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Supplementary	Figure	1.	GRACE	corrects	for	correlation	bias	from	copy	number	variation	in	CCLE	cell	
line	data	and	METABRIC	discovery	set	data	
a,	Relative	frequency	distribution	of	chromosomal	neighbors	in	top	10	co-expressing	genes	for	all	genes	
based	on	CCLE	 cell	 line	data.	b,	c,	 Kernel	density	estimation	plots	 that	 visualize	 the	distribution	of	
pooled	 Spearman	 rank	 correlation	 coefficients	 for	 top	 10	 co-expressing	 genes	 from	 the	 same	
chromosome	 (b)	 or	 not	 from	 the	 same	 chromosome	 (c)	 based	 on	 CCLE	 cell	 line	 data.	 d,	 Relative	
frequency	distribution	of	chromosomal	neighbors	in	top	10	co-expressing	genes	for	all	genes	based	on	
METABRIC	discovery	 set	data.	e,	 f,	Kernel	density	estimation	plots	 that	visualize	 the	distribution	of	
pooled	 Spearman	 rank	 correlation	 coefficients	 for	 top	 10	 co-expressing	 genes	 from	 the	 same	
chromosome	(e)	or	not	from	the	same	chromosome	(f)	based	on	METABRIC	discovery	set	data.	
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Supplementary	Figure	2.	PARP1	levels	and	enrichment	in	different	gene	sets	
a,	 b,	 Levels	 of	 PARP1	 (a)	 and	 PARP2	 (b)	 in	 normal	 and	 tumor	 samples.	 PARP1	 but	 not	 PARP2	 is	
upregulated	in	the	tumor	samples	compared	to	the	normal	samples.	In	the	boxplot,	the	lower	whisker	
extends	 from	 the	 lower	 quartile	 to	 the	 lowest	 smaller	 value	 within	 1.5	 inter-quartile-range	 (IQR)	
whereas	the	upper	whisker	extends	from	the	upper	quartile	to	the	highest	larger	value	within	1.5	IQR.	
c,	d,	Enrichment	of	gene	set	“REACTOME_CELL_CYCLE”	(c)	or	“Zinc	fingers,	C2H2-type”	(d)	in	the	top	
100	 PARP1	 co-expressing	 genes	 by	 standard	 method	 or	 GRACE	 in	 tumor	 or	 normal	 tissues	 from	
different	TCGA	cohorts.	Similar	to	PARP2,	PARP1	co-expressing	genes	in	tumor	tissues	are	enriched	in	
cell	cycle	genes,	but	unlike	PARP1,	PARP2	co-expressing	genes	from	normal	samples	are	not	enriched	
in	genes	encoding	C2H2-type	zinc	finger	proteins.		
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Supplementary	Figure	3.	Limitations	of	GRACE	
a,	Copy	number	versus	RNA	levels	of	ERBB2	from	tumor	samples.	b,	Kernel	density	estimation	plots	
that	visualize	the	distribution	of	pooled	Spearman	rank	correlation	coefficients	for	pairwise	correlation	
from	all	the	genes	using	tumor	samples	(by	standard	method	or	GRACE)	or	normal	samples.	Analyses	
are	based	on	TCGA	BRCA	data.	c,	The	number	of	significant	pairwise	gene	correlations	calculated	from	
normal	 tissue	 data	 is	 higher	 than	 that	 from	 the	 tumor	 tissue	 data.	 d,	 Distribution	 of	 correlation	
coefficients	from	synthetic	samples	that	had	matched	tumor	and	normal	sample	expression	data	mixed	
together	at	different	ratios.	All	analyses	are	based	on	TCGA	BRCA	data.	
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Supplementary	Figure	4.	RNA	and	DNA	copy	number	scatter	plot	in	web	database	GRACE	
In	the	analysis	page	of	the	web	database	GRACE,	upon	entry	of	gene	name,	selection	of	analysis,	and	
cohort,	a	scatter	plot	of	RNA	and	relative	DNA	copy	number	will	be	generated.	Users	may	hover	the	
pointer	over	data	points	to	examine	the	exact	RNA	and	DNA	copy	number	values	as	well	as	the	TCGA	
label	for	the	sample.	
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Supplementary	 Figure	 5.	 Flowchart	 for	 stepwise	 analysis	 configuration	 and	 relational	 database	
design	for	GRACE	web	database	
The	stepwise	analysis	options	are	configured	 in	a	way	that	users	will	be	alerted	to	wrong	 inputs	or	
genes	without	data	available	for	analysis	in	the	first	step;	and	in	subsequent	steps,	only	options	with	
data	available	for	analysis	will	be	enabled.		
	



Supplementary Note 
 
In this study, we developed a method to adjust the effect of copy number alterations on gene 
expression in co-expression analysis of genes, together with a web-portal. We proposed an 
approximation method to improve the computation efficiency of the inference on large data 
sets with thousands of genes. Our method used a regression model to fit gene expression 
using copy number as predictors, and calculated the residuals, which is the gene expression 
values after adjusting for the copy number values. Our model computes the pairwise 
correlation of each pair of genes, taking account of the influence of the copy numbers. In this 
supplementary note, we use simulation studies to demonstrate that the calculated pairwise 
correlations approximate the true partial correlations in practice if the gene expression data 
follows Gaussian graphical models (GGMs). 
 
Let 𝒙" = 𝑥"% ⋯ 𝑥"' ⋯ 𝑥"(  denote the copy number values of genes 1, ⋯ , 𝑝 in sample 
𝑖. According to Gaussian graphical models (GGM), which are commonly used to infer the gene 
regulatory network, we simulated the gene expression levels 𝒚" = 𝑦"% ⋯ 𝑦"' ⋯ 𝑦"(  for 
sample 𝑖 from a multivariate normal distribution 𝒚"~MN 𝒃3 + 𝒃% ∘ 𝒙", 𝜮 + 𝜀8𝑰 , where ∘ denotes 
the Hadamard product (i.e. entry-wise product) and 𝑰 denotes the 𝑝-by-𝑝 identity matrix. For 
the copy numbers 𝒙% ⋯ 𝒙: , we borrowed the real data from TCGA BRCA cohort, which 
contains copy numbers of 18,680 genes for 𝑛 = 1,075 samples. We selected 𝑝 = 1000 genes 
at random. For the gene-specific coefficients 𝒃3 = 𝑏3% ⋯ 𝑏3' ⋯ 𝑏3(  and 𝒃% =
𝑏%% ⋯ 𝑏%' ⋯ 𝑏%( , we drew each element from 𝑏3'~N 0, 1  and 𝑏%'~N 1, 0.5 , 

respectively, where the latter imitates a positive relationship between gene copy number and 
expression. For the covariance matrix 𝜮, we generated its concentration matrix 𝛀 = 𝜮D%  as 
described below [1]). The initial 𝑝 -by- 𝑝  matrix 𝛀  was created by setting 𝜔'F =

1, 𝑗 = ℎ
0, 𝑗 ≠ ℎ, 𝑗 ≁ ℎ

0.5U −1,−0.5 + 0.5U 0.5,1 , 𝑗 ≠ ℎ, 𝑗 ∼ ℎ
, where 𝑗 ∼ ℎ  indicates that there is an edge 

between gene 𝑗  and ℎ , 𝑗 ≁ ℎ  means otherwise. Then, the non-zero elements in 𝛀  were 
rescaled to assure positive definiteness. Specifically, for each row, we first summed the 
absolute values of the off-diagonal elements, and then divided each off-diagonal entry by 1.5 
fold of the sum. We then averaged this rescaled matrix with its transpose to ensure symmetry. 
The inverse of the final matrix was denoted by 𝑨 = 𝛀D%. Therefore, the covariance matrix 𝜮 
was determined by 𝜎'F = 𝑎'F 𝑎''𝑎FF . For the network structure, we assumed that it was 
composed of disjointed modules as many real biological networks exhibit such a feature. Each 
of 𝐾 = 5 modules had 200 vertices. For the same network, all modules followed the same 
network model (but are not necessarily the same setting). The three major network models that 
we considered are: autoregressive (AR) model, Barabási-Albert (BA) model, and Erdős-Rényi 
(ER) model. Specifically, for the AR model, we took a ring with all vertices and connected each 
vertex to its nearest 4 neighbors; for the BA model, we set the power parameter to 2, as many 
real biological networks have a scale-free degree distribution with an estimated power 
parameter 2~3  [2]; for the ER model, we randomly connected each pair of vertices with 
probability 1%.  
 



To assess the accuracy of GRACE under different noise levels, 𝜀 = 0, 0.1, 0.5, 1 and different 
network models, there were 4×3 = 12 group of synthetic datasets generated. For each group, 
100 datasets were independently simulated. To quantify the performance, we used the root-
mean-square error (RMSE) to measure the differences between the true correlation matrix 𝑷 =

diag 𝜮 D%/8𝜮 diag 𝜮 D%/8  and the estimated one 𝑷  by GRACE, calculated by RMSE =
`abD`ab

c
adb

( (D% 8
. The boxplot of RMSEs under different settings are displayed in Supplementary 

Figure 6. It shows that the estimated correlations by GRACE are good approximations of their 
true values, especially when the noise level is at a low level. Among the three network models, 
there is not much difference when 𝜀 < 0.5. However, if the noise level becomes stronger, the 
AR and BA models outperform the ER model. We also plotted the scatter points of the true and 
estimated correlation matrix for one of the synthetic datasets in the group, for which 𝜀 = 0.1 
and the network model is ER. As shown in Supplementary Figure 7, again, the estimated 
correlations by GRACE are good approximations of the truth with RMSE = 0.00093 . In 
summary, GRACE provides a good approximation of the partial correlation, and it greatly 
improves the computation efficiency. Furthermore, Supplementary Figure 8 shows the result 
when we directly calculated the correlations of expression levels between each pair of genes, 
without considering the effect of copy number values on gene expression levels. As we can 
see, it fails to recover the truth and results in a number of false positives, so it is important to 
adjust the copy number in the co-expression analysis.  
 

 
Supplementary Figure 6. The boxplots of RMSEs under different network models (AR, BA, and 
ER) and different noise levels ε. 
 



 

 
Supplementary Figure 7.  The scatter plot of the upper-triangle entries of the true correlation 
matrix diag 𝜮 D%/8𝜮 diag 𝜮 D%/8 and of the estimated correlation matrix by GRACE.  
 

 
Supplementary Figure 8. The scatter plot of the upper-triangle entries of the true correlation 
matrix diag 𝜮 D%/8𝜮 diag 𝜮 D%/8and of the correlation matrix of gene expression levels data 
corr 𝑦% ⋯ 𝑦( . 
 

In addition, we provide the justification of our statistical method below. 



The residual for gene 𝑗 is defined as 𝑟' = 𝑌' − 𝛽'𝑋' = 𝛼'F𝑌F + 𝜀'. 

Assuming 𝑋' and 𝑌F are independent for all 𝑗 ≠ ℎ, the covariance between two residuals 𝑟' and 
𝑟F is Cov(𝑟', 𝑟F) = 𝛼'F𝛼F'Cov(𝑌', 𝑌F). 

Plugging the regression model into 𝑌F, we obtain 

Cov(𝑟', 𝑟F) = 𝛼'F𝛼F'Cov(𝑌', 𝛼F'𝑌') = 𝛼'F𝛼F'8  

Similarly, we have Cov(𝑟F, 𝑟') = 𝛼'F8 𝛼F', which implies 𝛼F' = 𝛼'F. Then, the correlation between 
𝑟' and 𝑟F can be written as 

𝜌'F =
𝛼'Ft

(𝛼'F8 + 𝜎'8)(𝛼'F8 + 𝜎F8)
 

From our experience, our regression model yields a high coefficient of determination (i.e. 𝑅8), 
which provides an upper bound for 𝜎'8 ≤ (1 − 𝑅')8 ≈ 0 and 𝜎F8 ≤ (1 − 𝑅F)8 ≈ 0. Hence, 𝜌'F can 
be considered as a close approximation of 𝛼'F. Also, in a situation with low 𝑅'8 and 𝑅F8, the high 
correlation can be used as an indication for high value of 𝛼'F = 𝛼F'. As a result, the 
computation can be simplified to a calculation of the correlation of the residual, 𝜌'F, instead of 
the 𝛼'F. 

In summary, our GRACE model is able to recover the true covariance structure of genes, as 
well as its corresponding precision matrix, which indicates co-expressed gene sets. This 
simulation study also demonstrates the power of GRACE under different noise levels and 
major network models. 
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