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Supplementary Note 1 - Trapped 171Yb+ ion qubits

The experimental systems considered in this work con-
sist either of an ensemble of trapped 171Yb+ ions or, for
the intrinsic noise measurements, of a single trapped ion
of the same species. Both configurations use a linear Paul
trap enclosed in an ultra-high vacuum chamber. The ions
are Doppler-cooled on the 2S1/2 to 2P1/2 transition us-
ing a 369 nm laser and additional repump lasers to depop-
ulate undesired states. Qubits are realized by the mag-
netic dipole transition in the ground state hyperfine split-
ting between the states |1〉 ≡ 1S1/2 |F = 1,mF = 0〉 and
|0〉 ≡ 1S1/2 |F = 0,mF = 0〉 with a transition frequency of
approximately 12.6 GHz. In the Bloch sphere picture, these
two states correspond to the eigenstates of the σz operator.
State preparation and readout in z is accomplished optically
via the 2S1/2 to 2P1/2 transition. Full details appear in [1, 2].

We drive the qubit transition using an low phase noise vec-
tor signal generator (Agilent E8267D) locked to an atomic
caesium reference. The microwaves are amplified using a
18 dB amplifier (Microsemi AML618P1802) and delivered to
the ions using two configurations for the different ion trap
setups. For the ion ensemble, the amplifier output is routed
through a conical microwave horn with a dielectric lens (Flann
Microwave CL320-4901). For the single-ion experiments, we
use a co-ax to waveguide converter (Flann Microwave 17094-
SF40) which is butt-coupled to an optical viewport on the vac-
uum assembly. To implement arbitrary control protocols, we
modulate the driving field through the inbuilt I/Q modulator,
where we set our frame of reference such that pulses modu-
lated by the I-component only implement rotations about x,
and those modulated with the Q-component drive rotations
about the y axis. Rotations about z, as performed in the exper-
iments shown in Fig. 3, are implemented through frequency
shifts of the carrier applied for a fixed amount of time. The
control shapes presented in the main text are directly synthe-
sised as either I or Q waveforms, which we compute digi-
tally and which are passed through an intermediate digital-to-
analog converter.

For experiments using engineered amplitude and (or) phase
noise, we follow the protocol in [2].

Supplementary Note 2 - Control framework

The control-theoretic framework used in this work is de-
scribed in detail in [3] and has been experimentally validated
in [2, 4]. Here, we briefly reiterate the basic aspects necessary
to support the experiments described in the main text.

A qubit subject to external control rotations about the x
and y axes, implemented through modulation of the ampli-
tude Ω(t) and phase of the driving field φ(t), evolves under
the ideal control Hamiltonian (in units ~ = 1)

Hc(t) = Ω(t)[cos(φ(t))σx + sin(φ(t))σy]/2, (1)

where a transformation to the interaction picture with respect
to the qubit energy level splitting is understood. Any distur-

LO

Baseband 
DAC

Wave guide 

Gain 
control

Digital control envelopes

free space 
to trap

Keysight
PSG E8267D

a

+18dBIsolator

b

c

Supplementary Figure 1. Setup schematic of the single-ion experi-
ment and implementation of qubit control. a) The control waveforms
for I and Q are synthesized digitally and passed to the baseband DAC
of vector signal generator. b) A simplified schematic of the key com-
ponents of the I/Q modulation inside the vector signal generator. The
output of the signal generator is amplified and a coax to waveguide
converter creates free-space microwaves, which are routed into the
trap. c) Bloch sphere representation of qubit control using I/Q mod-
ulation. I and Q implement perpendicular rotations around either the
x or y axis, and state initialisation and readout are principally done
by projecting onto z.

bance, either in the form of control-dependent amplitude and
dephasing errors, or due to ambient environmental dephasing,
leads to unwanted decoherence. We model the relevant noise
sources as classical, in terms of a noise Hamiltonian

H0(t) = βz(t)σz + βΩ(t)Hc(t), (2)

where βz,Ω(t) are two independent zero-mean, stationary
Gaussian random processes that represent multiplicative am-
plitude control noise and background dephasing noise, respec-
tively. The full qubit evolution is thus determined by

H(t) = H0(t) +Hc(t) = βz(t)σz +Hc(t)[1 + βΩ(t)]. (3)

It is convenient to work in a frame that co-rotates with the
ideal control, making the noise processes the only source of
rotation leading to deviations from the intended unitary evo-
lution – a nontrivial gate Q in the most general case. In this
frame, the effect of the noise on qubit dynamics may be iso-
lated in terms of an “error propagator” [5] as

Ũ(t) = T+exp

[
−i

∫ t

0

dsH̃0(s)

]
, H̃0(t) = Uc(t)†H0Uc(t),

(4)
where Uc(t) is the evolution operator generated by the ideal
control Hamiltonian Hc(t) in Supplementary Equation (1).
Over a duration τ , a gate Q = Uc(τ) ∈ {I, σx} is im-
plemented in our case, with the lab frame propagator being
U(τ) = QŨ(τ). Since for a qubit Ũ(t) ∈ U(2), the latter
may be equivalently expressed (up to a phase) as a rotation
operator on the Bloch sphere:

Ũ(t) = exp[−ia(t) · σ], (5)

where the Pauli vector σ ≡ [σx, σy, σz], and the time-
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dependent “error vector” a(t) ≡ [ax(t), ay(t), az(t)] captures
the rotation error along the three coordinate axes. The error
vector can be formally expressed in terms of a perturbative
series expansion, a(t) =

∑∞
n=1 a

(n)(t), where each a(n)(t)
corresponds to the nth-order term in the Magnus expansion
of Ũ(t). In the experimentally relevant regime, the noise
is sufficiently weak to justify truncating the Magnus expan-
sion to the leading (first) order, yielding a(t) ≈ a(1)(t), with
a

(1)
i (t) = Tr[σi

∫ t

0
dsH̃0(s)]/2.

For the case of control generated by amplitude modula-
tion along x as we use in the experiments, we may, with-
out loss of generality, let φ(t) ≡ 0 for all t in Supple-
mentary Equation (1). This yields the control propagator
Uc(t) = exp[−iΘ(t)σx/2], where the net rotation angle is
Θ(t) ≡

∫ t

0
dsΩ(s). The leading contributions to the error

vector components are then explicitly given by

a(1)
x (t) =

∫ t

0

dsΩ(s)βΩ(s)/2, (6)

a(1)
y (t) =

∫ t

0

ds sin(Θ(s))βz(s), (7)

a(1)
z (t) =

∫ t

0

ds cos(Θ(s))βz(s). (8)

Thus, amplitude noise is sensed by the x error-vector compo-
nent, while dephasing noise enters both the y and the z com-
ponents.

Supplementary Note 3 - Experimental measurables

To quantify the impact of noise in a way that is independent
of a particular initial state, we consider the gate (or process) fi-
delity, averaged over all realizations of the noise Hamiltonian
H0(t). This may be written as

Fav =
1

4
〈|Tr(Ũ)|2〉 =

1

2

(
1 + 〈cos(2|a(t)|)〉

)
, (9)

where |a(t)| = (a(t)·a(t))1/2 is the length of the error vector.
To relate to experimentally measurable quantities, we con-

sider projective measurements along z. If the qubit is prepared
in the | ↑z〉 (= |0〉, dark) eigenstate, and the target gateQ = I,
the survival probability (or state fidelity) in the state | ↑z〉 after
evolution under U(t) = Ũ(t) is found to be

P (↑z) = 〈|〈↑z |Ũ(t)| ↑z〉|2〉

=
〈1

2
+

[az(t)]2 + ([ax(t)]2 + [ay(t)]2) cos(2|a(t)|)
2|a(t)|2

〉
≈ 1− 〈[a(1)

x (t)]2〉 − 〈[a(1)
y (t)]2〉, (10)

where we assumed that |a(t)| is sufficiently small to truncate
the cosine at second order in its Taylor expansion.

For the experiments shown in the main text, excluding only
Fig. 3c, any dephasing contributions to the overall signal are
negligible (βz(t) ≈ 0), such that the first-order averaged fi-

delity is directly given by

Fav = P (↑z) ≈ 1− 〈[a(1)
x (t)]2〉. (11)

In general, from the above expressions for a(1)(t), the re-
construction of amplitude noise requires access to 〈[a(1)

x (t)]2〉
only. For cases in which dephasing contributions are sig-
nificant, the remaining components of a(1)(t) can be recon-
structed by using a three-axis measurement protocol. Similar
to P (↑z), the expected projections onto the x and y axes for
a qubit initially prepared in | ↑x〉 and | ↑y〉, respectively, are
given, to the leading order, by the expressions

P (↑x) ≈ 1− 〈[a(1)
y (t)]2〉 − 〈[a(1)

z (t)]2〉, (12)

P (↑y) ≈ 1− 〈[a(1)
x (t)]2〉 − 〈[a(1)

z (t)]2〉. (13)

Therefore, a combination of projective measurements in all
three axes provides access to the individual components of
the first-order error vector via

〈[a(1)
x (t)]2〉 ≈ (1 + P (↑x)− P (↑y)− P (↑z))/2, (14)

〈[a(1)
y (t)]2〉 ≈ (1 + P (↑y)− P (↑x)− P (↑z))/2, (15)

〈[a(1)
z (t)]2〉 ≈ (1 + P (↑z)− P (↑x)− P (↑y))/2. (16)

Experimentally, we may only measure in the qubit basis,
therefore additional π/2 rotations must be implemented to
measure the P (↑x) and P (↑y) projections. Supplementary
Figure 2 shows how these measurements were implemented.
Provided that all noise sources are sufficiently weak, Sup-
plementary Equation (11) is then generalized to Fav ≈ 1 −
〈|a(1)(t)|2〉. In the main text, we have used the short-hand no-
tation S ≡ 〈[a(1)

x (t)]2〉 in the context of discussing amplitude-
noise sensing in the presence of non-negligible dephasing.

Prepare Probe Read-out

Supplementary Figure 2. Schematic representation of pulse se-
quences required to measure projections along the three axes, P (↑x),
P (↑y), and P (↑z), in order to achieve tomographic reconstruction.
The ancillary π/2 pulses are implemented without the presence of
any engineered noise.

As noted, the probabilities and error vector components de-
fined above are given in the frame co-rotating with the ideal
control. To access these quantities in the lab frame in the gen-
eral case where Q 6= I, the unitary evolution generated by the
control and noise, U(t), is followed by a fast rotation about
the x axis, Q−1, to effectively “undo” the rotation generated
by the ideal control before the measurement. Since measure-
ments are performed only in the z basis, in order to determine
P (↑x) and P (↑y), an extra, fast, π/2 rotation is applied to the



3

qubit (about the y or x axis, respectively) to bring the state
back to the z basis before the measurement (see also Supple-
mentary Figure 2).

Supplementary Note 4 - Frequency domain filter functions

Under the assumptions for the noise processes βΩ(t) and
βz(t) mentioned above, the leading-order error vector has a
spectral representation given by

〈|a(1)(t)|2〉 =
1

2π

∑
i=Ω,z

∫ +∞

−∞

dω

ω2
Si(ω)Fi(ω), (17)

where SΩ,z(ω) are the power spectral densities of the dephas-
ing and amplitude noise, and FΩ,z(ω) are filter-transfer func-
tions of the applied control. Amplitude filter functions are the
focus of this work, though a detailed treatment of both ampli-
tude and dephasing filter functions can be found in [3, 4], with
further generalization to a fully quantum setting in [6].

Since, for driven operations about the x axis with
amplitude-modulated control envelopes, a(1)

x (t) depends only
on the amplitude noise and filter function, we have

〈|a(1)
x (t)|2〉 =

1

2π

∫ ∞
−∞

dω

ω2
SΩ(ω)FΩ(ω). (18)

In particular, let the control envelope be piecewise-constant,
consisting of N intervals of duration ∆t, with

Ω(t) ≡ Ωn for n∆t ≤ t < (n+ 1)∆t, (19)

and n ∈ {0, . . . , N − 1}. Then the filter takes the form

FΩ(ω) = ω2
∣∣∣ ∫ t

0

dse−iωsΩ(s)/2
∣∣∣2

= sin2

(
ω∆t

2

)∣∣∣∣N−1∑
n=0

Ωne
iω[n−(N−1)/2]∆t

∣∣∣∣2. (20)

Supplementary Note 5 - Experimental DPSS control envelopes

For applications in sensing, we are interested in narrow-
band filters for amplitude noise, where spectral weight or
“leakage" outside the target band is suppressed. To gener-
ate such filters, we employ the discrete prolate spheroidal
sequences (DPSS) or Slepians – namely, a family of finite,
discrete-time sequences whose discrete-time Fourier trans-
forms (DTFTs) are localized on a fixed frequency interval
within the principal domain bounded by the Nyquist fre-
quency, ωN = π/∆t [7, 8]. For k, n ∈ {0, . . . , N − 1}
and bandwidth parameterW ∈ (0, 1/2), the kth-order Slepian
{v(k)

n (N,W )} is a real-valued sequence of length N satisfy-

ing the eigenvalue equation also given in the main text:

N−1∑
m=0

sin2πW (n−m)

π(n−m)
v(k)
m (N,W ) = λk(N,W ) v(k)

n (N,W ).

(21)

The order of the Slepian is determined by the size of its eigen-
value with 1 > λ0(N,W ) > . . . > λN−1(N,W ) > 0.
The DTFT of {v(k)

n (N,W )} is the real-valued discrete pro-
late spheroidal wave-function (DPSWF) of order k,

U (k)(N,W ;ω) = εk

N−1∑
n=0

v(k)
n (N,W )eiω[n−(N−1)/2]∆t,

(22)

where εk = 1(i) for even (odd) k, and ∆t and ω denote the
sampling interval and angular frequency, respectively. The
spectral concentration of U (k)(N,W ;ω) in the target fre-
quency band [−ωB , ωB ] = [−2πW/∆t, 2πW/∆t], defined as
the ratio of power in the target band to power in the principal
domain [−ωN , ωN ], is then∫ ωB

−ωB
dω U (k)(N,W ;ω)2∫ ωN

−ωN
dω U (k)(N,W ;ω)2

= λk(N,W ), (23)

and provably optimal amongst all sequences with same time
and bandwidth parameters. By extending {v(k)

n (N,W )} to an
infinite DPSS sequence with n ∈ Z, concentration properties
may be equivalently characterized in the time-domain as∑N−1

n=0 v
(k)
n (N,W )2∑∞

n=−∞ v
(k)
n (N,W )2

= λk(N,W ). (24)

The first bNW c DPSWFs, for which λk(N,W ) is close to
1, are the most spectrally concentrated, with the 0th-order
DPSWF having the maximal spectral concentration over all
DTFTs of finite, discrete-time sequences. Supplementary Ta-
ble I contains the values of λk(N,W ) for k ∈ {0, 10} up to
NW values of 5.

In order to take advantage of the spectral concentration
of the DPSWFs, we use the piecewise-constant amplitude
modulation in Supplementary Equation (19) with Ωn =

v
(k)
n (N,W ). From Supplementary Equation (20), this creates

the filter function

FDPSS
Ω (ω) = sin2

(
ω∆t

2

)
U (k)(N,W ;ω)2, (25)

spectrally concentrated in the band [−ωB , ωB ]. The sinu-
soidal term appearing in FΩ(ω) is a consequence of the fi-
nite time duration ∆t. Because this term enters the ex-
pression for 〈|a(1)

x (t)|2〉 in Supplementary Equation (18) as
sin2(ω∆t/2)/ω2, approaching ∆t2/4 for small ω, the spec-
tral concentration of U (k)(N,W ;ω) is largely retained in this
limit.
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NW = 1 2 3 4 5

k = 0 0.98105 0.99994 1.00000 1.00000 1.00000

1 0.74962 0.99756 1.00000 1.00000 1.00000

2 0.24359 0.95939 0.99972 1.00000 1.00000

3 0.02465 0.72176 0.99492 0.99997 1.00000

4 0.00107 0.27466 0.94615 0.99941 1.00000

5 −− 0.04301 0.70782 0.99251 0.99993

6 – 0.00348 0.28978 0.93667 0.99907

7 – −− 0.05522 0.69885 0.99035

8 – – 0.00593 0.29936 0.92932

9 – – −− 0.06423 0.69236

10 – – −− 0.00819 0.30622

Supplementary Table I. Scaling behavior of the eigenvalues
λk(N,W ), i.e., spectral concentration of the Slepian wavefunctions,
with different NW products for orders up to k = 2NW . The values
have been rounded to five decimal points. Numeric values smaller
than 10−3 are denoted by –. In the experiments we generally restrict
the applied orders to k = NW − 1 (as highlighted in the table).

Supplementary Note 6 - Band-shifting protocols

By construction, the above DPSS-modulated filter
FDPSS

Ω (ω) is spectrally concentrated with a pass-band centred
at ω = 0. However, sensing applications require greater
control over the central frequency of this band. In order
to shift the frequency of the pass-band, we employ two
modulation strategies. In co-sinusoidal modulation (COS),
the amplitude modulation in Supplementary Equation (19)
takes the form

ΩCOS
n = v(k)

n (N,W ) cos(nωs∆t),

with band-shift frequency ωs ≥ 0. For ωs > 0, this has the
effect of shifting the original band by ±ωs, producing a filter
spectrally concentrated in two bands, [−ωB ± ωs, ωB ± ωs].
Due to symmetry of the spectrum and filter functions about
ω = 0, we can equivalently view this filter as being spectrally
concentrated solely in the band shifted by ωs. The second ap-
proach is based on single-sideband modulation (SSB), a com-
mon technique in radio communication. For SSB, the ampli-
tude modulation in Supplementary Equation (19) is given by

ΩSSB
n = v(k)

n (N,W ) cos(nωs∆t)− v̂(k)
n (N,W )sin(nωs∆t),

where {v̂(k)
n (N,W )} ≡ H[v

(k)
n (N,W )] denotes the discrete

Hilbert transform of {v(k)
n (N,W )}. SSB halves the band,

shifting the negative half by −ωs and the positive half by ωs,
creating a filter concentrated in the bands [−ωs − ωB ,−ωs]
and [ωs, ωB + ωs]. Similar to COS, we can treat this filter as
being spectrally concentrated in the positive band correspond-
ing to ωs due to symmetry about ω = 0.

In what follows, we denote by Fk,ωs
(ω) the amplitude filter

function produced by amplitude modulation using the Slepian
{v(k)

n (N,W )}, combined with either COS or SSB at band-
shift frequency ωs. Depending on which scheme is used, this
filter is spectrally concentrated in the band

Iωs =

{ [
− ωB + ωs, ωB + ωs

]
, COS[

ωs, ωB + ωs

]
, SSB.

(26)

The “dual band" shifted by −ωs is

I−ωs
=

{ [
− (ωB + ωs), ωB − ωs

]
, COS[

− (ωB + ωs),−ωs

]
, SSB.

(27)

The measured fidelity of a qubit prepared in | ↑z〉 after evo-
lution under amplitude noise and filtering by Fk,ωs

(ω) will
be denoted by Fk,ωs

. For negligible dephasing, this gives
directly 1 − 〈[a(1)

x (t)]2〉, whereas if this is not the case,
1 − 〈[a(1)

x (t)]2〉 can still be obtained via the three-axis mea-
surement strategy, as noted. For brevity, we still refer to this
quantity as Fk,ωs

.

Supplementary Note 7 - Application to qubit frequency
measurement

We compared DPSS and primitive pulses in the measure-
ment of the qubit resonance frequency by applying a pulse
of fixed form and duration and scanning the microwave fre-
quency (Supplementary Figure 3). Spectroscopy of the qubit
transition frequency using a primitive pulse shows significant
sub-peaks around the qubit resonance frequency, outside of
the target band, as expected based on the Fourier transform of
a square pulse. By contrast DPSS-modulated pulses show an
overall concentration of spectral weight around the qubit tran-
sition frequency, commensurate with their superior spectral
concentration as elucidated in the main text. The central lobe
of the DPSS-modulated pulse for k = 0 is slightly broader
than that for a square pulse of the same area (see for compari-
son main text, Fig. 2c-e), but shows a dramatic suppression of
off-resonant contributions outside of the target band. Using a
DPSS-modulated pulse with k = 2 and the same overall dura-
tion and net rotation area, we recover a narrowed central lobe
while also maintaining overall spectral concentration, as ex-
pected for the first (NW − 1) DPSS-modulated pulses. Here,
the presence of additional structure arises from the higher-
order DPSS waveform in use, but all falls within the target
band (indicated by blue shading). This phenomenology is
comparable to that observed in Fig. 2c-e of the main text,
where higher order DPSS pulses can show complex structure
in the filter function, but this structure remains inside of the
target band.
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Supplementary Figure 3. Comparison between measurements of
the qubit resonance frequency using primitive vs. DPSS-modulated
pulses. Top measurement was taken with a flat-top profile with net
area 3π, the middle measurement used a k = 0 DPSS-modulated
pulse with net area 3π, whereas the lower measurement used a k = 2
DPSS-modulated pulse with a net area 1π. NW = 3 for both orders.
Shaded region indicates target band.

Supplementary Note 8 - Spectral reconstruction via adaptive
multitaper approach

Our first reconstruction method follows Thomson’s origi-
nal approach to multitaper spectral estimation [9], with the
essential difference being that the Slepian window functions
are applied “online”, before the acquisition of experimental
data. For a measured fidelity Fk,ωs

, the kth estimate is

Ŝm
k (ωc)=

1−Fk,ωs

Ak,ωs

, Ak,ωs
=

∫
Iωs∪I−ωs

dω

2πω2
Fk,ωs

(ω).

(28)

The estimation frequency, ωc ≥ 0, is the center of Iωs
, that is,

ωc =

{
ωs, COS
ωs + ωB/2, SSB.

(29)

In order to ensure consistency of the estimator and to increase
the variance efficiency, the estimates for each Slepian order
are combined into a weighted average to produce a multitaper
spectral estimate, namely,

Ŝm(ωc) =
∑
k

dk(ωc)Ŝ
m
k (ωc),

∑
k

dk(ωc) = 1. (30)

However, the inclusion of higher-order Slepians with less
spectral concentration has the potential to bias the estimate.
To compensate for this, Thomson introduced an adaptive
weighting procedure to determine the dk(ωc), whereby esti-
mates expected to introduce more bias are down-weighted.

To arrive at the final estimate in Supplementary Equation
(30), we employ a variation of this procedure depending on
two sources of bias. The estimate in Supplementary Equation
(28) can be expressed as a sum of the true spectrum and the
broad-band and local biases, namely,

Ŝm
k (ωc) = S(ωc) +BBB

k,ωs
+BLOC

k,ωs
.

The broad-band bias, which quantifies error due to the spectral
concentration of the filter outside Iωs

, is given by

BBB
k,ωs

=
1

2πAk,ωs

[ ∫ ∞
−∞

dω

ω2
Fk,ωs

(ω)S(ω)− (31)∫
Iωs∪I−ωs

dω

ω2
Fk,ωs(ω)S(ω)

]
. (32)

The local bias, which quantifies error due to the curvature of
the spectrum within the band, takes instead the form

BLOC
k,ωs

=
1

πAk,ωs

[∫
Iωs

dω

ω2
Fk,ωs

(ω)

∞∑
p=1

S(p)(ωc)(ω − ωc)
p

p!

(33)

−
∫
Iωs∩I−ωs

dω

ω2
Fk,ωs

(ω)

∞∑
p=1

S(p)(ωc)(ω − ωc)
p

2p!

]
.

(34)

In our analysis, we truncate the Taylor expansions in this ex-
pression at the first order (linear) terms.

The first step in determining the dk(ωc) is solving for a
set of unnormalized weighting coefficients, d̃k(ωc), that mini-
mize the squared error, Ek(ωc) =

[
S(ωc)− d̃k(ωc)Ŝ

m
k (ωc)

]2
.

This can be carried out analytically, yielding

d̃k(ωc) =
S(ωc)

[S(ωc) +BBB
k,ωs

+BLOC
k,ωs

]
,

which depends on the unknown spectrum both explicitly and
implicitly through the bias terms. In order to proceed, S(ω)

is replaced by a prior estimate of the spectrum, Ŝ(0)(ω). In
our analysis, Ŝ(0)(ω) was taken to be a linear interpolation of
the set of estimates from the first-order Slepian in each band.
The prior determines estimates for the broad-band and local
biases, which are then substituted into the analytic formula to
produce a first-order solution for the unnormalized weighting
coefficients, d̃(1)

k (ωc). This is is the first step in a recursion.
At iteration n, the unnormalized weighting coefficients are

d̃
(n)
k (ωc) =

Ŝ(n−1)(ωc)

Ŝ(n−1)(ωc) + B̂
BB (n−1)
k,ωs

+ B̂
LOC (n−1)
k,ωs

. (35)
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Next, the nth-order spectral estimate is determined from Eq.
(30) by normalizing the d̃(n)

k (ωc),

Ŝ(n)(ωc) =

∑
k d̃

(n)
k (ωc)Ŝ

m
k (ωc)∑

k d̃
(n)
k (ωc)

. (36)

This process is repeated until the weighting parameters con-
verge (after ∼ 5 iterations in the multitaper reconstruction of
Fig. 3d). A substantial advantage of the multitaper approach
is that it is free of linear inversion, making it computationally
efficient and numerically stable.

Supplementary Note 9 - Spectral reconstruction via Bayesian
multitaper approach

For each band-shift frequency ωs, the multitaper approach
produces an estimate of the spectrum at the center of band
Iωs

. The achievable resolution is, thus, limited by the number
of band-shift frequencies. For a finer sampling, we pursued
a second technique capable of reconstructing the spectrum at
multiple frequencies within each Iωs

, using a Bayesian max-
imum a posteriori (MAP) estimate. This approach is particu-
larly amenable to SSB-modulated Slepian filters, which tend
to be more delocalized within Iωs

, enabling us to infer infor-
mation about the spectrum in different regions of the band.

The Bayesian procedure estimates the spectrum on a finer
grid of “segments” within each band. Consider a set of band-
shift frequencies ωs = 0, ω0, . . . , Lω0. Each band I`ω0 ,
corresponding to modulation frequency `ω0, is divided into
M segments of width ∆ω along the positive frequency axis,
seg`,1, . . . , seg`,M , where the average value of the spectrum
in seg`,m is S`,m. In the first stage of the reconstruction, we
estimate the average values of the spectrum in all segments
and bands,

S ≡
{
S`,m

∣∣`=1, . . . , L; m=1, . . . ,M
}
.

If the fidelity is measured for Slepians of order k1, . . . , kd at
each band-shift frequency, S is estimated by the maximum of
its posterior distribution given the experimental data,

P
(
S|{Fki,`ω0}

)
=

∏d
i=1

∏L
`=1P (Fki,`ω0

|S)P
(
S
)∏d

i=1

∏L
`=1 P (Fki,`ω0)

. (37)

In terms of S, the true fidelity is approximately

F (T )
ki,`ω0

= 1− ∆ω

π

M∑
m=1

F ki,`ω0,m S`,m,

where F ki,`ω0,m is the average value of Fk,`ω0
(ω)/ω2 in seg-

ment m. Because the primary source of error in the fidelity
measurements is photon shot noise, the likelihood of measur-
ing Fki,`ω0

given S is Gaussian distributed about the true fi-

delity to good approximation, allowing us to write

P
(
Fki,`ω0

∣∣S ) = N exp
[
−

(Fki,`ω0
−F (T )

ki,`ω0
)2

2σ2
ki,`ω0

]
. (38)

The prior distribution in Supplementary Equation (37) is taken
to be Gaussian about a preliminary estimate Ŝ(0)

`,m, with uncer-
tainty σ0,

P
(
S
)

= N
L∏

`=1

M∏
m=1

exp
[
−
(
S`,m − Ŝ(0)

`,m

)2
2σ2

0

]
. (39)

The Bayesian reconstruction in Fig. 3d uses the multitaper
estimate as a prior. The finer sampling of the spectrum en-
abled by the Bayesian procedure refines this initial estimate,
improving the resolution of the high-frequency cutoff. If
prior information about the spectrum is unavailable, taking
σ0 � max{Ŝ(0)

`,m} produces an effectively flat prior.

By maximizing Supplementary Equation (37) with respect
to S, we determine that the MAP estimates in band I`ω0 , de-
noted by {Ŝ`,1, . . . , Ŝ`,M} are the solutions of a linear system,
~V = R~S, where ~S =

(
Ŝ`,1, ..., Ŝ`,M

)T
, ~V is anM×1 vector

with elements

Vm =

d∑
i=1

σ2
0 ∆ω

π σ2
ki,`ω0

F ki,`ω0,m (1−Fki,`ω0) + Ŝ
(0)
`,m, (40)

and R is a M ×M matrix with elements

Rm,m′ =

d∑
i=1

σ2
0 ∆ω2

π2σ2
ki,`ω0

F ki,`ω0,mF ki,`ω0,m′ + δm,m′ .

(41)

Solving the linear system for ` = 1, . . . , L produces an esti-
mate of S, the average value of the spectrum in all segments
and bands. The conditioning of the linear inversion places a
limit on M , the number of estimates per band. In general, the
inversion will be well-conditioned if each filter has most of its
spectral weight in a single segment.

The spacing between the band-shift frequencies, ω0, is gen-
erally smaller than the width of the bands. This means that the
bands will overlap and a segment seg`,m associated with band
I`ω0 can be contained in one or more additional bands. In
particular, if seg`,m is contained in I`′ω0 in addition to I`ω0 ,
the measured fidelities Fk1,`′ω0 , . . . ,Fkd,`′ω0 contain infor-
mation about S`,m. In the second stage of the Bayesian multi-
taper approach, we incorporate the information about S`,m

available in other bands in order to determine a final esti-
mate Ŝ b

`,m. Motivated by Thomson’s high resolution expan-
sion [9], we quantify the information about S`,m contained
in Fk1,`′ω0

, . . . ,Fkd,`′ω0
by the classical Fisher information,
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I{Fki,`
′ω0
}(S`,m). From direction calculation,

I{Fki,`
′ω0
}
(
S`,m

)
=

d∑
i=1

[ 1

πσki,`′ω0

∫
seg`,m

dω

ω2
Fki,`′ω0(ω)

]2
.

(42)

If O(seg`,m) =
{

(`′,m′)
∣∣seg`,m ∩ seg`′,m′ 6= ∅

}
contains all

indices of the segments overlapping seg`,m, the final estimate

of S`,m is a weighted average of estimates in the overlapping
segments, yielding

Ŝb
`,m =

∑
(`′,m′)∈O(seg`,m) I{Fki,`

′ω0
}
(
S`,m

)
Ŝ`′,m′∑

(`′,m′)∈O(seg`,m) I{Fki,`
′ω0
}
(
S`,m

) . (43)

The weight on each estimate increases with the information it
carries about S`,m.
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