α-L-rhamnopyranoside** (GPL-29). To a solution of GPL-28 (6.0 mg, 0.005 mmol) in CH₂Cl₂-CH₃OH (4:1, 5 mL) was added 1 M sodium methoxide solution (0.02 mmol) and the solution was stirred at rt for 20 h. The mixture was then carefully neutralized by adding Amberlite IR-120 H⁺ resin and filtered. The filtrate was concentrated to a residue that was purified by chromatography (14:1 CH₂Cl₂-CH₃OH) to obtain **GPL-29** (5 mg, 89%) as an oil. R_f 0.27 (14:1 CH₂Cl₂-CH₃OH); ¹H NMR (500 MHz, CDCl₃ + CD_3OD , δ_H) 7.30–7.20 (m, 5 H), 4.96 (d, 1 H, J = 1.8 Hz), 4.90 (d, 1 H, J = 1.6 Hz), 4.72 (d, 1 H, J = 1.8 Hz), 4.66-4.58 (m, 1 H), 4.40-4.34 (m, 2 H), 4.28-4.20 (m, 2 H), 4.10-3.90 (m, 7 H), 3.64 (m, 2 H), 3.60–3.40 (m, 20 H), 3.40–3.30 (m, 2 H), 3.27–3.21 (m, 4 H), 3.16–2.90 (m, 4 H), 2.36–2.24 (m, 2 H), 1.62–1.52 (m, 4 H), 1.40–1.10 (m, 27 H); ¹³C NMR (125 MHz, CDCl₃ + CD₃OD, δ_C) 172.2, 172.0(4), 172.0, 171.6, 169.3, 136.3, 129.1, 128.5(2), 128.5, 126.9, 101.1, 99.9, 99.4, 99.3, 96.2, 84.7, 82.3, 82.0, 81.9, 81.8, 80.9, 80.2, 80.7, 80.6, 80.4(4), 80.4, 74.0, 71.8, 71.6, 70.8, 70.7(1), 70.7, 70.2, 68.6, 67.9, 67.6, 67.5, 67.3(4), 67.3, 60.8, 60.6(4), 60.6, 57.7(1), 57.7, 57.5, 57.4, 57.3, 57.2, 57.1, 56.9, 56.5, 54.5, 54.3, 51.4, 45.4, 45.3, 45.2, 45.1, 40.3(2), 40.3, 37.3, 32.9, 29.6, 29.4, 29.0, 28.8, 26.6, 25.0, 18.5, 17.9, 17.8, 17.7, 17.6, 17.5, 17.3(1), 17.3, 17.2, 17.0, 16.4, 14.7(2), 14.7. HRMS (ESI) *m/z* calcd for (M+Na) C₅₄H₉₁N₇NaO₁₉: 1164.6262. Found: 1164.6248.

 N^{α} -(*R*)-11-azido-3-methoxyundecanoyl-D-phenylalaninyl-(3-*O*-methyl- α -Lrhamnopyranosyl)-D-*allo*-threoninyl-D-alaninyl-L-alaninolyl 2-*O*-(3,4-di-*O*-methyl- α -L- **rhamnopyranosyl)-3,4-di-***O***-methyl-***a***-L-rhamnopyranoside (61)**. To a solution of GPL-29 (5.0 mg) in EtOAc (3 mL), THF (2 mL), CH₃OH (0.5 mL), H₂O (30 μ L), and pyridine (40 μ L) was added 20% Pd(OH)₂–C (9 mg). The mixture was stirred under H₂ (1 atm) for 2 h and then the catalyst was filtered off and washed with THF. The combined filtrate was concentrated and dried under vacuum for 4 h to yield 61 (5 mg, quant.) as an oil. HRMS (ESI) *m/z* calcd for (M+H) C₅₄H₉₄N₅O₁₉: 1116.6538. Found: 1116.6518.

References

- 1. Joe, M., Bai, Y., Nacario, R. C., Lowary, T. L. (2007) Synthesis of the docosanasaccharide arabinan domain of mycobacterial arabinogalactan and a proposed octadecasaccharide biosynthetic precursor. *J. Am. Chem. Soc. 129*, 9885–9901.
- Gadikota, R. R., Callam, C. S., Appelmelk, B. J., Lowary, T. L. (2003) Synthesis of oligosaccharide fragments of mannosylated lipoarabinomannan appropriately functionalized for neoglycoconjugate preparation. *J. Carbohydr. Chem.* 22, 459–480.
- Sahloul, K., Lowary, T. L. (2015) Development of an orthogonal protection strategy for the synthesis of mycobacterial arabinomannan fragments. *J. Org. Chem.* 80, 11417– 11434.
- Mitchell, D. A., Fadden, A. J., Drickamer, K. (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR: Subunit organization and binding to multivalent ligands. *J. Biol. Chem.* 276, 28939–28945.
- Jégouzo, S. A. F., Quintero-Martínez, A., Ouyang, X., dos Santos, Á., Taylor, M. E., Drickamer, K. (2013) Organization of the extracellular portion of the macrophage galactose receptor: A trimeric cluster of simple binding sites for N-acetylgalactosamine. *Glycobiology 23*, 853–864.
- Feinberg, H., Powlesland, A. S., Taylor, M. E., Weis, W. I. (2010) Trimeric structure of langerin. J. Biol. Chem. 285, 13285–13293.
- Feinberg, H., Jégouzo, S. A. F., Rex, M. J., Drickamer, K., Weis, W. I., Taylor, M. E. (2017) Mechanism of pathogen recognition by human dectin-2. *J. Biol. Chem. 292*, 13402–13414.
- Feinberg, H., Jégouzo, S. A. F., Rowntree, T. J. W., Guan, Y., Brash, M. A., Taylor, M. E., Weis, W. I., Drickamer, K. (2013) Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. *J. Biol. Chem.* 288, 28457–28465.
- Jégouzo, S. A. F., Feinberg, H., Dungarwalla, T., Drickamer, K., Weis, W. I., Taylor, M. E. (2015) A novel mechanism for binding of galactose-terminated glycans by the C-type carbohydrate recognition domain in blood dendritic cell antigen 2. *J. Biol. Chem.* 290, 16759–16771.

- Simpson, D. Z., Hitchen, P. G., Elmhirst, E. L., Taylor, M. E. (1999) Multiple interactions between pituitary hormones and the mannose receptor. *Biochem. J.* 343, 403–411.
- 11. Napper, C. E., Dyson, M. H., Taylor, M. E. (2001) An extended conformation of the macrophage mannose receptor. *J. Biol. Chem.* 276, 14759–14766.
- 12. Shen, K., Lowary, T. L. Manuscript in Preparation.
- 13. Tripathi, A., Hung, S.-C. Manuscript in Preparation.
- Yin, H., D'Souza, F. W., Lowary, T. L. (2002) Arabinofuranosides from mycobacteria: Synthesis of a highly branched hexasaccharide and related fragments containing βarabinofuranosyl residues. *J. Org. Chem.* 67, 892–903.
- 15. Yin, H., Lowary, T. (2001) Synthesis of arabinofuranosides via low-temperature activation of thioglycosides. *Tetrahedron Lett.* 42, 5829–5832.
- Elsaidi, H. R. H., Lowary, T. L. (2015) Effect of phenolic glycolipids from *Mycobacterium kansasii* on proinflammatory cytokine release. A structure–activity relationship study. *Chem. Sci.* 6, 3161–3172.
- Joe, M., Sun, D., Taha, H., Completo, G., Croudace, J., Lammas, D., Besra, G., Lowary, T. (2006) The 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan. Absolute stereochemistry, linkage position, conformation, and immunomodulatory activity. J. Am. Chem. Soc. 128, 5059–5072.
- Hewitt, M. C., Seeberger, P. H. (2001) Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. *J. Org. Chem.* 66, 4233–4243.
- Murase, T., Zheng, R. B., Joe, M., Bai, Y., Marcus, S. L., Lowary, T. L., Ng, K. K. S. (2009) Structural insights into antibody recognition of mycobacterial polysaccharides. *J. Mol. Biol.* 392, 381–392.
- Imamura, A., Lowary, T. L. (2010) β-Selective arabinofuranosylation using a 2,3-Oxylylene-protected donor. Org. Lett. 12, 3686–3689.
- Goux, W. J., Unkefer, C. J. (1987) The assignment of carbonyl resonances in 13C-N.M.R. spectra of peracetylated mono- and oligo-saccharides containing d-glucose and dmannose: An alternative method for structural determination of complex carbohydrates. *Carbohydr. Res. 159*, 191–210.

- Fang, T., Mo, K.-F., Boons, G.-J. (2012) Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors. J. Am. Chem. Soc. 134, 7545–7552.
- 23. Birch, H., Alderwick, L. J., Bhatt, A., Rittmann, D., Krumbach, K., Singh, A., Bai, Y., Lowary, T. L., Eggeling, L., Besra, G. S. (2008) Biosynthesis of mycobacterial arabinogalactan: identification of a novel α -(1 \rightarrow 3) arabinofuranosyltransferase. *Mol. Microbiol.* 69, 1191–1206.
- Zhang, Y., Chen, C., Jin, L., Tan, H., Wang, F., Cao, H. (2015) Synthesis of unsymmetrical 3,6-branched Man5 oligosaccharide: a comparison between one-pot sequential glycosylation and stepwise synthesis. *Carbohydr. Res.* 401, 109–114.
- 25. Mowery, B. P., Prasad, V., Kenesky, C. S., Angeles, A. R., Taylor, L. L., Feng, J.-J., Chen, W.-L., Lin, A., Cheng, F.-C., Smith, A. B., Hirschmann, R. (2006) Catechol: A minimal scaffold for non-peptide peptidomimetics of the i + 1 and i + 2 positions of the β-turn of somatostatin. *Org. Lett.* 8, 4397–4400.
- Patil, P. S., Cheng, T.-J. R., Zulueta, M. M. L., Yang, S.-T., Lico, L. S., Hung, S.-C. (2015) Total synthesis of tetraacylated phosphatidylinositol hexamannoside and evaluation of its immunomodulatory activity. *Nat. Commun.* 6, 7239.
- 27. Coutrot, F., Busseron, E. (2008) A new glycorotaxane molecular machine based on an anilinium and a triazolium station. *Chem. Eur. J.* 14, 4784–4787.
- Das, R., Chakraborty, D. (2011) Silver triflate catalyzed acetylation of alcohols, thiols, phenols, and amines. *Synthesis 2011*, 1621–1625.
- 29. Elsaidi, H. R. H., Lowary, T. L. (2014) Inhibition of cytokine release by *Mycobacterium tuberculosis* phenolic glycolipid analogues. *ChemBioChem* 15, 1176–1182.
- Elsaidi, H. R. H., Barreda, D. R., Cairo, C. W., Lowary, T. L. (2013) Mycobacterial phenolic glycolipids with a simplified lipid aglycone modulate cytokine levels through Toll-Like Receptor 2. *ChemBioChem* 14, 2153–2159.
- Osman, H., Larsen, D. S., Simpson, J. (2009) Synthesis of orthogonally protected Dolivoside, 1,3-di-O-acetyl-4-O-benzyl-2,6-dideoxy-D-arabinopyranose, as a C-glycosyl donor. *Tetrahedron* 65, 4092–4098.

- Zeng, Y., Zhang, W., Ning, J., Kong, F. (2002) Synthesis of two isomeric pentasaccharides, the possible repeating unit of the β-glucan from the micro fungus *Epicoccum nigrum* Ehrenb. ex Schlecht. *Carbohydr. Res.* 337, 2383–2391.
- Poopari, M. R., Dezhahang, Z., Shen, K., Wang, L., Lowary, T. L., Xu, Y. (2015) Absolute configuration and conformation of two Fráter–Seebach alkylation reaction products by film VCD and ECD spectroscopic analyses. *J. Org. Chem.* 80, 428–437.
- Nishizawa, M., Yamamoto, H., Imagawa, H., Barbier-Chassefière, V., Petit, E., Azuma, I., Papy-Garcia, D. (2007) Efficient syntheses of a series of trehalose dimycolate (TDM)/trehalose dicorynomycolate (TDCM) analogues and their Interleukin-6 level enhancement activity in mice sera. *J. Org. Chem.* 72, 1627–1633.
- Huang, M., Tran, H.-A., Bohe, L., Crich, D. Phenyl 4,6-O-benzylidene-1-thio-α-Dmannopyranoside. In *Carbohydrate Chemistry: Proven Synthetic Methods*, Kováč, P., Ed. CRC Press: Boca Raton, FL, 2014; Vol. 2, pp 175–181.
- 36. Motoko, H., Yoko, M., Akiko, S., Shinkiti, K., Yoshika, S., Aya, M. (2001) Synthesis of β-D-Ribofuranosyl-(1→3)-α-L-rhamnopyranosyl-(1→3)-L-rhamnopyranose by in situ activating glycosylation Using 1-OH sugar derivative and Me₃SiBr–CoBr₂–Bu₄NBr– molecular sieves 4Å system *Bull. Chem. Soc. Jpn.* 74, 1679–1694.
- Sjolin, P., Elofsson, M., Kihlberg, J. (1996) Removal of acyl protective groups from glycopeptides: Base does not epimerize peptide stereocenters, and β-elimination is slow. *J. Org. Chem.* 61, 560–565.
- Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayo, N., Kumobayashi, H., Akutagawa, S. (1987) Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. *J. Am. Chem. Soc. 109*, 5856–5858.
- Lalithamba, H. S., Manohara, S. R., Siddlingeshwar, B., Shivakumaraiah (2014) Synthesis, solvatochromic properties, and dipole moments of Fmoc-L-alaninol. J. Mol. Liq. 198, 94–100.
- Desire, J., Prandi, J. (1999) Synthesis of methyl β-D-arabinofuranoside 5-[1D (and L)myo-inositol 1-phosphate], the capping motif of the lipoarabinomannan of *Mycobacterium smegmatis*. *Carbohydr. Res.* 317, 110–118.

- Dhenin, S. G. Y., Moreau, V., Nevers, M.-C., Creminon, C., Djedaini-Pilard, F. (2009) Sensitive and specific enzyme immunoassays for antigenic trisaccharide from Bacillus anthracis spores. *Org. Biomol. Chem.* 7, 5184–5199.
- 42. Sakairi, N., Matsui, K., Kuzuhara, H. (1995) Acetolytic fission of a single glycosidic bond of fully benzoylated α -, β -, and γ -cyclodextrins. A novel approach to the preparation of maltooligosaccharide derivatives regioselectively modified at their nonreducing ends. *Carbohydr. Res. 266*, 263–268.
- 43. Zhang, J., Fu, J., Si, W., Wang, X., Wang, Z., Tang, J. (2011) A highly efficient deprotection of the 2,2,2-trichloroethyl group at the anomeric oxygen of carbohydrates. *Carbohydr. Res.* 346, 2290–2293.