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SUPPLEMENTARY NOTE 1:
DEFINITIONS OF HEAT

In the main text, the heat dissipated in a process involving a
system and a bath B has been defined as ∆Q = kT∆SB, such
as the common description: “flow of energy to a bath some
way other than through work” suggests. Note, however, that
this is not the most extended definition of heat that one finds in
many works, e.g., [1, 2], where heat is defined as the change
in the internal energy of the bath, i. e.

∆Q̃ B −∆EB , (1)

and no different types of energy are distinguished in this in-
crease of energy. In this section, we compare these two def-
initions and argue why the approach taken here, though less
extended, seems the most appropriate.

The ambiguity in defining heat comes from the different
ways in which the change in the internal energy of the sys-
tem ES can be decomposed. More explicitly, let us con-
sider a unitary process USB acting on a system-bath state ρSB
with ρB = Tr SρSB = τB ∝ e−HB/kT and global Hamiltonian
H = HS ⊗ I + I ⊗ HB. The change in the total internal en-
ergy ∆ESB is the sum of system and bath internal energies
∆ESB = ∆ES + ∆EB, or equivalently

∆ES = ∆ESB − ∆EB . (2)

Many text-books identify in this decomposition ∆W B
−∆ESB as work and ∆Q̃ = −∆EB as heat. Nevertheless, note
that it also assigns to heat increases of the internal energy that
are not irreversibly lost and can be recovered when having a
bath at our disposal.

To highlight the incompleteness of the above definition, let
us consider a reversible process USB = I⊗UB that acts trivially
on the system. Then, even though the state of the system is
untouched in such a process, the amount of heat dissipated is
∆Q̃ = −∆EB = Tr [HB(ρB − UBρBU†B)].

In order to avoid this kind of paradoxes and in the spirit of
the definition given above, we subtract from ∆EB its compo-
nent of energy that can still be extracted (accessed). Then for
a transformation ρB → ρ′B, the heat transferred is given as

∆Q = −(∆EB − ∆FB),
= −kT ∆SB,

(3)

where ∆FB = F(ρ′B) − F(ρB) is the work stored on the
bath and can be extracted. Here, F(ρX) = EX − kT S(ρX)
is the Helmholtz free energy, EX is the internal energy and
∆SB = S(ρ′B)−S(ρB) is the change in the bath’s von Neumann
entropy, S(ρB) = −Tr

[
ρB log2 ρB

]
. Throughout this work, we

consider log2 as the unit of entropy.
Let us remark that in practical situations, in the limit of

large baths, both definitions coincide. To see it, take Supple-
mentary Eq. (3) and note that both definitions only differ in
the free energy difference term, which together with the fact
that the free energy is minimized by the thermal state, implies
that the difference is very small when the bath is slightly per-
turbed. However, when studying thermodynamics at the quan-
tum regime with small machines approaching the nanoscale

such conceptual differences are crucial to extend, for instance,
the domain of standard thermodynamics to situations where
the correlations become relevant.

Note finally that both definitions express a path dependent
quantity of the system like heat in terms of a difference of state
functions of the bath. The path dependence character comes
from the fact that there are several processes that leave the
system in the same state but the bath in a different one. This
connects with Clausius inequality, which is usually stated as∮

dQ
T
6 0 (4)

where the integral is taken over a cyclic path and the equality
is only saturated by quasiestatic processes. In our framework
and for the case of defining heat by means of information (en-
tropy), the Clausius inequality is a consequence of the posi-
tivity of the mutual information. That is, by assuming global
entropy preservation we have

∆SS = −∆SB + ∆I(S : B) =
∆Q
T

+ ∆I(S : B) (5)

where I(S : B) = SS+SB−SSB is the mutual information. For
an initially uncorrelated system-bath, the mutual information
can only increase ∆I(S : B) ≥ 0, and

∆Q
T
6 ∆SS . (6)

For the definition of heat as an increase of the internal en-
ergy, we have

∆Q̃ = ∆Q − ∆FB 6 ∆Q , (7)

where we have used Supplementary Eq. (3) and the positivity
of the free energy change. In sum, for the case of initially
uncorrelated states, we recover the Clausius inequality,

∆Q̃ 6 ∆Q 6 T∆S . (8)

The deficit for the first inequality to be saturated is ∆FB, that
is, the energy that can still extracted from the bath. If one has a
limited access to the bath, an apparent relaxation process will
follow and the bath will thermalize keeping its energy con-
stant. This will imply an entropy increase of the bath ∆FB/T
which will make ∆Q̃ and ∆Q coincide.

The deficit to saturate the second inequality in Supplemen-
tary Eq. (8) is ∆I(S : B), that is, the amount of enabled corre-
lations during the process. One of the main ideas of this work
is to show that these correlations capture a free energy that can
be extracted.

SUPPLEMENTARY NOTE 2:
SET OF OPERATIONS

The set of operations that we consider in this manuscript is
the so called entropy preserving operations. Given a system
initially in a state ρ, the set of entropy preserving operations
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are all the operations that change arbitrarily the state but keep
its entropy constant

ρ→ σ : S(ρ) = S(σ) , (9)

where S(ρ) B −Tr (ρ log ρ) is the Von Neumann entropy. It
is important to note that an operation that acting on ρ pro-
duces a state with the same entropy does not mean that will
also preserve entropy when acting on other states. In other
words, such entropy preserving operations are in general not
linear, since they have to be constraint to some input state. In
fact, in [3], it is shown that a quantum channel Λ(·) that pre-
serves entropy and respects linearity, i. e. Λ(pρ1 + (1− p)ρ2) =

pΛ(ρ1) + (1 − p)Λ(ρ2), has to be necessarily unitary.
One could think then that the extension of the unitaries to a

set of entropy preserving operations is rather unphysical since
they are not linear. However, they can be microscopically de-
scribed by global unitaries in the limit of many copies [4].
That is, given any two states ρ and σ with equal entropies
S (ρ) = S (σ), then there exists a unitary U and an additional
system of O(

√
n log n) ancillary qubits such that

lim
n→∞
‖Tr anc

(
Uρ⊗n ⊗ ηU†

)
− σ⊗n‖ = 0 , (10)

where ‖ · ‖ is the one-norm and the partial trace is performed
on the ancillary qubits. The reverse statement is also true, i. e.
if two states can be related as in Supplementary Eq. (10) then
they have equal entropies. This is proven in Theorem 4 of
Ref. [4].

Sometimes it can be interesting to restrict entropy preserv-
ing operations to also be energy preserving. The set of energy
and entropy preserving channels can also be described as a
global energy preserving unitary in the many copy limit. More
explicitly, in Theorem 1 of Ref. [4], it is proven that two states
ρ and σ having equal entropies and energies (S (ρ) = S (σ)
and E(ρ) = E(σ)) is equivalent to the existence of some U
and an additional system A with O(

√
n log n) ancillary qubits

with Hamiltonian ‖HA‖ 6 O(n2/3) in some state η for which
Supplementary Eq. (10) is fulfilled. Note that the amount of
energy and entropy of the ancillary system per copy vanishes
in the large n limit.

In sum, considering the set of entropy preserving operations
means implicitly taking the limit of many copies and global
unitaries. In addition, as that the set of entropy preserving
operations contains the set of unitaries, any constraint that ap-
pears as a consequence of entropy preservation will be also
respected by individual quantum systems.

The Hamiltonians of the system and the bath are the same
before and after the transformation Λ(·). This can be done
without loss of generality since, when this is not the case
and the final Hamiltonian is different from the initial one, the
two situations are related by a simple quench (instantaneous
change of the Hamiltonian). More explicitly, let us consider
a process (a) with equal initial and final Hamiltonian, and an
identical process (b) with different ,

(a) (H, ρi) → (H, ρf) (11)
(b) (H, ρi) → (H′, ρf) (12)

where ρi/f is the inital/final state, H the inital Hamiltonian and
H′ the final Hamiltonian of the process with different Hamil-
tonians. Then, it is trivial to relate the work and heat involved
in both processes

W ′ = W + Tr
(
(H − H′)ρf

)
(13)

Q′ = Q , (14)

where W ′ and Q′ are the work and heat associated to the pro-
cess (b) and we have only used that the process (b) is the com-
position of the process (a) followed by a quantum quench.

Let us finally point out that initially and finally the Hamilto-
nians of system and bath are not interacting, or in other words,
the system is decoupled from the bath

H = HS ⊗ I + I ⊗ HB , (15)

with HS/B the Hamiltonian of the system/bath. This is a nec-
essary condition to be able to consider system and bath as in-
dependent systems each with a well defined notion of energy.
Otherwise, assigning an energy to the system and to the bath
would not be possible beyond the weak coupling limit. Note
that the system and the bath interact (arbitrarily strongly) dur-
ing the process, in which for instance a non-product unitary
could be performed.

SUPPLEMENTARY NOTE 3:
THE LANDAUER PRINCIPLE

The information theory and statistical mechanics have long-
standing and intricate relation. In particular, to exorcise
Maxwell’s demon in the context of statistical thermodynam-
ics, Landauer first indicated that information is physical and
any manipulation of that has thermodynamic cost. As put for-
ward by Bennett [5], the Landauer information erasure prin-
ciple (LEP) implies that “any logically irreversible manipula-
tion of information, such as the erasure of a bit or the merg-
ing of two computation paths, must be accompanied by a cor-
responding entropy increase in non-information-bearing de-
grees of freedom of the information-processing apparatus or
its environment.”

Following the definition of heat, it indicates that, in such
processes, entropy increase in non-information-bearing de-
grees of freedom of a bath is essentially associated with flow
of heat to the bath. The major contribution of this work is to
exclusively quantify heat in terms of flow of information, in-
stead of counting it with the flow of non-extractable energy,
the work. To establish this we start with the case of infor-
mation erasure of a memory. Consider a physical process
where an event, denoted with i, happens with the probability
pi. Then storing (classical) information memorizing the pro-
cess means constructing a d-dimensional system (a memory-
dit) in a state ρS =

∑
i pi|i〉〈i|, where {|i〉} are the orthonor-

mal basis correspond to the event i. In other words, memoriz-
ing the physical process is nothing but constructing a memory
state ρS =

∑
i pi|i〉〈i| from a memoryless state |i〉〈i| where i

could assume any values 1 6 i 6 d. On the contrary, pro-
cess of erasing requires the transformation of a memory state
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ρS =
∑

i pi|i〉〈i| to a memoryless state |i〉〈i| for any i. Lan-
dauer’s erasure principle (LEP) implies that erasing informa-
tion, a process involving a global evolution of the memory-dit
system and its environment, is inevitably associated with an
increase in entropy in the environment.

In establishing the connection between information eras-
ing and heat dissipation, we make two assumptions to start
with. First, the memory-system (S) and bath (B) are both de-
scribed by the Hilbert space HS ⊗ HB. Secondly, the eras-
ing process involves entropy preserving operation ΛSB, i.e.,
ρ′SB = ΛSB (ρSB). The latter assumption is most natural and
important, as it preserves information content in the joint
memory-environment system. Without loss of generality, one
can further assume that the system and bath Hamiltonians re-
main unchanged throughout the erasing process, to ease the
derivations.

Now we consider the simplest information erasing scenario,
which leads to LEP in its traditional form. In this scenario, a
system ρS is brought in contact with a bath ρB and the system
is transformed to a information erased state, say |0〉〈0|S, by
performing a global entropy-preserving operation ΛSB, i.e.,

ρS ⊗ ρB
ΛSB

−−−→ |0〉〈0|S ⊗ ρ′B, (16)

where initial and final joint system-bath states are uncorre-
lated. The joint operation guarantees that the decrease in
system’s entropy is exactly equal to the increase in bath en-
tropy and heat dissipated to the bath is ∆Q = −kT ∆SB. It
clearly indicates that an erasure process is expected to heat up
the bath. This in turn also says that ∆Q = kT ∆SS, where
∆SS = S(ρ′S) − S(ρS). In the case where the d-dimensional
system memorizes maximum information, or in other words
it is maximally mixed and contains log2 d bits of information,
the process dissipates an amount kT log2 d of heat to com-
pletely erase the information. In other words, to erase one bit
of information system requires the dissipation of kT of heat
and we denote it as one heat-bit or `-bit (in honour of Lan-
dauer).

In the case where the final state may be correlated, the dis-
sipated heat in general is lower bounded by the entropy reduc-
tion in the system, i.e.,

|∆Q| > kT |∆SS|. (17)

This is what is generally known as the Landauer’s erasure
principle (LEP), in terms of heat.

The above formulation of LEP crucially relies on the fact
that any change in system entropy leads to a larger change
in the bath entropy, which is also traditionally known as the
second law for the change in the information, i.e.,

∆SB > −∆SS. (18)

However, it is limited by the assumptions made above and can
be violated with initial correlations. Consider the examples
in section of the Supplementary Information. In both the ex-
amples, ∆SB � −∆SS. Therefore, one has to replace it with
generalized informational second law.

SUPPLEMENTARY NOTE 4:
VIOLATIONS OF LAWS OF THERMODYNAMICS

In order to highlight how the laws of thermodynamics break
down in the presence of correlations, let us discuss the follow-
ing two examples. In the first, the system S is purely classi-
cally correlated with the bath B at temperature T , while in
the other they are jointly in a pure state and share quantum
entanglement. In both the examples the Hamiltonians of the
system and bath (HS and HB) remain unchanged throughout
the processes.
Example 1 – Classical correlations.

ρSB =
∑

i

pi|i〉〈i|S ⊗ |i〉〈i|B
Uc

SB
−−−→ ρ′SB = |φ〉〈φ|S ⊗

∑
i

pi|i〉〈i|B,

Example 2 – Entanglement.

|Ψ〉SB =
∑

i

√
pi |i〉S|i〉B

Ue
SB
−−−→ |Ψ〉′SB = |φ〉S ⊗ |φ〉B,

where in both examples |φ〉X =
∑

i
√

pi |i〉X with X ∈ {S,B}
and 1 > pi ≥ 0 for all i. Note that the unitaries, Uc

SB and Ue
SB,

leave the local energies of system and bath unchanged, and
Uc

SB does not change the bath state.

A. Violations of first law

In Example 1, the Helmholtz free energy of the system
increases F(|φ〉S) > F(ρS) and therefore a work −∆WS =

∆FS > 0 is performed on the system. To assure the energy
conservation of the system, an equal amount of heat is re-
quired to be transferred to the bath. Surprisingly, however, no
heat is transferred to the bath as it remains unchanged. Thus
∆ES , −∆WS + ∆Q, i.e. the energy conservation is violated
and so the first law.

A further violation can also be seen in Example 2 involving
system-bath quantum entanglement. In this case, a non-zero
work −∆WS = ∆FS > 0 has been performed on the system,
and a heat flow to the bath is expected. In contrast, there is a
negative heat flow to the bath! Therefore, it violates the first
law, i.e. ∆ES , −∆WS + ∆Q.

B. Violations of second law and anomalous heat flows

We now show how correlation could result in a violation
of the Kelvin-Planck statement of the second law, which
states: No process is possible whose sole result is the ab-
sorption of heat from a reservoir and the conversion of this
heat into work. In Example 1, no change in the local bath
state indicates that there is no transfer of heat. However, the
change in the Helmholtz free energy of the local system is
−∆WS = ∆FS > 0. Thus, a non-zero amount of work is per-
formed on the system without even absorbing heat from the
bath (∆Q = 0).
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The situation becomes more striking in Example 2, with ini-
tial system-bath entanglement. In this case, −∆WS = ∆FS > 0
amount of work is performed on the system. However, not
only is there no heat flow from the bath to the system, but
there is a negative heat flow to the bath! Thus, the second law
is violated.

We next see how the presence of correlations can lead to
anomalous heat flows and thereby a violation of the Clau-
sius statement based second law. Such violations were known
for the other definition of heat ∆Q = −∆EB (see [2] and
references therein). Here we show that such violations are
also there with new heat definition ∆Q = −kT∆S B. Let
ρAB ∈ HA ⊗ HB be an initial bipartite finite dimensional
state whose marginals ρA = Tr BρAB = 1

ZA
exp[− HA

kTA
] and

ρB = 1
ZB

exp[− HB
kTB

] are thermal states at different temperatures
TA and TB and with Hamiltonians HA and HB. In absence of
initial correlations between the baths A and B, any energy pre-
serving unitary will respect Clausius’ statement of the second
law. However, if initial correlations are present, this will not
be necessarily the case.

Consider a state transformation ρ′SB = UABρABU†AB where
UAB is a energy preserving unitary acting on ρAB. As the ther-
mal state minimizes the free energy, the final reduced states
ρ′S and ρ′B have increased their free energy,

∆EA − kTA∆S A ≥ 0 (19)
∆EB − kTB∆S B ≥ 0 , (20)

where TA/B is the initial temperature of the baths, and ∆EA/B
and ∆S A/B are the change in internal energy and entropy re-
spectively.

By adding Supplementary Eqs. (19) and (20), and consid-
ering energy conservation, we get

TA∆S A + TB∆S B ≤ 0 . (21)

Due to the conservation of total entropy, the change in mutual
information is simply ∆I(A : B) = ∆S A + ∆S B, with I(A :
B) = SA +SB−SAB. This allows us to rewrite Supplementary
Eq. (21) in terms of only the entropy change in A as

(TA − TB)∆S A ≤ −TB∆I(A : B) . (22)

If the initial state ρAB = ρA ⊗ ρB is uncorrelated, then the
change in mutual information is necessarily positive ∆I(A :
B) ≥ 0, and

k(TA − TB)∆S A = −∆QA
TA − TB

TA
≤ 0. (23)

To see that this equation is precisely the Clausius statement,
consider without loss of generality that A is the hot bath and
TA − TB > 0. Then, Supplementary inequality (23) implies
an entropy reduction of the hot bath ∆S A ≤ 0 i. e. a heat flow
from the hot bath to the cold one.

However, if the the system is initially correlated, the pro-
cess can reduce the mutual information, ∆I(A : B) < 0, and

Supplementary Eq. (22) allows a heat flow from the cold bath
to the hot one.

C. Violations of zeroth law

The zeroth law establishes the notion of thermal equilib-
rium as an equivalence relation, in which temperature labels
the different equivalent classes. To see that the presence of
correlations also invalidates the zeroth law, we show that the
transitive property of the equivalence relation is not fulfilled.
Consider a bipartite system AC in an initial correlated state
ρAC, like in Examples 1 and 2, and a third party B which is
in a thermal state at the same temperature of the marginals ρA
and ρC. Then, while the subsystems AB and BC are mutually
in equilibrium, the subsystems AC are not, clearly violating
transitivity. There are several ways to realize that the parties
AC are not in equilibrium. One way is to see that any en-
ergy preserving unitary, except for the identity, decreases the
amount of correlations between the parties, ∆I(A : C) < 0,
which implies that the initial state is not stable. This can be
shown from Supplementary Eq. (21) for the particular case of
equal temperatures and the definition of mutual information.
Another way is to see that the Helmholtz free energy follows
F(ρAC) > F(ρA ⊗ ρC).

D. Violations of Landauer’s erasure principle

Another thermodynamic principle that breaks down when
correlations are present is Landauer’s erasure principle. Lan-
dauer postulated that in order to erase one bit of information
in the presence of a bath at temperature T , an amount of heat
needed to be dissipated is kT log 2. As noted in [1], when the
system is classically correlated, there exists erasing process
which does not increase entropy of the bath (see Example 1).
The situation becomes more striking when the system shares
quantum entanglement with the bath. This is the case of Ex-
ample 2 with initial entanglement, where instead of increas-
ing, an erasing process reduces the entropy of the bath and the
bath is cooled down.
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