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1 Supplementary Figures
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Supplementary Figure 1. a. PECA-N produced greater CPS scores than PECA Core for
the genes belonging to metabolism and respiratory electron transport at 16 hrs at the RNA
level. b. The ratio of the number of significantly up-regulated RNAs between PECA-N and
PECA core at the same CPS score thresholds among 1720 genes in the metabolic processes.
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Supplementary Figure 2. Comparison of rate parameter estimates between the ODE-based
approach (Jovanovic et al.) and PECA-pS in the synthetic LPS response data set. For PECA-
pS (horizontal axis), the rate parameters in the adjacent time intervals at 0 and 12 hours were
used for comparison with the rates from the ODE-based approach at the respective time points.
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Supplementary Figure 3. Comparison of rate parameter estimates between the ODE-based
approach (Jovanovic et al.) and PECA-R in the synthetic data set. For PECA-R (horizontal
axis), the rate parameters in the adjacent time intervals at 0 and 12 hours were used for
comparison with the rates from the ODE-based approach at the respective time points.
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Supplementary Figure 4. GP smoothing is robust to variation of parameters F and ` within
the proposed range. We illustrate the impact of the parameters for the SLC39A14 gene (two
biological replicates). The two parameters work in concert to control the overall smoothness
of curves. We optimized parameters for small to medium sized time series that are typical for
biological experiments. We varied each parameter from small to large with respect to the default
value while fixing the other parameter at default value. The covariance weight parameter F
was varied from 1 to 4 while fixing ` = 1. Local variance parameter ` was varied from 0.5 to 2
while fixing F = 2.
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Supplementary Figure 5. The GP-based imputation (used in PECAplus) is more robust
to leave-one-out and leave-two-out tests than K-nearest neighbor (knn) imputation. In the ER
stress data, we removed one or two intensity values from randomly selected time points for
each gene individually, and challenged both methods to impute the values. We then computed
imputation errors as the difference between imputed values and observed (but erased) values.
The panels show the distributions of the imputation errors across all genes at all time points.
The distributions are centered more narrowly around 0 (no error) for GP smoothing than for
knn imputation.
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2 Gaussian Process model for smoothing and imputation

2.1 Model description

In this section, we provide detailed description of the Gaussian Process (GP) model [5], which
smoothes rugged time series data and imputes missing observations in PECAplus. A time series
for a gene, whether it is mRNA or protein, is expressed as a function of time f(h) with the
following kernel:

f(h) ∼ GP (0, k(h, h′))

k(h, h′) = E[(f(h))(f(h′))T ].

For any finite set of time points, we assume that the distribution of the function f between any
two time points hi and hj follows Gaussian distribution

p(f |h) = N (f |0,K),

that is Kij = k(hi, hj) denotes the Gaussian kernel specified below. Thanks to this flexible
definition of the stochastic process, GP is a widely used, highly flexible technique for inference
of time series data in many areas of application.

2.2 Gaussian kernel and tuning parameters

The Gaussian kernel is defined as

ky(hp, hq) =F 2 · σ2
y · exp

{
− 1

2`2
(hp − hq)2

}
+ σ2

y · I(p = q)

θ =(F 2, `2, σ2
y)

The value of σ2
y does not affect the value of f̄∗ so we simplify the kernel to

ky(hp, hq) =F 2 · exp

{
− 1

2`2
(hp − hq)2

}
+ I(p = q)

θ =(F 2, `2)

F and ` values are user-defined parameters. These two parameters jointly control the shape of
smoothed curve, with subtle difference in their roles: the parameter F controls the amount of
correlation between time points (not necessarily observation time points), whereas the parameter
` controls the variability of values in neighboring time points, i.e. ruggedness of curve in local
temporal neighborhoods. For this reason, we call F the absolute covariance weight parameter
and ` the local variance parameter.

If the user sets a small value of F (e.g. 0.1 ∼ 0.5), then the model assumes that the
expression values in any two time points are less correlated. This leads the model to think
that the variation along the time course is more attributable to random noise than systematic
changes, and therefore results in a flat curve. By contrast, a large F (e.g. 2 ∼ 5) will honor
correlated changes along time and produce a curve closer to the original observations with
reduced amount of smoothing.

Meanwhile, the parameter ` controls the amount of fluctuations allowed in neighboring time
points. If the user sets a small value of ` (e.g. 0.1 ∼ 0.5), then the curve has to be fit tightly to
the observed data, therefore losing flexibility in the curve. This tends to produce more locally
rugged patterns (less smoothed). By contrast, if the user sets a large value of ` (e.g. 2 ∼ 5),
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then the curve no longer has to tightly fit the observed values and can have smoother shape
along the time course.

In the current implementation, we set the default values at (F, `) = (2, 1). Supplementary
Figure 4A shows the impact of the covariance weight parameter F on the smoothed curve when
the local variance parameter ` is fixed at 1. As explained above, at a fixed value of `, larger values
of F render the curve to be more “correlated” in nearby time points (nearby observed values),
i.e. closely fitting the observed data points. Supplementary Figure 4B shows that smaller `
produces less smooth a curve closely fitting the observed data. We have chosen F = (2, 1) based
on empirical evidence over a number of data sets we analyzed, and we recommend that these
values are not adjusted too much by users who are not familiar with the modeling. However, the
python script automatically produces these plots, which helps the user make a more informed
decision on optimal parameters for their own data.

2.3 Smoothing and missing data imputation

The above model can be used to calculate the expected (de-noised) expression level E(y) at
any time point x for both smoothing and imputation. We first use all observed data points
{(hi, yi), i = 1 : N} to train the model

y =f(h) + ε, ε ∼ N (0, σ2
y)

ky(hp, hq) =cov[yp, yq|hp, hq] = k(hp, hq) + σ2
yI(p = q)

Ky =cov[y|h] = K + σ2
yIN

where {hi} are the observation time points and {yi} are the observed expression value of a
molecule. If expression data is missing at time h∗, then we impute with posterior mean f̄∗ to
the time point:

f̄∗ =kT∗K
−1
y y

k∗ =[k(h∗, h1), . . . , k(h∗, hN )].

We apply the same to each observation time point with non-missing data to perform smoothing
on the entire time series.

To evaluate whether the imputation scheme is efficient, we performed a numerical study
comparing GP-based imputation with K-nearest neighbor (KNN)-based imputation. To do
this, we took the mRNA data from the ER stress study and modified the data as follows.
We randomly selected one time point in each gene and erased the observed intensity value,
making it a missing data (Supplementary Figure 5A). After erasing one data point per gene, we
challenged both methods to impute the values. To evaluate the performance, we compared the
difference between imputed values and true underlying values. Supplementary Figure 5A shows
that GP-based smoothing is overall superior to the KNN method, giving smaller imputation
errors. This performance difference became more pronounced when we erased two data points
per gene (Supplementary Figure 5B).
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3 PECA-N: Incorporating biological network information into
the PECA model

PECA-N employs the same statistical model as the original PECA Core [6]. In PECA, the
prior probability of change point in a rate ratio parameter at time t is the same for every gene,
which is estimated from the data across all genes. In PECA-N, we employ the Markov random
field (MRF) prior [2, 7], where the prior probability of change point in a gene is adjusted by the
change point status of other first degree neighbor genes in a user-provided biological network.
We used the protein-protein interaction data from the STRING database [4]. To estimate
the model parameters, we constructed a Markov chain Monte Carlo (MCMC) sampler that
combines standard Metropolis-Hastings updates and dimension switching updates in the form
of reversible-jump MCMC [3]. The following section describes the full details on the PECA-N
model and Bayesian inference of the model parameters.

3.1 Likelihood and prior distributions

First, suppose that the experiment has measurements for I genes across T times points in N
biological replicates. Then, the likelihood of the entire PECA Core model is

(likelihood) =
I∏
i=1

N∏
j=1

T∏
t=0

1

yjitτi
√

2π
exp

[
− 1

2τ2
i

(ln(yjit)− ln(ηjit))
2

]
where

ηjit = ηji0 +

t−1∑
`=0

∆h`
(
xji`κ

′
i` − ηji`(1− κ′i`)

)
,

and i, j, and t index gene, replicate, and time, respectively. We specify prior distributions that
are the least subjective with wide variance parameters:

ηji0 ∼ N (0, 1002) for j = 0, . . . , N

κ′i` ∼ U(0, 1) for ` = 0, . . . , |Ci|
τ−2
i ∼ G(aτ , bτ )

for fixed Ci for all i, where N , U , G denote normal, uniform, and gamma distributions respec-
tively. Here Ci is the change point set for gene i, i.e. the collection of time points in which
rate ratios in adjacent time periods are different. This set is empty when the rate ratio remains
constant over time, and becomes a non-empty set when there is at least one change point. Ac-
cordingly, |Ci| denotes the number of change points in gene i, which is a random variable on
its own and will be inferred during the estimation procedure. We impose the following prior for
Ci:

π(Ci) ∝ ϕ|Ci|
it (1− ϕit)T−1−|Ci|,

where ϕit is the probability that gene i has a change point probability at time t, i.e. the rate
ratios κ′i,t−1 and κ′it are different. The posterior expectation of this parameter becomes the final
change point score (CPS) of gene i at time t, i.e. P (κ′i,t−1 6= κ′it|x,y), where x and y denote
the two layers of expression data.

The difference between PECA Core and PECA-N is how ϕit is defined and estimated. In
PECA Core, the parameter is estimated solely based on the data for gene i. In PECA-N,
by contrast, this parameter is estimated with the help of the network information (or module
information) from related genes is incorporated (see below), using the MRF prior.
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3.2 Definition of module information

There are different types of network information in the literature. Most biological networks are
provided as a list of gene pairs that interact with one another. One can convert gene groups
(e.g., Gene Ontology [1] or GO terms) into this format by forming cliques for a group of genes,
i.e. enumerating all pair-wise interactions in the group. We refer both formats of network data
as module information hereafter.

3.3 MCMC sampler

When the module information is utilized, PECA-N will run the MCMC sampler twice. The
first MCMC sampling will be done following the sampler of PECA Core. On the completion of
the first MCMC run, we estimate the MRF prior coefficient by finding a maximizer of∏

i

exp(I(CPSit > .5) · Fit)
1 + exp(Fit)

with respect to γt, where

Fit = γt,0 + γt,1

∑
j∈∂i I(CPSjt > .5)

#neighbors of gene i

for all t. On the second MCMC sampling set

logit(ϕit) = Fit

for all i and t.

In summary, the prior can be written as

(prior) ∝
∏I
i=1

{
baττ

Γ(aτ )(τ2
i )−aτ−1e

− bτ
τ2
i ·
∏
j φ(

ηji0
100 ) · ϕ|Ci|(1− ϕ)T−1−|Ci|

}
where the prior for {κ′it} is omitted conditional on the fact that the parameters are uniformly
distributed on unit interval [0,1], and φ denotes standard normal density.

The model parameters are updated in the following order:

{ηji0}Nj=0 → τ2
i → {κ′it}T−1

t=0 → Ci

for all i. This whole cycle is repeated for 1,000 iterations for burn-in period and M = 10, 000
iterations for the main iteration with thinning of 10 samples, in both simulation and data
analysis sections that follow. We use hat and tilde symbols to denote current and proposed
values respectively.

1. We first start with ηji0. We run the random walk Metropolis algorithm chain in the log-
space by generating the proposal log(η̃ji0) from N (log(η̂ji0), 1) or equivalently η̃ji0 from
η̂ji0 exp(N (0, 1)). Running the chain in the log-space alleviates the need to tune for step
sizes for each ηji0. Since this parameter is involved in the expected values of yijt at all
time points, the likelihood has to be evaluated at all time points for updating each of
these parameters.

2. Next, we draw the variance parameter τ2
i by Gibbs sampling from inverse gamma distri-

bution IG(aτ +N(T + 1)/2, bτ +
∑

j,t(yjit − ηjit)2/2).
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3. Next, we draw {κsi`} for ` = 0, . . . , |C(s)
i | under the fixed C

(s)
i for each protein i. We run

the chain in the logit-space, i.e. draw a proposal value logit(κ̃si`) from N (logit(κ̂si`), 1) and
accept or reject afterwards.

4. Finally, we update the change point set Ci. There are two different moves: birth of a new
change point and removal (death) of an existing change point. Since these two moves are
reversible in notation, we just describe the birth move here. Suppose that κ̂′i` covers a
time period (ht, ht+m) that contains at least one observation time(s). Then we propose a
birth of a new change point h∗ ∈ {ht+1, . . . , ht+m−1} within the interval (chosen from one
of the intermediate time points) and break the current rate parameter into two daughter
parameters, namely (κ̃′i`, κ̃

′
i,`+1) where it is required to meet

(h∗ − ht) · logit(κ̃′i`) + (ht+m − h∗) · logit(κ̃′i,`+1) = (ht+m − ht) · logit(κ̂′i`)

with a random perturbation such that

κ̃′i,`+1

1− κ̃′i,`+1

=
1− u
u

κ̃′i`
1− κ̃′i`

,

with u ∼ Uniform(0, 1). Under this transformation, the Jacobian is
(κ̃′i`(1−κ̃

′
i`)+κ̃

′
i,`+1(1−κ̃′i,`+1))2

κ̂′i`(1−κ̂
′
i`)

for (κ̂′i`, u) → (κ̃′i`, κ̃
′
i,`+1). Hence the Metropolis-Hastings ratio for the birth move just

equals the posterior ratio times the Jacobian since the acceptance probability of this pro-
posal is

min{1, likelihood ratio× prior ratio× proposal ratio× Jacobian},

where the prior and proposal ratios are the ratios of Uniform distribution over unit inter-
vals. Then the Metropolis-Hastings ratio becomes

∏
j,t

[
exp

{
− 1

2τ2
i

(ln(yjit)− ln(ηjit))
2

}]
ϕ

1− ϕ
(κ̃′i`(1− κ̃′i`) + κ̃′i,`+1(1− κ̃′i,`+1))2

κ̂′i`(1− κ̂′i`)
.
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4 PECA-pS: A PECA model when pulse-labelled proteomic
data is available

PECA-pS uses pulsed-SILAC data for the proteomic data to estimate synthesis and degrada-
tion rates and infer regulatory changes across the time points in synthesis and degradation
separately. The model for the synthesis rate parameter takes the amount of mRNA available
at the beginning of each time period into estimation, while the model for the degradation rate
is formulated as a function of protein abundance at the beginning of each time period and the
rate parameter, disregarding the abundance of mRNA.

Suppose that we have parallel mRNA and protein expression data (with medium (M) channel

signal and heavy (H) channel signal)X = {xjit}, Y (M) = {y(M)
jit } and Y (H) = {y(H)

jit } for protein
i = 1, . . . , I in replicates j = 1, . . . , N observed over time points (h0, . . . , hT ). Time h0 indicates
the time point at which or before the samples are treated or the baseline of subsequent time
points. We assume that the protein expression measurements follow log normal distributions

y
(M)
jit ∼ LN

(
ln(η

(M)
jit ), (τ

(M)
i )2

)
y

(H)
jit ∼ LN

(
ln(η

(H)
jit ), (τ

(H)
i )2

)
after proper normalization of the data. Our goal is to infer the protein synthesis rate κsit and
the degradation rate κdit during the interval (ht, ht+1) of length ∆ht = (ht+1 − ht) for protein i.
More importantly, the mean parameters are related between adjacent time points as follows:

η
(M)
ji,t+1 = η

(M)
jit + ∆ht

(
−η(M)

jit κ
d
it

)
η

(H)
ji,t+1 = η

(H)
jit + ∆htf(xjit)κ

s
it (1)

where

f(x) = log(1 + x)

for t = 0, 1, . . . , T − 1. This mathematical assumption was put in place after we noticed that,
without such transformation, the majority of signals were detected mostly on highly abundant
genes only. The transformation log(x+1) “de-sensitizes” the change point scores in very highly
abundant genes only, especially when the data are very noisy.

To detect the change in these rate parameters, we formulated a change point model similar
to PECA Core to describe the probability distribution of κsi = (κsi0, · · · , κsi,T−1) as follows. We

first note that the synthesis rate κsit and the degradation rate κdit are always positive since they
are rate parameters by definition. Second, unlike the PECA Core and PECA-N models, we
define the change point set Ci for synthesis and degradation separately, since synthesis and
degradation rates may not share the same change point in the same gene across time points.

For gene i, let C
(s)
i and |C(s)

i | denote the set of time points {t : κsi,t−1 6= κsit|0, 1, · · · , T − 1}
and the size of the set, respectively. If the synthesis rates of κsi remained constant over time,

C
(s)
i is an empty set; if synthesis rate values of κsi in some time periods were different from

others, C
(s)
i is the set of all intermediate time points from 1 to T − 1 with different adjacent

rates. The change point set C
(d)
i for the degradation rate parameters κdi are defined similarly.

From this model, the CPS scores are computed for synthesis and degradation separately, by
computing P (κsi,t−1 6= κsit|x,y(H)) for the synthesis parameter and P (κdi,t−1 6= κdit|x,y(M)) for
the degradation parameter of each gene i at time t.
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4.1 Likelihood and prior distributions

First, the likelihood of the entire model can be written as

(likelihood) =
I∏
i=1

N∏
j=1

T∏
t=0

1

y
(M)
jit τ

(M)
i

√
2π

exp

[
− 1

2(τ
(M)
i )2

(ln(y
(M)
jit )− ln(η

(M)
jit ))2

]

×
I∏
i=1

N∏
j=1

T∏
t=0

1

y
(H)
jit τ

(H)
i

√
2π

exp

[
− 1

2(τ
(H)
i )2

(ln(y
(H)
jit )− ln(η

(H)
jit ))2

]

where

η
(M)
jit =η

(M)
ji0 +

t−1∑
`=0

∆h`

(
−η(M)

ji` κ
d
i`

)
η

(H)
jit =η

(H)
ji0 +

t−1∑
`=0

∆h` (f(xji`)κ
s
i`) .

The two equations above dictate the monotone decreasing and increasing time series for degra-
dation and synthesis, respectively.

We specify prior distributions that are the least subjective with wide variance parameters:

η
(M)
ji0 , η

(H)
ji0 ∼LN (0, 1002) for j = 0, . . . , N

κsi` ∼LN (0, 1) for ` = 0, . . . , |C(s)
i |

κdi` ∼LN (0, 1) for ` = 0, . . . , |C(d)
i |

(τ
(M)
i )−2 ∼G(aM , bM )

(τ
(H)
i )−2 ∼G(aH , bH)

for fixed change point sets C
(s)
i ,C

(d)
i for all i, where N , LN , G denote normal, log-normal,

and gamma distributions, respectively. We also assume that the change point set C
(s)
i has the

following prior:

π(C
(s)
i ) ∝ϕ|C

(s)
i |(1− ϕ)T−1−|C(s)

i |.

The priors are set similarly for the change point set for degradation parameter C
(d)
i .

4.2 MCMC sampler

The model parameters are updated in the following order:

{ηji0}Nj=0 → τ2
i → {κ′it}T−1

t=0 → Ci

for all i. This whole cycle is repeated for 1,000 iterations for burn-in period and M = 10, 000
iterations for the main iteration with thinning of 10 samples, in both simulation and data
analysis sections that follow. We use hat and tilde symbols to denote current and proposal
values respectively.

1. We first start with ηji0. We run the random walk Metropolis algorithm chain in the log-
space by generating the proposal log(η̃ji0) from N (log(η̂ji0), 1) or equivalently η̃ji0 from
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η̂ji0 exp(N (0, 1)). Running the chain in the log-space alleviate the need to tune for step
sizes for each ηji0. Since this parameter is involved in the mean values at all time points,
the likelihood has to be evaluated at all time points for updating each of these parameters.

Similarly for η
(H)
ji0 .

2. Next, we draw the variance parameter (τ
(M)
i )2 by Gibbs sampling from inverse gamma

distribution IG(am +N(T + 1)/2, bm +
∑

j,t(y
(M)
jit − η

(M)
jit )2/2).

Similarly for (τ
(H)
i )2.

3. Next, we draw {κsi`} for ` = 0, . . . , |C(s)
i | under the fixed C

(s)
i for each protein i. Again

we run the chain in the log-space as we have done for ηji0. i.e. draw a proposal value κ̃si`
from κ̂si` exp(N (0, 1)) and accept or reject afterwards.
Similarly for {κdi`}.

4. Finally, we update the change point set C
(s)
i . There are two different moves: birth of a

new change point and removal (death) of an existing change point. Since these two moves
are reversible in notation, we just describe the birth move here. Suppose that κ̂si` covers a
time period (ht, ht+m) that contains at least one observation time(s). Then we propose a
birth of a new change point h∗ ∈ {ht+1, . . . , ht+m−1} within the interval (chosen from one
of the intermediate time points) and break the current rate parameter into two daughter
parameters, namely (κ̃si`, κ̃

s
i,`+1) where it is required to meet

(h∗ − ht) · log(κ̃si`) + (ht+m − h∗) · log(κ̃si,`+1) = (ht+m − ht) · log(κ̂si`)

with a random perturbation such that

κ̃si,`+1 =
1− u
u

κ̃si`,

with u ∼ Uniform(0, 1). Under this transformation, the Jacobian is
(κ̃si`+κ̃

s
i,`+1)2

κ̂si`
for

(κ̂si`, u)→ (κ̃si`, κ̃
s
i,`+1). Hence the Metropolis-Hastings ratio for the birth move just equals

the posterior ratio times the Jacobian since the acceptance probability of this proposal is

min{1, likelihood ratio× prior ratio× proposal ratio× Jacobian}.

Then the Metropolis-Hastings ratio becomes∏
j,t

exp

{
− 1

2(τ
(M)
i )2

(ln(y
(M)
jit )− ln(η̃

(M)
jit ))2

}
exp

{
− 1

2(τ
(H)
i )2

(ln(y
(H)
jit )− ln(η̃

(H)
jit ))2

}
exp

{
− 1

2(τ
(M)
i )2

(ln(y
(M)
jit )− ln(η̂

(M)
jit ))2

}
exp

{
− 1

2(τ
(H)
i )2

(ln(y
(H)
jit )− ln(η̂

(H)
jit ))2

}


×
π(κ̃sil)π(κ̃si,l+1)

π(κ̂sil)

ϕ

1− ϕ

×
(κ̃si` + κ̃si,`+1)2

κ̂si`
.
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5 PECA-R: Inferring synthesis and degradation rates from pro-
teomic data not derived from a pulse-labeling experiment

PECA-R aims to estimate synthesis and degradation rates separately from proteomic concen-
tration data (along with mRNA). For example, the data might arise from label-free experiments
or proteins that were tagged with mass labels, such as TMT. The model expresses the total
concentration change as a sum of increase in concentration due to new synthesis and decreased
due to degradation. Note that if pulse-labeling, e.g. pulsed-SILAC, data is available, we highly
recommend using PECA-pS instead of PECA-R.

In PECA-R, the synthesis and degradation rate parameters are estimated under the following
assumptions:

• When the total concentration increases, it is due to the increase in the synthesis rate unless
the mRNA concentration increased drastically and can explain the protein concentration
increase even with an unchanged synthesis rate;

• When the total protein concentration decreases, it is due to the increase in the degradation
rate unless the mRNA concentration dropped dramatically and can explain the decrease
in protein concentration given constant synthesis and degradation rates.

The reason for imposing the aforementioned assumptions on the parameter space is straight-
forward. In label-free or TMT data, we only observe total protein changes, without separate
abundance measurements for newly synthesized and existing proteins. Hence when the pro-
tein concentration changes, this model has to make a decision as to whether the synthesis rate
and/or the degradation rate changed, considering the changes in mRNA concentration.

Since the total protein concentration changes can be explained by infinitely many combina-
tions of the two rate parameters, the statistical significance score (CPS) is often more diluted
in PECA-R than those values from PECA-pS. However, the PECA-pS model is not applicable
unless pulse labelled samples are available, and PECA-R is the next best option for non-pulse
labelled data within the PECAplus package if the estimation of synthesis and degradation is
the ultimate aim of the analysis.

Note that estimating rates of synthesis and degradation (which is done with PECA-pS and
PECA-R) is a goal different from simply extracting significant change points (which is done with
PECA Core and PECA-N). Estimating rates aims at estimating relative ?speeds? of synthesis
and degradation - they are not absolute, i.e. only applicable when comparing across genes, and
have to be used with care. In contrast, significance analysis by PECA Core provides significance
scores (CPS) and false discovery rates and information on the direction of the regulation (up or
down) for each gene and each time point without providing rates. While PECA-R also provides
CPS values, they are not as reliable for estimating significance of change as those from PECA
Core.

Suppose that we have parallel mRNA and protein expression data X = {xjit}, Y = {yjit}
for protein i = 1, . . . , I in replicates j = 1, . . . , N observed over time points (h0, . . . , hT ). Time
h0 indicates the time point before the samples are treated or the baseline of subsequent time
points. We assume that the protein expression measurements follow log normal distributions

yjit ∼ LN
(
ln(ηjit), τ

2
i

)
after proper normalization of the data. Our goal is to infer the protein synthesis rate κsit and
the degradation rate κdit during the interval (ht, ht+1) of length ∆ht = (ht+1 − ht) for protein i.
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More importantly, the mean parameters are related between adjacent time points as follows:

ηji,t+1 = ηjit + ∆ht

(
f(xjit)κ

s
it − ηjitκdit

)
(2)

where

f(x) = log(1 + x)

for t = 0, 1, . . . , T − 1.
Similar to PECA-pS, we again formulated another change point model to describe the prob-

ability distribution of synthesis rates κsi = (κsi0, · · · , κsi,T−1) as follows. For gene i, let C
(s)
i and

|C(s)
i | denote the change point sets for synthesis rates {t : κsi,t−1 6= κsit|0, 1, · · · , T − 1} and the

size of the set, respectively. If the synthesis rate κsi remained constant across time, C
(s)
i is an

empty set; if some elements of κsi were distinct from others, C
(s)
i is the set of all intermediate

time points from 1 to T − 1 with different adjacent rates. The change point set C
(d)
i for the

degradation rate parameters κdi are defined similarly. Again, the CPS scores are computed as
the posterior probability of change point, i.e. P (κsi,t−1 6= κsit|x,y) for the synthesis parameter

and P (κdi,t−1 6= κdit|x,y) for the degradation parameter of each gene i at time t.

5.1 Likelihood and prior distributions

First, the likelihood of the entire model is

(likelihood) =
I∏
i=1

N∏
j=1

T∏
t=0

1

yjitτi
√

2π
exp

[
− 1

2(τi)2
(ln(yjit)− ln(ηjit))

2

]
where

ηjit =ηji0 +
t−1∑
`=0

∆h`

(
f(xji`)κ

s
i` − ηji`κdi`

)
We specify prior distributions that are the least subjective with wide variance parameters:

ηji0 ∼LN (0, 1002) for j = 0, . . . , N

κsi` ∼LN (0, 1) for ` = 0, . . . , |C(s)
i |

κdi` ∼LN (0, 1) for ` = 0, . . . , |C(d)
i |

(τi)
−2 ∼G(a, b)

for fixed change point sets C
(s)
i ,C

(d)
i for all i (genes), where N , LN , G denote normal, log-

normal, and gamma distributions respectively. We also assume that the change point set C
(s)
i

has the following prior:

π(C
(s)
i ) ∝ϕ|C

(s)
i |(1− ϕ)T−1−|C(s)

i |

The priors are set similarly for the change point set for degradation parameter C
(d)
i .
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5.2 MCMC sampler

The model parameters are updated in the following order:

{ηji0}Nj=0 → τ2
i → {κ′it}T−1

t=0 → Ci

for all i. This whole cycle is repeated for 1,000 iterations for burn-in period and M = 10, 000
iterations for the main iteration with thinning of 10 samples, in both simulation and data
analysis sections that follow. We use hat and tilde symbols to denote current and proposal
values respectively.

1. We first start with ηji0. We run the random walk Metropolis algorithm chain in the log-
space by generating the proposal log(η̃ji0) from N (log(η̂ji0), 1) or equivalently η̃ji0 from
η̂ji0 exp(N (0, 1)). Running the chain in the log-space alleviate the need to tune for step
sizes for each ηji0. Since this parameter is involved in the expected expression values at
all time points, the likelihood has to be evaluated at all time points for updating each of
these parameters.

2. Next, we draw the variance parameter (τi)
2 by Gibbs sampling from inverse gamma dis-

tribution IG(am +N(T + 1)/2, bm +
∑

j,t(yjit − ηjit)2/2).

3. Next, we draw {κsi`} for ` = 0, . . . , |C(s)
i | under the fixed C

(s)
i for each protein i. Again

we run the chain in the log-space as we have done for ηji0. i.e. draw a proposal value κ̃si`
from κ̂si` exp(N (0, 1)) and accept or reject afterwards.
Similarly for {κdi`}.

4. Finally, we update the change point set C
(s)
i . There are two different moves: birth of a

new change point and removal (death) of an existing change point. Since these two moves
are reversible in notation, we just describe the birth move here. Suppose that κ̂si` covers a
time period (ht, ht+m) that contains at least one observation time(s). Then we propose a
birth of a new change point h∗ ∈ {ht+1, . . . , ht+m−1} within the interval (chosen from one
of the intermediate time points) and break the current rate parameter into two daughter
parameters, namely (κ̃si`, κ̃

s
i,`+1) where it is required to meet

(h∗ − ht) · log(κ̃si`) + (ht+m − h∗) · log(κ̃si,`+1) = (ht+m − ht) · log(κ̂si`)

with a random perturbation such that

κ̃si,`+1 =
1− u
u

κ̃si`,

with u ∼ Uniform(0, 1). Under this transformation, the Jacobian is
(κ̃si`+κ̃

s
i,`+1)2

κ̂si`
for

(κ̂si`, u)→ (κ̃si`, κ̃
s
i,`+1). Hence the Metropolis-Hastings ratio for the birth move just equals

the posterior ratio times the Jacobian since the acceptance probability of this proposal is

min{1, likelihood ratio× prior ratio× proposal ratio× Jacobian}.
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Then the Metropolis-Hastings ratio becomes∏
j,t

exp
{
− 1

2(τi)2
(ln(yjit)− ln(η̃jit))

2
}

exp
{
− 1

2(τi)2
(ln(yjit)− ln(η̂jit))2

}


×
π(κ̃sil)π(κ̃si,l+1)

π(κ̂sil)

ϕ

1− ϕ

×
(κ̃si` + κ̃si,`+1)2

κ̂si`
.
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