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Performance improvement under decision referral for an already trained network12
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Figure S1. Application of uncertainty-informed decision referral to an existing network (a, left) ROC AUC over the
fraction of retained data under uncertainty informed (blue) and random (red) decision referral for the JFnet, recast to detect
disease onset 1. (a, right) ROC curves for all data (no referral: turquoise) and different fractions of retained data (90%: purple,
80%: brown, 70%: pink). National UK standards for the detection of sight-threatening diabetic retinopathy (in2 defined as
moderate DR) from the BDA (80%/95% sensitivity/specificity, green dot) and the NHS (85%/80% sensitivity/specificity, blue
dot) are given in all subpanels with ROC curves. (b) same as (a), but for disease onset 2. All subfigures are based on Kaggle
DR test images.

Relation between µpred and σpred13
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Figure S2. (a) & (b) Relation between first (µpred) and second (σpred) moments of approximate predictive posterior for
correct (a) and erroneous (b) detection of moderate DR on Kaggle test images. µpred obtained via MC dropout is more related
with σpred than the network output p(diseased|image) obtained with standard dropout (compare fig. 2). (c) For comparison
with our performance results obtained with σpred as uncertainty (fig. 4, S1), we quantified the uncertainty in terms of the binary
entropy H(p) =−(p log p+(1− p) log(1− p)) as an alternative uncertainty measure which is applicable to both the Bayesian
and conventional network output. When using H(µpred) (green curve) we were able to achieve similar performance
improvements under decision referral compared to when using σpred (blue curve) instead. Random referral is shown in red.

Gaussian processes14

Gaussian processes (GPs) enable probabilistic kernel machines for solving regression and classification problems. The GP15

inference takes place in a function space and a kernel is a covariance function k(xi,x j) that estimates the covariance of two16

latent variables f (xi) and f (x j) in terms of input vectors3. Given a GP-prior, e.g., f∼N (0,K), over a set of latent variables,17

where K is a covariance matrix determined by the choice of covariance function k(·, ·), a GP-posterior p(f|X,y), where y is the18

target vector and X is the data matrix, can be inferred in the light of the observed data, namely the likelihood p(y|f). In the19

process, the hyperparameters of the covariance function are also automatically tuned via likelihood maximization3.20
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GP classification is essentially binary and class labels are in {−1,+1}. Similar to the case of the logistic regression, the21

goal is to assign p(y∗ =+1|x∗) for an unseen test example x∗. But, the underlying Bayesian treatment of GPs results in an22

averaged predictive probability3, instead of a single point estimate, for x∗ via Eqs.1 and 2.23

λ̄ ( f ∗) =
∫

λ ( f ∗)p( f ∗|X,y,x∗)d f ∗, where (1)

24

p( f ∗|X,y,x∗) =
∫

p( f ∗|X,x∗, f)p(f|X,y)df, (2)

λ ( f ∗) is a squashing function that maps its inputs into [0,1]. A common choice of λ ( f ∗) is in Eq. 3.25

p(y∗ =+1|x∗) = λ ( f ∗) =
1

1+ exp(− f ∗)
. (3)

The exact computation of the averaged predictive probability in Eq.2 is intractable and approximation methods are used26

to this end. A comprehensive review4 of approximate inference methods for GP classification is available in literature. Two27

commonly used methods are Laplace Approximation (LA)3 and Expectation Propagation (EP)6.28

LA replaces p(f|X,y) with a Gaussian approximation centered at the mode of p(f|X,y)3. LA is a local method in the sense29

that it exploits the properties of the posterior at a particular location only, e.g., at the posterior distribution’s mode4. Due to its30

simplicity, LA is very fast; however, it may lead to substantial underestimations of the mean and covariance, especially, in31

high-dimensional spaces because the mode and mean can be far from each other4, 5.32

The EP is a general approximation tool that can perform approximate inference more accurately than other methods like33

Monte Carlo, LA and variational Bayes6. Thus, it is heavily used for GP learning. EP is a global method in the sense that it34

utilizes many local approximations in order to approximate the posterior3, 4. The use of many local approximations results35

in a small global divergence between the posterior and its proxy4. As a result, EP delivers accurate marginals, reliable class36

probabilities and faithful model selection4. On the downside, the convergence of EP is not generally guaranteed and its runtime37

is 10 times longer in comparison with LA4.38

In summary, a GP classification can be made by just checking the sign of the predictive function sampled from Eq. 2. In this39

regard, if one only cares about the error rate or the computational resources are limited, LA may be a practical solution4. On40

the other hand, EP offers higher quality approximations and it should be considered first, despite the associated computational41

costs and risk of not converging, when the quality of approximation matters. In the face of practical challenges, such as42

non-convergence or exceptionally long runtimes, one can always fall back onto LA.43

Neural Network Covariance Function44

A shallow neural network with infinitely many hidden units and Gaussian weights, such as w∼N (0,Σ), converges into a GP45

that can be constructed with the following covariance function3, 7, 8:46

k(x,z) =
2
π

sin−1

(
2x̃T Σz̃√

(1+2x̃T Σz̃)(1+2x̃T Σz̃)

)
, (4)

where x̃ = (1,x)T is an augmented input vector and Σ is a weight covariance matrix. In other words, a GP with the neural47

network covariance function (Eq. (4)) emulates a shallow network.48
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(a) Disease onset: mild DR
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(b) Disease onset: moderate DR

Figure S3. Comparison of Bayesian network (MC dropout) vs. Gaussian process (GP) uncertainty. (a) & (b) Density
plots for uncertainties [entropy] obtained from BCNNs vs. GPs for detecting mild (a) and (b) moderate DR from Kaggle data
respectively. For the majority of the data, the BCNN uncertainties tend to be larger than the uncertainties from the GP
predictions.
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