
Reviewers' comments:  

 

Reviewer #1 Expert in leukaemia genetics:  

 

The authors study the methylation patterns of DNA of patients with juvenile myelomonocytic 
leukemia (JMML). They hypothesized that DNA methylation profiling, alone or in combination with 
genetic alterations, could predict disease severity and outcome. DNA methylome analysis and 
mutation profiling was performed for 167 JMML samples. Clustering based on the variable CpG sites 
identified three clusters of patients (high, medium and low methylation), with the lowest 
methylation cluster having the highest rates of survival. The author thus demonstrated convincingly 
that methylation analysis has predictive value in JMML.  

 

The authors look for the reason of the methylation changes, and propose a hypothesis, but fail to 
identify the cause of the methylation changes. The authors claim that differentially methylated sites 
were enriched for regions occupied by H3K27me3 or PRC2 and for genes associated with RAS 
signalling, but that part is relatively weak and only shown by indirect evidence.  

 

Overall, the methylation data is nice and seems to predict clinical outcome very well. This is the 
strong part of the paper. The reason why the DNA methylation is high or low in the different 
patients, is less clear, and based on data that is not very strong or not supported by data in JMML. It 
would be good to tune this down or include more data.  

 

 

Major remarks/questions:  

1. Figure 1 demonstrates that a correction of the methylation data is required, for the various 
contributions of different cell types in each sample. Is this really needed? And how does the data 
look for JMML if no such correction is done. In the accompanying article (with some of the authors 
shared with this article), this seems not to be required.  

2. Figure 5: methylation data is integrated with publicly available ChIP data for various histone 
marks (Encode data). This is of interest to generate a hypothesis, but would need to be confirmed by 
ChIP experiments with JMML samples. In the current version of the manuscript, the conclusions are 
highly speculative and not confirmed by ChIP-seq data for JMML. Similarly, figure 5H shows data on 
AML cell lines, which has little value. I would suggest to remove this part (figure 5) or to confirm the 
data in JMML samples with new experiments.  

3. The DNA methylation profiles are clear, but have not been closely linked with expression 
data. Since DNA methylation is expected to influence expression, it would be a nice and essential 



addition to include a pairwise comparison between DNA methylation changes and RNA expression 
levels based on RNA-seq data. In the current manuscript this is only shown for a few selected genes.  

4. Related to the previous remark: if RNA expression data is used for clustering, would this also 
result in a similar division over 3 clusters, with similar predictive value for survival/relapse?  

 

Minor remarks:  

- Please explain abbreviations used, for example ‘DMPs’ is not explained as well as some 
other abbreviations.  

- Figure 1B seems very black and white. There are no intermediate values. Is this correct?  

 

 

 

Reviewer #2 Expert in leukaemia epigenetics:  

 

In the present manuscript, the authors hypothesized that DNA methylation profiling, alone or in 
combination with genetic mutation profiling, might provide a molecular basis for JMML 
classification. With this approach the authors identified 3 JMML subgroups that showed unique 
molecular and clinical characteristics.  

 

The study is clearly written and may lead to relevant prognostic data that might influence treatment 
of the JMML.  

 

Here some suggestions to implement the preclinical and clinical value of the manuscript.  

 

The authors indicate that up-regulation of DNMT1 and DNMT3B in the HM group is likely to be the 
molecular surrogate of the CIMP phenotype observed. The authors might include epigenome-based 
details on the cause of the identified up-regulation as well as they might verify using cell models if 
using chromatin modulators it is possible to re-equilibrate DNMTs expression of activity.  

 

The authors also indicate that leukemias carrying RAS-pathway mutations exhibit methylation 
patterns akin to those observed in JMML (Fig. 5H). Could the authors use those cells to include some 
combo-treatments to verify whether targeting RAS (or the other) identified pathways together with 
potential chromatin modulators might represent an option for resetting?  



 

Along those lines, the authors report DOT1L and HDAC9 transcripts were down-regulated in the HM 
group. Is it possible to include chromatin details on this deregulation that the authors attribute to 
RAS pathway deregulation?  

 

In addition, interdependence of BRD4 and DOT1L in leukemia has been reported (Gilan et al., 2016) 
suggesting that DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in 
turn regulates the binding of BRD4 to chromatin. In the HM subgroup (which is also the one with 
poor prognosis) or in cell models how is the BRD4 expression and how is H3K79 methylation and H4 
acetylation. May the DOT1L low expression contribute to chromatin closure influencing a reduction 
of acetylation and lower BRD4 binding at the interested areas?  

 

In the literature a molecular link for RAS mediated transcriptional silencing and DNA 
hypermethylation is often reported (as also cited by the authors). The authors may like to comment 
in the discussion on the possibility of cross-talks and on a potential prioritization (if any) of 
genome/epigenome deregulation during leukemogenesis.  

 

The authors state that data will be deposited in ERA, and accession codes will be provided during 
revision of the manuscript. This should be done.  

 

 

 

 



Point-to-point reply (NCOMMS-17-09270-T) 

Reviewers' comments: 

Reviewer #1 Expert in leukaemia genetics: 

The authors study the methylation patterns of DNA of patients with juvenile 
myelomonocytic leukemia (JMML). They hypothesized that DNA methylation profiling, 
alone or in combination with genetic alterations, could predict disease severity and 
outcome. DNA methylome analysis and mutation profiling was performed for 167 
JMML samples. Clustering based on the variable CpG sites identified three clusters of 
patients (high, medium and low methylation), with the lowest methylation cluster 
having the highest rates of survival. The author thus demonstrated convincingly that 
methylation analysis has predictive value in JMML. 

The authors look for the reason of the methylation changes, and propose a 
hypothesis, but fail to identify the cause of the methylation changes. The authors 
claim that differentially methylated sites were enriched for regions occupied by 
H3K27me3 or PRC2 and for genes associated with RAS signalling, but that part is 
relatively weak and only shown by indirect evidence. 

Overall, the methylation data is nice and seems to predict clinical outcome very well. 
This is the strong part of the paper.  



The reason why the DNA methylation is high or low in the different patients, is less 
clear, and based on data that is not very strong or not supported by data in JMML. It 
would be good to tune this down or include more data. 
 
We thank Reviewer #1 for his overall positive feedback on our work. Following the reviewer’s 
advise, we decided to carefully revise all sections of our manuscript dealing with the potential 
mechanism underlying the hypermethylation phenotype in order to make it clear that our 
findings suggest (but not prove) hyperactivation of the RAS-signaling pathway as the 
underlying molecular event in HM JMML cases based on correlative evidence. 
 
 
Major remarks/questions: 
 
1. Figure 1 demonstrates that a correction of the methylation data is required, for the 
various contributions of different cell types in each sample. Is this really needed? And 
how does the data look for JMML if no such correction is done. In the accompanying 
article (with some of the authors shared with this article), this seems not to be 
required. 
 
We thank the reviewer for raising this important point. In fact, as also demonstrated in the 
accompanying manuscript by Stieglitz et al., cell type correction or exclusion of CpGs found 
to be dynamic during normal hematopoiesis is not essential for the detection of the JMML 
subgroups. We now included a heatmap depicting the consensus clustering results of JMML 
samples from the discovery cohort using the 5000 most variable CpGs without prior filtering 
(Supplemental Figure 1A). However, it is important to notice that 34.3% (1713) of the 5000 
most variable CpG probes compared to only 16.1% (59230/367429) of all probes exhibited 
dynamic methylation in hematopoietic cells, demonstrating an enrichment of potentially 
confounding events in JMML. In addition, the decision to focus on CpGs that show no 
methylation dynamics in normal hematopoiesis was also based on recently published work 
done in our group showing that the epigenome of leukemic B-cells in chronic lymphocytic 
leukemia patients in large parts reflects the epigenome of the cell-of-origin. In this work, we 
were further able to demonstrate that epigenetic footprints pointing towards previously 
unknown pathogenetic events are unmasked only if physiologically occurring methylation 
programming is excluded from the analysis (Oakes et al., Nature Genetics 2016). In our 
present study of JMML, we were facing an even more complicated situation as only unsorted 
patient samples, containing varying proportions of different blood cells, were available for 
analysis (Figure 1B). In order to be able to identify JMML-specific methylation footprints, we 
decided to exclude all CpGs that exhibit dynamic methylation changes in normal 
hematopoiesis from all our analyses. In this way, our analysis excludes that the samples’ 
cellular composition confound their cluster assignment, and, even more importantly, it 
prevents an erroneous confounding of hematopoietic differentiation patterns with 
pathogenetic events.  
 

 Oakes CC, Seifert M, Assenovl Y, Gu L, Przekopowitz M, Ruppert AS, et al., DNA methylation dynamics 
during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. 
Nature Genetics, 2016. 48(3): p. 253-264. 

 
 
2. Figure 5: methylation data is integrated with publicly available ChIP data for various 
histone marks (Encode data). This is of interest to generate a hypothesis, but would 



need to be confirmed by ChIP experiments with JMML samples. In the current version 
of the manuscript, the conclusions are highly speculative and not confirmed by ChIP-
seq data for JMML.  
 
We agree with the reviewer that ChIP-seq data from JMML samples would be very valuable 
in order to draw specific conclusions. Unfortunately, for the vast majority of JMML samples, 
there is only DNA or frozen cell pellets available. Nevertheless, for the few samples for which 
we have access to viably frozen cells, we have already taken efforts in that direction: We 
have done Western blot and immunofluorescence analysis for several histone marks with the 
aim of performing ChIP-seq for those marks for which we see global differences, but 
unfortunately the unsorted, granulocyte-rich patient samples that were available, showed 
varying levels of protein degradation which made a robust interpretation of the data 
impossible. We therefore decided not to include any data from these experiments in the 
present study. We are now preparing to systematically collect sorted cell fractions from 
individual patients in a prospective manner in order to be able to perform more in depth 
molecular analyses in the future.  
 
 
Similarly, figure 5H shows data on AML cell lines, which has little value. I would 
suggest to remove this part (figure 5) or to confirm the data in JMML samples with 
new experiments. 
 
We thank the reviewer for this suggestion. In order to stay strictly in a human JMML disease 
context throughout the manuscript, we have now decided to take out the AML cell line 
methylomes figure panel (former Figure 5H) and to re-write the text accordingly to make it 
clear to the reader that we are talking about correlative evidence. 
 
 
3. The DNA methylation profiles are clear, but have not been closely linked with 
expression data. Since DNA methylation is expected to influence expression, it would 
be a nice and essential addition to include a pairwise comparison between DNA 
methylation changes and RNA expression levels based on RNA-seq data. In the 
current manuscript this is only shown for a few selected genes. 
& 
4. Related to the previous remark: if RNA expression data is used for clustering, would 
this also result in a similar division over 3 clusters, with similar predictive value for 
survival/relapse? 
 
We thank the reviewer for raising these important issues. We have now included a 
systematic comparison of DNA methylation and RNA expression. For 15/20 patients from the 
discovery cohort there was RNA of sufficient quality available to perform gene expression 
profiling using the Illumina HumanHT-12 v4 Expression BeadChips. The analysis of this data 
is summarized in Supplemental Figure 6 of the revised version of our manuscript. 
Unsupervised clustering of the 1000 most variably expressed genes did not result in clusters 
that reflected survival/relapse of JMML patients, nor did the clustering recapitulate the 
methylation clusters (Supplemental Figure 6A). Nevertheless, globally, DNA methylation 
was inversely correlated with gene expression when considering all nvCpGs located in gene 
promoters (Supplemental Figure 6B). We then correlated DNA methylation with gene 
expression across the JMML subgroups considering only the top 1000 genes with JMML-



specific methylation events (jmmlDMPs) in their promoters (Supplemental Figure 6C). As 
demonstrated before by our group and others, we found both positively and negatively 
correlated gene expression patterns, with a slightly higher proportion of negatively correlated 
genes (N=536 negatively correlated genes, N=464 positively correlated genes; Cabezas-
Wallscheid et al., Cell Stem Cell 2014; Lipka et al., Cell Cycle 2014; Bock et al., Molecular 
Cell 2012). We then performed gene set enrichment analysis on this ranked gene list and 
found “Hallmark_KRAS_signaling_DN” to be significantly enriched in negatively correlated 
genes (Supplemental Figure 6D). Interestingly, we did not find any other enriched gene set, 
neither in the negatively nor in the positively correlated genes.  
 

 Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, et al., DNA methylation 
dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell, 2012. 
47(4): p. 633-47. 

 Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al., 
Identification of regulatory networks in HSCs and their immediate progeny via 
integrated proteome, transcriptome, and DNA Methylome analysis. Cell Stem Cell, 
2014. 15(4): p. 507-22. 

 Lipka DB, Wang Q, Cabezas-Wallscheid N, Klimmeck D, Weichenhan D, Herrmann 
C, et al., Identification of DNA methylation changes at cis-regulatory elements during 
early steps of HSC differentiation using tagmentation-based whole genome bisulfite 
sequencing. Cell Cycle, 2014. 13(22): p. 3476-87. 

 
 
Minor remarks: 
 
5. Please explain abbreviations used, for example ‘DMPs’ is not explained as well as 
some other abbreviations. 
 
We have now thoroughly revised the manuscript in order to ensure that all abbreviations 
used are explained in the text. 
 
 
6. Figure 1B seems very black and white. There are no intermediate values. Is this 
correct? 
 
Figure 1B, showing the cell type contribution for each sample as a heatmap does contain 
intermediated values. Did the reviewer maybe mean Figure 1D instead? -This panel displays 
the consensus clustering results and has mainly very high and very low values. This is due to 
the fact that the consensus clustering for 2 clusters was extremely stable as can also be 
discerned from the cluster consensus values which are 0.96 for the HM group and 1(!) for the 
LM group. This explains why the consensus matrix for k=2 indeed shows a “black & white” 
pattern. For three clusters (k=3), this looks different as can be seen in Supplemental Figure 
1F. 
 
 
 
  



Reviewer #2 Expert in leukaemia epigenetics: 
 
In the present manuscript, the authors hypothesized that DNA methylation profiling, 
alone or in combination with genetic mutation profiling, might provide a molecular 
basis for JMML classification. With this approach the authors identified 3 JMML 
subgroups that showed unique molecular and clinical characteristics.  
 
The study is clearly written and may lead to relevant prognostic data that might 
influence treatment of the JMML. 
 
Here some suggestions to implement the preclinical and clinical value of the 
manuscript. 
 
1. The authors indicate that up-regulation of DNMT1 and DNMT3B in the HM group is 

likely to be the molecular surrogate of the CIMP phenotype observed. The authors 
might include epigenome-based details on the cause of the identified up-regulation 
as well as they might verify using cell models if using chromatin modulators it is 
possible to re-equilibrate DNMTs expression of activity. 

 
We thank the reviewer for these suggestions. We have now included methylation profiles 
for candidate gene promoters in Supplemental Figure 7. We validated hypermethylation 
of the AKAP12 promoter CpG island (Supplemental Figure 7A) and its correlation with 
down-regulation of AKAP12 mRNA levels (Figure 5F). The promoter CpGs of DNMT1, 
DNMT3A, DNMT3B, and TET2 showed low methylation levels around their transcription 
start sites (TSS), and methylation levels remained unchanged across all JMML 
methylation subgroups. In contrast, both TET1 and HDAC9 showed elevated methylation 
levels for promoter CpGs downstream of their TSSs, which would explain reduced mRNA 
expression levels. Indeed, we observed significant down-regulation of mRNA expression 
levels of HDAC9 in primary JMML samples from the HM group as compared to the LM 
group (Figure 5G), whereas we could not detect a significant change in the mRNA 
expression levels of TET1 in our patient cohort. 
In summary, altered DNA methylation of their promoter regions does not explain the 
significant up-regulation of DNMT1 and DNMT3B expression levels observed in our JMML 
cohort.  
We agree with the reviewer that additional functional experiments would be needed in 
order to gain further mechanistic insight into the molecular mechanisms underlying the 
CIMP in JMML. Nevertheless, such studies are hampered by the lack of established cell 
line models for JMML. The use of mouse models could in principle substitute for studies in 
human cell lines, but such studies are very time-consuming and beyond the scope of the 
present study.  
Another question that has also been raised by the reviewer was whether the CIMP in 
JMML could be modulated by the use of chemical compounds. Currently, such studies are 
hampered by the lack of appropriate disease models, but it is tempting to speculate that 
the recently described clinical response to DNMT-inhibitor therapy, which seems to work 
relatively well even in advanced and relapsed JMML cases (Furlan et al., Blood 2009; 
Locatelli and Niemeyer, Blood 2015), might be due to a reversal of the DNA 
hypermethylation present in JMML. 
 

 



 Furlan I, Batz C, Flotho C, Mohr B, Lubbert M, Suttorp M, et al., Intriguing response to 
azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood, 
2009. 113(12): p. 2867-8. 

 
 Locatelli F, Niemeyer CM, How I treat juvenile myelomonocytic leukemia. Blood, 2015. 

125(7): p. 1083-90. 
 
 
The authors also indicate that leukemias carrying RAS-pathway mutations exhibit 
methylation patterns akin to those observed in JMML (Fig. 5H). Could the authors use 
those cells to include some combo-treatments to verify whether targeting RAS (or the 
other) identified pathways together with potential chromatin modulators might 
represent an option for resetting? 
 
We thank the reviewer for this suggestion. Based on the comments of reviewer #1, we have 
now removed Figure 5H from our manuscript in order to stay in the JMML context throughout 
the manuscript and not to dilute our findings with potentially confounding evidence derived 
from acute myeloid leukemia (AML) cell lines. Therefore, we have also decided not to follow 
the route of trying to perform pharmacologic epigenome modulation in AML cell lines.  
 
 
Along those lines, the authors report DOT1L and HDAC9 transcripts were down-
regulated in the HM group. Is it possible to include chromatin details on this 
deregulation that the authors attribute to RAS pathway deregulation?  
 
We have now included the promoter methylation patterns of DOT1L and HDAC9 in 
Supplemental Figure 7E&H. While the DOT1L promoter doesn’t show any methylation 
differences across the methylation subgroups in JMML samples, the HDAC9 promoter shows 
a significant increase in promoter methylation in both IM and HM JMML cases which is 
paralleled by a significant downregulation of HDAC9 mRNA expression levels. Indeed, it 
would be interesting to understand which other chromatin factors (if any) are changing 
across JMML subgroups, but unfortunately, primary patient material of sufficient quality that 
would be amenable to ChIP(-seq) experiments is not available. We are currently working to 
establish a prospective collection of viably frozen cells from JMML patients in order to 
facilitate such analyses for future studies. 
 
 
In addition, interdependence of BRD4 and DOT1L in leukemia has been reported 
(Gilan et al., 2016) suggesting that DOT1L, via dimethylated histone H3 K79, facilitates 
histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. In 
the HM subgroup (which is also the one with poor prognosis) or in cell models how is 
the BRD4 expression and how is H3K79 methylation and H4 acetylation. May the 
DOT1L low expression contribute to chromatin closure influencing a reduction of 
acetylation and lower BRD4 binding at the interested areas? 
 
We thank the reviewer for suggesting this hypothesis. Although we do not have ChIP-
sequencing data on primary JMML samples for the reasons detailed above, we have 
carefully screened public databases for existing ChIP-sequencing data sets that would help 
us to address this hypothesis. As depicted in Supplemental Figure 5C, H3K79me2 ChIP-
seq peaks (among other activating histone marks) are significantly under-represented in 



jmmlDMPs while H4k20me1 shows slight and H3K9me3 & H3K27me3 show strong 
enrichment in jmmlDMPs. In addition, we have investigated a published BRD4 ChIP-seq data 
set and found a strong depletion of BRD4 binding sites in the jmmlDMPs (please refer to the 
figure below). Together these data indicate that jmmlDMPs are neither decorated with 
H3K79me2 nor bound by BRD4 under normal conditions. Nevertheless, we consider it 
worthwhile testing this potential interplay between DOT1L and BRD4 in primary cells or in a 
murine disease model using ChIP-seq in future studies.  
 

 
Enrichment analysis of transcription factor 
ChIP-seq peaks. ChIP-seq peak files were 
downloaded from the CODEX website 
(http://codex.stemcells.cam.ac.uk/). All 
jmmlDMPs were used as foreground, and the 
remaining non-differentially methylated nvCpG 
sites form a background set. Enrichment 
analysis was performed independently for 
every pair (state/cell line) on the foreground 
set as compared to the background set. 
Logarithmic fold change values were 
calculated as log2(OF/OB), where OF is the 
fraction of probes in the foreground set 
overlapping with the chromatin state type of 
interest, and OB is the same metric for the 
background set. P-values were obtained using 
Fisher’s exact test and adjusted for multiple 
testing using the Benjamini-Hochberg method. 
The significance threshold applied was 0.01. 

 
 
In the literature a molecular link for RAS mediated transcriptional silencing and DNA 
hypermethylation is often reported (as also cited by the authors). The authors may like 
to comment in the discussion on the possibility of cross-talks and on a potential 
prioritization (if any) of genome/epigenome deregulation during leukemogenesis. 
 
We thank the reviewer for this suggestion. We have now included this point in the discussion 
section as follows (page 15, lines 391-397):  
“One might speculate that these secondary mutations contribute to transcriptional 
deregulation of DNMT1 and thus further augment the extent of epigenetic remodeling. 
Alternatively, pre-existing epigenetic alterations might provide a fertile ground for malignant 
transformation following single or few genetic hits. This sequence of events has been shown 
recently in the context of cigarette smoke-induced lung cancer where DNA hypermethylation 
of PRC2 target genes sensitizes bronchial epithelial cells to single-step transformation by 
mutant KRAS.“ 
 
 
The authors state that data will be deposited in ERA, and accession codes will be 
provided during revision of the manuscript. This should be done. 
 
The Illumina Infinium HumanMethylation450 Bead Chip Array data as well as the exome-seq 
data have been deposited in ERA (https://www.ebi.ac.uk/ega/home) under study number 
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EGAS00001002511. The submission of the gene expression array data is currently under 
way and this data set also will be deposited under the same study number. 
 
 
 
 
 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have submitted a very nice revised manuscript, with attention for all comments. I have 
no further remarks.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have added data in support of the implementation of the manuscript.  

 

1-In relation to the data provided showing that altered DNA methylation of their promoter regions 
does not explain the significant up-regulation of DNMT1 and DNMT3B expression levels observed in 
our JMML cohort, the authors should highlight hypothesis in the discussion on the potential 
mechanistics.  

 

2. A comment on the potential hypothesis of the interplay between DOT1L and BRD4 might be 
added in the discussion  

 

 



Point-to-point reply (NCOMMS-17-09270A) 
 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have submitted a very nice revised manuscript, with attention for all 
comments. I have no further remarks.  
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have added data in support of the implementation of the manuscript. 
 
1. In relation to the data provided showing that altered DNA methylation of their 

promoter regions does not explain the significant up-regulation of DNMT1 and 
DNMT3B expression levels observed in our JMML cohort, the authors should 
highlight hypothesis in the discussion on the potential mechanistics. 

  
 We thank the reviewer for this suggestion. We have now added a sentence to the results 

section (line 475) that discusses the potential reasons for a lack of detection of aberrant 
DNA methylation in the promoters of DNMT1 and DNMT3B in HM JMML samples. 

 
2. A comment on the potential hypothesis of the interplay between DOT1L and BRD4 

might be added in the discussion  
  
 This is an interesting hypothesis for which we tried to find evidence in our study during the 

first revision. However, we were not able to find support for this hypothesis in our data 
sets. Therefore, we believe that this hypothesis warrants further investigation in future 
studies using dedicated experiments. 

  
 


	Plass01
	Plass02
	Plass03
	Plass04

