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1.Reviewer reports:

Reviewer #1: # Review giga science 20170317

The manuscript from Perez-Sanz et al is a review of image acquisition technologies
and image data analysis algorithms used in plant sciences. 

While the manuscript provides a nice overview of the available techniques and
algorithms, I feel that it is, at least in this form, not suited for publication. The text needs
to be clarified  in numerous places (see comments below). Also, I think it is, too
technical and would fit better in a more specialised journal such as Plant Methods. 

General comments:
-------------------------------------------------------------------------------------

1- The English should be improved

We have used professional English edition to improve the language.

2- The scope in the text is varying a lot between sections, which makes the reading
hard. Sometimes the text provide very precise information about a given experiment
(e.g. line 59), while it stays very vague in other places. I think the whole text should be
homogenised for easier understanding. 

We have done a major rewriting to address this issue

3- The manuscript given the impression to be willing to make an overview of whole the
existing sensors / algorithms used for plant image analysis. My feeling is that this tack
is inherently   huge, since each image acquisition / analysis problem will call for a
specific solution. A thorough review would be enormous. This is not the case f this
manuscript, which gives more of an overview.

We have addressed this problem by giving the major advantages/drawbacks and
technical characteristics of image acquisition devices and image analysis procedures.

Some specific comments, to give an idea of the modifications that should be made (I
haven't done the whole document):
-------------------------------------------------------------------------------------

4- Line 19 (first line of the abstract!): No, phenomics is not the field of atomic
phenotype acquisition technologies. It is the field of phenome analysis and is not,
strictly speaking, linked to any specific technology. Phenomics can be done by hand,
with a ruler. 

We agree with the referee and we have changed the formulation of the abstract.

5- Line 30: NDVI is not defined
We have defined NDVI and other abbreviations throughout the manuscript
6- line 41: the sentence discuses roots techniques, but cites shoot-related article
We have corrected this part by rewriting. The references in the previous manuscript( 9-
12 now 11- 13 were correct and did refer to roots

7- line 41: what do you mean by "Analysis of direct imaging"?
We have changed the phrase as we refer to extraction of quantitative data from images
(now line 42-43
8- line 44: I guess that author mean growing setups
We have corrected it (now line 46)
9- line 47-67: I am not sure to understand the aim of this paragraph. How does this fit
with the rest of the text? I have the feeling it justifies to use of reporter lines, not the
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use of imaging setups... 

We have rewritten part of the paragraph to explain why. In principle reporter genes,
specifically Green Fluorescent Protein and Luciferase fostered the use of artificial
vision systems early on. (now 49-76)

10- line 67: why is drawback in crops? 

We have clarified this point. Now line 72-76

11- Monovision: can't the infrared and fluorescence imaging setup be classified here?
 They would fit the definition given in line 101-103.

Although there are IR cameras acquiring a single wavelength most are RGB-IR so we
have included this in the multispectral cameras section. (see lines 194-211)

12- 113: "developed to quantify QTL's" ->
We have corrected to  "developed to identify QTL's" Now line 146
13- 114: "large POPULATION of RIL's"

This part was rewritten
14- 115: what do you mean by "elite lines"? 
This part was rewritten (line 148). An elite line is a genetic line useful for further
breeding. Usually they have pyramided QTLs and or dominant alleles conferring
superior traits sought after.
15- 123: isn't it a "DEPTH map"?
The mistake is corrected. Deep map is replaced by depth map. (Line 168)
16- 125: ToF is not defined
We have added a complete description of ToF devices-(line 228-249)
17- 134: why are stereo vision low throughput? Not sure it is true. Many plant
phenotyping platform have a stereo vison imaging inside the imaging cabinet for 3D
reconstruction -> high throughput

We have eliminated that text and added a paragraph with merits and drawbacks of 3-D
systems. (Line 182-190)

Figure 1: What do the two arrows mean? 

We have remade Figure 1 that describes the process of image acquisition and analysis

Reviewer #2: Due to the diversity of plant phenotyping techniques and different goals
of plant research, it is a challenge to review and summarize major works enrolled in
plenty of imaging techniques, image analysis pipeline, and image processing
algorithms. The authors attempt to review some efforts of images acquisition and
image processing, which is encouraged. However, the structure of review is confused,
and massive fundamental knowledge of images analysis (read like a textbook of digital
image processing) exists in this main text, which also lacks the references and the
authors' own opinions. In addition, more applications of plant phenotyping should be
cited in this review. More discussions and more comparisons with different image
analysis should be summarized and added combined with the authors' suggestions,
which can guide and benefit the readers.

1.Line 3: I wonder this review whether focus on plant phenomics, if yes, please change
the title to plant phenomics.
We have changed the title as suggested

2.Line 30: please use the full name of "NDVI" and other abbreviations for the first time
in this article.

We have modified all abbreviations and introduced first the name.
We have rewritten the complete part to make it easier to read, and deleted the part on
different indexes. We have kept Figure 2 and on Table 2 different indexes can be
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found.

3.Line 33: please add reference for the "analyse plant growth and biomass".
We have added a reference (Myneni et al Nature 1997) (Line 34, reference [2].
4.Line 41: what dose "direct imaging" mean?
We have changed the phrase as we refer to extraction of quantitative data from images
(Line 42-43)

5.Line 48-52: please add references for the "Historically, the first type of screenings
was developed using the Luciferase reporter gene driven by a promoter" and "Upon
mutagenesis of a parental line harbouring a regulatory region activated or repressed by
a certain biological process or an environmental condition, new germplasm has been
recovered".

We have increased this part and included more references
6.line 69-72: The authors paid plenty of words to introduce the development of
screening techniques in the second paragraph of the Background. However, why the
purpose of this review is lacking. Why review of image acquisition and image analysis
is needed?
This is a very good point, we have made a statement about this, as most literature
about image processing is found in books describing how to do them and not as
reviews about what to use and why. (Line 78-88)

7.Line 81: TDI is a new sensor? Or it is a new imaging technique with CCD?
TDI is not a new sensor; it is a special imaging acquisition technology that can be
implemented over CCD or CMOS imaging sensors to improve their features. Currently
it is possible to find TDI cameras in the portfolios of the most important cameras
manufactures. We have modified the paragraph and included new references (Lines
102-108).
8.Line 77-93: please add references and add author's own opinion, instead of some
general knowledge.

We have added some perspective about trends in all the types of cameras we have
described (see last paragraph of each of the devices.

9.Line 96: five groups?
We have increased them to 7. This is a good point as it gives a clearer picture.
10.Line 105: please use the full name of "SPICY" for the first time.
We have corrected this throughout the paper
11.Line 99: "mono vision" should be changed to "mono RGB vision".

We have done this correction (now line 130 and following parts)
12.Line 121-123: please add reference for the "Basically, and after locating a point in
two mono vision systems, it is possible to compute the distance from the point to the
system. Images produced are known as deep maps".
We have added references
13.Line 125: please use the full name of "ToF" for the first time
We have corrected this point.
14.Line 134: the drawback of stereo vision system is low throughput, however, the
author cited a reference "high-throughput stereo-vision system" in line 130.

We have corrected this and clarified it (line 192-190)
15.Line 138-139: "usually between 2 and 10?" please add reference.
This range that classify the multispectral cameras is changing along the last decade as
technology is improved. We have found different manufacturers with multispectral
cameras between 3 until 25 bands. We have added a reference for a multispectral
camera with 25 bands. But in months, new cameras will be in the market with
increased capacities. (Line 194-202).

16.Line 156: the citing of "Figure 2" appeared earlier than Figure 1. Please check it
carefully.
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We have corrected this (line 222)
17.Line 160-163: please add references.
18.Line 167-169: please add references.
19.Line 173-177: please add references.

20.Line 178-181: More applications of plant phenotpying with LIDAR in recent years
should be cited. Please discuss the disadvantage of the LIDAR.
21.Line 177: the end of the sentence lacks punctuation.
We have rewritten this whole part and included new references
22.Line 186: "14.000 nm" should be change to "14,000 nm". The image which obtained
by thermographic camera should include a range of wavelength. Moreover, please add
the reference. 
We have added the reference. We have added fluorescence imaging with the
corresponding ranges and references (line 297-322)

23.Line 196: "as a result of UV light excitation" is not rigorous, and please add the
reference.
We have rewritten this part (see above line 397-322)
24.Line 75-203: more image acquisition techniques, such as x-ray CT, should be
added. And the authors should summarize the merit and drawback of these imaging
techniques.

25.Line 227-229: please add the reference of the "In fact, when information is
measured as entropy, pre-processing causes a decrease in entropy". Or this is the
author's own opinion.
We have rewritten this entire secction
26.Line 235-265: please introduce the procedures of image correction and images
enhancement more concisely, and please add the reference.
We have rewritten this entire secction
27.Line 271-272: please add the references to the "Leaf Area Index (LAI), biomass,
chlorophyll concentration, photosynthetic activity", respectively.
28.Line 287: please add the references to the "RDVI" and "MSR".
29.Line 294: what "NIR" and "VIS" represented?
30.Line 301: "EVI (enhanced vegetation index)" should be changed into "enhanced
vegetation index (EVI)". Please check the similar mistake carefully in the main text.
31.Line 305: you should add the meaning of "RED" and "BLUE".
32.Line 267-312: the summarization of indexes in Table 1 is appreciated. But the
"Vegetation indexes" part may not be appropriate for the "Image pre-processing" part,
and this part is too redundant.
33.Line 320: 3D or 3-D.
34.Line 336-337: please add the references of the "1500-1590 nm" and "1390-1430
nm".
35.Line 355: Despite RGB and HSV colour space, other colour components such as
ExG are also frequently used in plant detection. The authors should introduce more
colour components.
36.Line 359-360: please add the references of the "hue can discriminate to detect
chlorophyll".
37.Line 368: what is the meaning of "h(.)"?
38.Line 394: please add the references of the "Gaussian Mixture Model (GMM)". And
what is the meaning of "I"?
39.Line 474: what are the meaning of "(892-934)" and "(281-245)"?
40.Line 476: 28 in SURF?
41.Line 487: please use the full name of "FAST" for the first time.
42.Line 442-517: The authors give too much detail about the features. Little was
introduced about the application of these features in plant phenotyping.
43.Line 538-544: The authors should give some suggestion about when to select
supervised/unsupervised techniques.
44.Line 545-547: I agree that the selection of ML algorithm require actual
experimentation for optimal results. However, there are some general advices, the
author should mention that and give some suggestions.

We have rewritten this part to make it more accessible. As a result,  all the comments
have been taken into account
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45.According to the Figure 1, the author should review some popular algorithm or
software of data analysis. And the structure of image analysis in the main text is
confused, and the author should reorganize the review via the workflow of Figure 1.

We have remade Figure 1 to make it clearer and matched the review with the Figure.
We think that data analysis is a completely different topic. We have table 3 with popular
software for image analysis.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

Not aplicable

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Yes
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Have you included the information
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Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
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deposited in publicly available repositories
(where available and ethically
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the “Availability of Data and Materials”
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 2 

 16 

Abstract 17 

 18 

The study of phenomes or phenomics has been a central part of biology. The field of 19 

automatic phenotype acquisition technologies based on images has seen an important 20 

advance in the last years. As other high throughput technologies, it bears from a 21 

common set of problems, including data acquisition and analysis. In this review, we 22 

give an overview of the main systems developed to acquire images. We give an in-depth 23 

analysis of image processing with its major issues, and the algorithms that are being 24 

used or emerging as useful to obtain data out of images in an automatic fashion. 25 

 26 

Keywords: algorithms; artificial vision; deep learning; hyperspectral cameras; machine 27 

learning; segmentation 28 

Background 29 

 30 

The development of systems to monitor large fields using Normalized Difference 31 

Vegetation Index (NDVI), started a long successful career over 25 years ago when 32 

NDVI was used in the so-called remote sensing field [1]. It was an important milestone 33 

in the advance of automatic methods for analysing plant growth and biomass [2]. Ever 34 

since, new technologies have increased our capacity to obtain data from biological 35 

systems. The ability to measure chlorophyll status from satellite images allowed plant 36 

health to be measured in large fields and predict crops and productivity in very large 37 

areas such as the Canadian prairies, Burkina Faso or the Indian Basin in Pakistan [3–6]. 38 

Thus, the field of remote sensing is an important basis where knowledge about data 39 

acquisition and analysis started. The development of phenotyping devices using local 40 

cameras for crops took off using an array of technologies including Infrared 41 

thermography to measure stomatal opening or osmotic stress [7–9]. Extraction of 42 

quantitative data from images has been developed to study root development [10–12], 43 

and has found a niche to identify germplasm resistant to abiotic stresses in plants such 44 

as cereals [13], Arabidopsis [14] and for large-scale field phenotyping [15]. There are 45 

several recent reviews addressing the different types of growing setups [16–22], and we 46 

will not cover them in the current review.  47 

 48 
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 3 

The development of reporter genes allows the external visualization of gene expression, 49 

sometimes in a non-invasive way. This led to the development of high throughput 50 

image acquisition devices to study gene expression. The use of high-throughput 51 

screening systems based on imaging techniques had a major impact in the identification 52 

of mutants involved in different processes [23]. Historically, the first type of screenings 53 

were developed using the Luciferase reporter gene driven by an endogenous promoter 54 

[24]. Upon mutagenesis of a parental line harbouring a regulatory region activated or 55 

repressed by a certain biological process or an environmental condition, new germplasm 56 

has been recovered [25]. This allowed the identification of a large number of mutants 57 

affecting complex traits such as response to abiotic stress [26] or circadian clock [27]. A 58 

second type of analysis based on measuring growth helped identify genes involved in 59 

chloroplast function [28]. Further studies using promoters driving a reporter gene have 60 

been used in Bryophytes such as Physcomitrella patens, or the unicellular green Algae 61 

Chlamydomonas reinhardti to study circadian regulation [29,30]. Complex screens have 62 

been set up for instance to identify the formation of Cajal bodies in nuclei using 63 

alternatively spliced Green Fluorescent Protein (GFP) protein variants [31]. Once 64 

promoter driven lines are established they can be reused for further studies. A screen of 65 

720 chemical compounds performed in Arabidopsis plants with a GIGANTEA 66 

promoter driving luciferase identified compounds that affect circadian clock and cause 67 

actin stabilization, an otherwise difficult parameter to measure [32]. Altogether, these 68 

screens have proven the importance of unbiased image acquisition systems, 69 

demonstrating the universal power of this approach for in-depth research in plants. 70 

Those studies based on transgenic material have been extensively used model systems 71 

such as Arabidopsis, Physcomitrella or Chlamydomonas. However transgenic-based 72 

studies present a major drawback for most crops, as the size of the plants makes them 73 

difficult to use for high throughput studies using reporter genes. Finally, image 74 

acquisition from large plants is challenging as growth chambers and setups need to be 75 

built for this purpose. 76 

 77 

The two aforementioned situations i.e. field and growth chamber setups have in 78 

common the large number of images produced when using automatic image acquisition 79 

technologies. Two main aspects to consider are the type of image acquired and how to 80 

process it. There are a number of recent reviews on phenomics and high-throughput 81 

image data acquisition [15,33–36]. In contrast, the majority of the literature concerning 82 
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 4 

image processing and analysis is found in books where methods are described in detail 83 

[37–41]. There are some very good reviews on aspects of data acquisition and analysis 84 

i.e. imaging techniques [42], Machine Learning (ML) for high throughput phenotyping 85 

[43] or software for image analysis [44], but a detailed review on different type of data 86 

analysis is lacking. In this review, we cover the current and emerging methods of image 87 

acquisition and processing allowing image-based phenomics (Figure 1). 88 

 89 

Review 90 

Image acquisition 91 

 92 

Image acquisition is the process through which we obtain a digital representation of a 93 

scene. This representation is known as image and its elements are called pixels (picture 94 

elements). The electronic device used to capture a scene is known as imaging sensor. 95 

CCD (charge-coupled device) and CMOS (complementary metal oxide semiconductor) 96 

are the most broadly used technologies in image sensors. A light wavelength is captured 97 

by small analogic sensors, which will acquire major or minor charge depending on the 98 

amount of incident light. These signals are amplified, filtered, transported and enhanced 99 

by means of specific hardware. A suitable output interface and a lens in the same 100 

housing is all that it is needed to perform image acquisition. The elements enumerated 101 

above conform the main element of computer vision systems, the camera. Time delay 102 

and integration (TDI) is an imaging acquisition mode that can be implemented over 103 

CCD [45] or CMOS [46]. It improves the features of the image acquisition system 104 

considerably. TDI is used in applications that require the ability to operate in extreme 105 

lighting conditions, requiring both high speed and high sensitivity, for example: inline 106 

monitoring, inspection, sorting, and remote sensing (for weather o vegetation 107 

observation) [46].  108 

The aforementioned technologies, CCD, CMOS and TDI confer unique characteristics, 109 

which define the type of data a camera can provide with a degree of robustness. There 110 

are fundamental differences in the type of performance the different sensors offer. In the 111 

last years CMOS technology, has outperformed CCDs in most visible imaging 112 

applications. When selecting an imaging sensor (a camera), CCD technology causes less 113 

noise and produces higher quality images, mainly in scenes with bad illumination. They 114 

have a better depth of colour due to their higher dynamic range. On the other hand, the 115 
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 5 

CMOS sensors are faster at processing images. Due to the hardware architecture for 116 

pixel extraction, they need less electrical power to operate, they allow a Region of 117 

Interest (ROI) to be processed on the device and are cheaper than CCDs. Furthermore, 118 

TDI mode with CCD or CMOS imaging sensors is used for high speed and low light 119 

level applications [47]. The latest technological developments in cameras show that the 120 

trend of the manufacturers such as IMEC, world-leader in nanoelectronics, is to fuse 121 

TDI technology with the CCD and CMOS characteristics in the same device [48]. TDI 122 

technology is expected to be applied to high throughput phenotyping processes in the 123 

nearby future. 124 

 125 

The field of image acquisition is extremely developed with considerable literature but 126 

image acquisition systems can be classified into seven groups that are suitable for 127 

phenotyping. 128 

 129 

1. Mono-RGB vision 130 

 131 

Mono-RGB vision systems are composed of a set comprising a lens, imaging sensor, 132 

specific hardware and IO interface. Depending if they use a line or matrix of pixels, 133 

they are classified in line cameras (or scanners) and matrix cameras. Most computer 134 

vision phenotyping devices are based on mono-RGB vision systems. Examples of 135 

mono-RGB vision devices include “Smart tools for Prediction and Improvement of 136 

Crop Yield (SPICY)”, an automated phenotyping prototype of large pepper plants in the 137 

greenhouse. The system uses multiple RGB cameras to extract two types of features: 138 

features from a 3D reconstruction of the plant canopy and statistical features derived 139 

directly from RGB images [49]. A different approach has been used with two cameras 140 

inside a growth chamber to measure circadian growth features of Petunia, Antirrhinum 141 

and Opuntia [50]. Two cameras with low and high magnifications were used to carry-142 

out phenotype studies of Arabidopsis thaliana seeds. The system is mounted on a three-143 

axis gantry and the rotation of the samples allow the gravitropic bending response to be 144 

determined in the roots and its posterior quantification [51]. Recently a high-throughput 145 

RGB system has been developed to identify Quantitative Trait Loci (QTL) involved in 146 

yield in large recombinant inbred lines in maize [52], demonstrating the increasing 147 

impact of this approach in phenomics. 148 
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 6 

These devices have excellent spatial and temporal resolution, i.e. they can produce a 149 

very large number of images in very short periods and at a very low cost. They are 150 

portable and there are many software tools to perform image processing (Table 1). 151 

Systems based on mono-RGB vision allow a quantification of the plant canopy [53], as 152 

well as sufficient computation of vegetation indices, for most purposes. The main 153 

disadvantages are caused by the overlap of plant organs during growth and nutation 154 

phases and the relative position of the organs with respect to the device that makes the 155 

precise quantification difficult. In addition, these devices are affected by variations in 156 

illumination when used outdoors. The trend in outdoor plant phenotyping is to combine 157 

mono-RGB systems with other systems such as Light Detection and Ranging LIDAR 158 

devices (see below), thermal imaging or adding new bands or filters to the camera that 159 

allow the segmenting of specific regions of the spectrum [54,55]. 160 

 161 

2. Stereo vision  162 

 163 

Stereo vision systems try to correct a drawback of mono-RGB vision systems for 164 

distance measurement. The architecture of stereo vision systems emulates the behaviour 165 

of human vision using two mono vision systems. Basically, and after locating a point in 166 

two mono vision systems, it is possible to compute the distance from the point to the 167 

system. Images produced are known as depth maps [56]. A stereo vision system has 168 

been used by Biskup and colleagues [57] to obtain structural features of plant canopies. 169 

The 3D reconstruction has been successfully employed to obtain 3-D models of plants, 170 

thus demonstrating the power of this approach [58]. Simple depth reconstructions 171 

helped to define stems, leaves and grapes showing the potential of this technology [59]. 172 

A RGB camera mounted on a mobile robot is used as an automated 3D phenotyping of 173 

vineyards under field conditions. Sequentially, the system captures a set of images, 174 

which are used to reconstruct a textured 3D point cloud of the whole grapevine row 175 

[60]. A stereo vision has been developed to perform high throughput analysis of 176 

rapeseed leaf traits. The system uses two identical RGB cameras to obtain stereo images 177 

for canopy and 3-D reconstruction [61]. Developing a 3D-mesh segmentation has 178 

allowed cotton growth to be analysed [62], showing the further possibilities of 3D 179 

imaging.  180 

 181 
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The main advantage of 3-D systems is their simplicity, two cameras are enough to 182 

obtain depth maps. The stereo vision has evolved in multi-view stereo (MSV) and has 183 

found a place in plant phenotyping [63]. Furthermore, the MSV is a low cost 3D image 184 

acquisition system compared with other technologies such as LIDAR or tomography 185 

imaging [64]. Stereo vision systems have important weaknesses. They are affected by 186 

changes of the scene illumination, they need a high performance computational system 187 

to carry out stereo matching algorithms, and they have a poor depth resolution [65]. 188 

These limitations are increased in outdoor environments, as image segmentation 189 

becomes more challenging. 190 

 191 

3. Multi and hyper spectral cameras  192 

 193 

The multispectral and hyperspectral cameras have been used in numerous fields of 194 

science and in industrial applications [66–71]. The spectral resolution is the main factor 195 

that distinguishes multispectral imagery from hyperspectral imagery [72]. Multispectral 196 

cameras are devices able to capture images from a number of discrete spectral bands. 197 

The number of bands has increased in the last decade as technology has improved. 198 

Currently, the main camera manufacturers offer multispectral cameras acquiring 199 

between three and twenty five bands, including the visible RGB channels, Near Infra-200 

Red (NIR) or a set of custom bands, with a tendency to provide increasing number of 201 

bands [73]. The spectral bands may not be continuous, thus for one pixel we obtain a 202 

vector of information comprising the number of elements corresponding to the number 203 

of bands registered. Hyperspectral systems may reach resolutions of a few nanometers 204 

in wavelength, obtaining for each pixel a digital signature that may contain several 205 

hundreds of continuous bands within a specific range of wavelengths [74]. 206 

Traditionally, both multispectral and hyperspectral imaging have been used for remote 207 

sensing and have an increased number of applications in phenomics. A multispectral 208 

system has been developed to improve the original colour of images for fruit 209 

recognition [75]. The authors fused the original colour image with an infrared image 210 

using the nonlinear Daubechies wavelet transform (DWT). Thus, the additional 211 

information from a second image allows the original one to be improved. 212 

 213 

The use of hyperspectral cameras is increasing in phenotyping experiments as they 214 

allow the identification of physiological responses, pathologies or pests in a non-215 
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 8 

invasive way. Using hyperspectral images, a system has been developed to identify 216 

pathogens in barley leaves using probabilistic topic models [76]. A hyperspectral 217 

microscope was used to determine spectral changes on the leaf and cellular level of 218 

barley (Hordeum vulgare) during resistance reactions against powdery mildew 219 

(Blumeria graminis f.sp. hordei, isolate K1) [77]. A detailed description of the different 220 

wavelengths and combinations used in multispectral and hyperspectral cameras can be 221 

seen in Figure 2, and their uses in Table 2. We expect to see an increase in phenomic 222 

setups using multispectral and hyperspectral cameras in the future. An emerging issue 223 

will be the data analysis as the number of pictures doubles with each additional 224 

spectrum used for analysis (see below). 225 

 226 

4. ToF cameras 227 

 228 

The Time of Flight cameras or ToF cameras have been one of the last imaging devices 229 

to be incorporated into automatic plant phenotyping [78]. ToF has as a general principle 230 

the measurement of the distance between the objective of the camera and each pixel. 231 

This is achieved measuring the time it takes for a signal emitted in NIR to come back, 232 

reflected by the object. This allows a precision 3D reconstruction. Stereo vision coupled 233 

with ToF images have been implemented to increase the performance of methods of 234 

image segmentation to obtain leaf areas [79]. Beyond the tedious hand work required 235 

for manual analysis sampling is done in a non-destructive way. Depth maps obtained by 236 

a ToF camera together with colour images are used to carry out the 3D modelling of 237 

leaves. The system is mounted on a robotic arm which allows image acquisition to be 238 

automated [80]. A ToF has been successfully used to identify QTL regulating shoot 239 

architectures of Sorghum by mean of 3D reconstruction [81]. 240 

Microsoft Kinect is a low cost image acquisition system designed for video gaming 241 

which can be used for characterization and for tracking of phenological parameters [82]. 242 

The device is composed of an infrared projector and camera that generates a grid from 243 

which the location of a nearby object in 3 dimensions can be ascertained [83]. Kinect 244 

has been used to measure plant structure and size for two species growing in California 245 

grassland [84]. The quantitative 3D measurements of the architecture of the shoot and 246 

structure of the leaves can be performed when proper segmentation algorithms are 247 

developed suggesting some potential for ToF systems [85].  248 

 249 
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The main disadvantages of this acquisition system are the low resolution, a reduced 250 

distance range of a few meters and the high dependence on the reflecting surface for 251 

imaging. As a result, they cannot operate under strong sunlight and are more appropriate 252 

for indoor conditions. Its reduced cost and the possibility of obtaining 3D structures of 253 

entire plants, as well as of individual organs make these devices very attractive for 254 

indoor phenotyping. 255 

 256 

5. LIDAR technology 257 

 258 

Light Detection and Ranging (LIDAR) is a remote sensing technology developed at the 259 

beginning of the 70s to monitor the Earth’s Surface [86]. LIDAR uses a laser pulse light 260 

to measure the distance between the light source and the object by calculating the time 261 

of emission and time of reflected light detection. It allows the creation of a cloud of 262 

points that reconstruct the 3D structure of an object [87,88]. LIDAR has been used in 263 

image acquisition from distances of thousands of kilometres to centimetres, 264 

demonstrating the great potential of these type of devices. Satellite-based LIDAR 265 

systems are used for the measurements of vegetation canopy height, area, volume or 266 

biomass, etc. [89–91]. Recent development using both manned and unmanned flights 267 

have allowed the estimation of biomass dynamics of a coniferous forest using Landsat 268 

satellite images together with ground and airborne LIDAR measurements 269 

[92].Terrestrial LIDAR sensors are applied to detect and discriminate maize plants and 270 

weeds from soil surface [93]. Short range LIDAR can be deployed for high-throughput 271 

phenotyping (HTP) systems for cotton plant phenotyping in the field [94] or tomato leaf 272 

area by 3-D laser reconstruction [95]. Fully automated crop monitoring is feasible using 273 

centimetre ranges from robotized or gantry systems [53]. An autonomous robotic 274 

system has allowed 3D mapping of plant structures to be performed with millimetric 275 

precision [96]. A LASER SCAN mounted on a XYZ gantry system was used to 276 

estimate the growth measures and structural information of plants through laser 277 

triangulation techniques [97]. Thus, using different devices LIDAR has an impressive 278 

range of possibilities for plant phenomics. 279 

 280 

Some shortcomings of LIDAR devices for pant phenotyping are the absence of colour 281 

in the measurement, excessive time to compute the cloud points, low precision for 282 

massive phenotyping, scanning noises caused by wind, rain, insects, small particles in 283 
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 10 

the air, and the requirement of calibration. Recent advantages suggest that the use of 284 

LIDAR technologies could overcome some of challenges for the next-generation 285 

phenotyping technologies [98]. Developments in multispectral LIDAR instruments 286 

show novel systems which are capable of measuring multiple wavelengths and of 287 

obtaining vegetation indexes (see below) [99,100] or to measure arboreal parameters 288 

[101]. The massive adoption of LASER technologies by autonomous car manufactures 289 

has fostered the development of 3D High Definition LIDAR (HDL) with real time (RT) 290 

capacities. The new 3D HDLs are capable of generating 1.3 million points per second 291 

with precisions of 2 cm and distances of up to 120 meters [102]. These new devices 292 

open the door to the RT massive phenotyping in outdoor and indoor crops. 293 

 294 

6. Thermography and Fluorescence Imaging 295 

 296 

Thermography is a widely-used technology in remote sensing and plant phenotyping 297 

[103–106]. Thermographic cameras are able to acquire images at wavelengths ranging 298 

from 300 to 14,000nm [107], thus allowing the conversion of the irradiated energy into 299 

temperature values, once the environmental temperature is assessed. Plants open 300 

stomata in response to environmental cues and circadian clock depending on the type of 301 

photosynthetic metabolism they have [108,109]. The evapotranspiration can be assessed 302 

with thermography [110], and quantification can be made at different scales such as a 303 

leaf, a tree, a field or a complete region. Water stress and irrigation management are two 304 

fields of application of thermography imaging [111–114]. Thermography imaging can 305 

detect local changes of temperature produced due to pathogen infection or defence 306 

mechanisms [115]. Oerke et al. used a digital infrared thermography to correlate the 307 

maximum temperature difference (MTD) of apple leaves with all stages of scab 308 

development [116].  309 

 310 

Fluorescence imaging has been used in a large number of experimental setups as UV 311 

light in the range of 340-360 nm is reflected by different plant components as discrete 312 

wavelengths [42]. The corresponding wavelengths emitted are cinnamic acids in the 313 

range of green-blue (440-520 nm). Early experiments using reflected fluorescence 314 

allowed the identification of phenylpropanoid synthesis mutants in Arabidopsis [117]. 315 

Chlorophyll fluorescence emits in red and far-red (690-740 nm). It is an important 316 

parameter that has been studied as a proxy for different biological processes such as 317 
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circadian clock or plant health [8,118,119]. A system based on a UV light lamp and a 318 

conventional camera provided of a UV-filter to avoid RGB and IR images has been 319 

used to identify changes in UV absorbance related to pollination [120]. Multicolour 320 

fluorescence detection uses the combination of chlorophyll and secondary metabolites 321 

emitted fluorescence to determine plant health in leaf tissues [121].  322 

 323 

Thermography imaging results in an estimable tool for monitoring of genotypes and 324 

detection of plant diseases [122] where all the specimens are located under strict control 325 

conditions: temperature, wind velocity, irradiance, leaf angle or canopy leaf structures 326 

are potential issues for quality image acquisition. The next generation of thermography 327 

imaging for phenotyping will have to resolve drawbacks related to temporal variations 328 

of environment conditions, aspects relating to angles of view, distance, sensitivity and 329 

reproducibility of the measurements [114]. Both thermographic and fluorescent images 330 

capture a single component and images are in principle easy to analyse as segmentation 331 

based on thresholds can be applied to the acquired images. Combining thermographic 332 

and fluorescent imaging requires sophisticated data analysis methods based on neural 333 

networks to obtain quality data but are an emerging solution [121]. 334 

 335 

7. Tomography imaging  336 

 337 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique which uses 338 

Radio Frequency (RF) magnetic fields to construct tomographic images [123]. 339 

Commonly MRI has been used to investigate the anatomy structure of the body 340 

(especially the brain) in both health and disease [124]. In plant phenomics, MRI is used 341 

to visualize internal structures and metabolites. This method poses a great potential to 342 

monitor physiological processes occurring in vivo [125]. MRI has allowed the 343 

development of root systems over time in bean to be mapped [126], moisture 344 

distribution to be visualized during development in rice [127] and the water presence to 345 

be analysed during maturity process of barley grains [128]. 346 

Positron Emission Tomography (PET) is a nuclear medicine imaging modality that 347 

allows the assessment of biochemical processes in vivo, to diagnose and stage diseases 348 

and monitor their treatment [129]. Karve et al. [130] presented a study about C-349 

allocation (Carbon allocation from CO2 through photosysthesis) in large grasses such as 350 

Sorghum bicolor. The study concluded that the commercial PET scanners can be used 351 
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reliably, not only to measure C-allocation in plants but also to study dynamics in 352 

photoassimilate transport. 353 

 354 

X-ray Computed Tomography (X-ray CT) employs X-rays to produce tomographic 355 

images of specific areas of the scanned object. The process of attenuation of rays 356 

together with a rotation and axial movement over objects produces 3D images [42]. A 357 

high throughput phenotyping system based on X-ray CT is ten times more efficient than 358 

human operators, being capable of detecting a single tiller mutant among thousands of 359 

rice plants [131]. The remarkable penetration of X-rays, has made this technology a 360 

great ally of phenotyping carried out below-ground. The study of root systems and their 361 

quantification has been a field of habitual application of X-ray CT [132–136]. New 362 

developments address the reduction of  penetrability and the increase of the image 363 

resolution of X-ray CT in plant tissue using phosphotungstate as a contrasting agent, 364 

due to its capacity of increasing the contrast and penetrability of thick samples [137]. 365 

 366 

MRI, PET and X-ray imaging techniques are available for screening 3-D objects. MRI 367 

and PET are two non-destructive and non-invasive scanning technologies that have been 368 

applied in plant sciences to acquire 3-D structural information [138]. MRI and PET data 369 

acquisition is time consuming, and software tools need to be further developed to 370 

analyse data and obtain physiologically interpretable results [107]. High-Resolution X-371 

ray computed tomography (HRXCT) promises to be the broadest non-destructive 372 

imaging method used in plant sciences. HRXCT will provide 3-D data at a resolution 373 

suited for detailed analysis of morphological traits of in vivo plant samples and at a 374 

cellular resolution for ex vivo samples [138]. From of a point of view of the devices the 375 

trend will be to increase the resolution of images, the size of the fields of view, and 376 

increase its portability [139]. 377 

 378 

Image analysis 379 

 380 

Extracting information from images is performed through the process of segmentation. 381 

The aim of a segmentation procedure is to extract the components of an image that are 382 

of interest i.e. object or region of interest from the rest of the image i.e. background of 383 

the image or irrelevant components. Thus, we end up with a partitioned image with 384 
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significant regions. The significant regions may be defined as foreground versus 385 

background, or by selecting a number of individual components from an image. The 386 

construction of the selected regions is based on the image characteristics such as colour 387 

(colour spaces), spectral radiance (vegetation indexes), edge detection, neighbour 388 

similarity [140] or combinations that are integrated via a machine learning process 389 

[141]. In some cases, pre-processing is required in order to obtain a meaningful 390 

segmentation. 391 

 392 

 393 

1. Image pre-processing 394 

 395 

Image preprocessing is an important aspect of image analysis. The aim of image 396 

preprocessing is to improve contrast and eliminate noise in order to enhance the objects 397 

of interest in a given image [142]. This process can be extremely helpful to enhance the 398 

feature extraction quality and the downstream image analysis [143]. Preprocessing can 399 

include simple operations such as image cropping, contrast improvement or others 400 

significantly more complex such as dimensionality reduction via Principal Component 401 

Analysis or Clustering [43]. One preprocessing pipeline has been proposed for plant 402 

phenotyping based on converting the image to grayscale, application of a median filter, 403 

binarization and edge detection [144]. A similar preprocessing has been developed to 404 

identify plant species under varying illumination conditions [145]. It comprises 405 

conversion to grayscale, image binarization, smoothing and application of a filter to 406 

detect edges. In a comparative study to analyze leaf diseases, histogram equalization 407 

was found to be the best way to obtain preprocessing of color images converted to 408 

grayscale [146]. However RGB images have been found to perform better than 409 

grayscale conversions when identifying leaf pathogens [147]. 410 

 411 

We cannot conclude that a single preprocessing method will outperform other methods. 412 

The quality and type of image are fundamental to select a type of preprocessing 413 

procedure. Nevertheless, preprocessing is a basic step that can improve image analysis, 414 

and sometimes make it possible. It should be described in the materials and methods 415 

ofimage procedures to make data comply the new standards -Findability, Accessibility, 416 

Interoperability, and Reusability (FAIR) [148] 417 

 418 
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2. Image segmentation 419 

 420 

As we mentioned above, image segmentation is the core of image processing for 421 

artificial vision-based plant phenotyping. Segmentation allows the isolation and 422 

identification of objects of interest from an image, and it aims to discriminate 423 

background or irrelevant objects [149]. The objects of interest are defined by the 424 

internal similarity of pixels in parameters such as texture, colour, statistic [143], etc. 425 

(See a list of Open software libraries for image segmentation in Table 1). 426 

 427 

One of the simplest algorithms used is threshold segmentation, based on creating groups 428 

of pixels on a grayscale according to the level of intensity, thus separating the 429 

background from targets. Such an approach has been used with Android OS (ApLeaf) in 430 

order to identify plant leaves [150].  431 

 432 

The Otsu’s method [151] is a segmentation algorithm that searches for a threshold that 433 

minimizes the weighted within class variance [142]. This method has been used for 434 

background subtraction in a system that records and performs automatic plant 435 

recognition [152], and can give high contrast segmented images in an automatic fashion 436 

[153]. Under certain circumstances, it can underestimate the signal causing under 437 

segmentation, and is significantly slower than other thresholding methods [142].  438 

 439 

The Watershed [154] transformation is a popular algorithm for segmentation. It treats an 440 

image as a topological surface that is flooded, and seed regions are included, usually by 441 

the user. This generates an image with gradients of magnitudes, where crests appear in 442 

places where borders are apparent (strong edges), and causes segmentation to stop at 443 

those points [140]. It has been used to identify growth rate [155], recognition of 444 

partially occluded leaves [66], individual tree crown delineation [156] or leaf 445 

segmentation [157].  446 

 447 

Grabcut [158] is a segmentation algorithm based on graph cut [159]. It is created on 448 

graph theory to tackle the problem of separating an object or foreground from the 449 

background. The user should mark a rectangle (bounding box) surrounding the object of 450 

interest thus defining the outrebound of the box as background [160]. This algorithm 451 

has been tested to extract trees from a figure but it has been successful only with very 452 
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simple backgrounds [161]. More recently Grabcut has been deployed as a segmentation 453 

algorithm in a pipeline for plant recognition with multimodal information i.e. leaf 454 

contour, flower contour etc [162]. Grabcut loses precision or even fails when pictures 455 

have complex backgrounds but is highly precise with simple backgrounds [161,163]. 456 

 457 

Snakes are a special type of active contour [164], and are used as methods to fit lines 458 

(splines) either to open or close edges and lines in an image. These methods have been 459 

used for face recognition, iris segmentation and medical image analysis. Within the 460 

field of plant phenotyping, there are procedures where active contours are used inside a 461 

protocol constructing a vector of features with data of colour intensity, local texture and 462 

a previous knowledge of the plant incorporated via Gaussian Mixture Models, 463 

previously segmented [165] . These steps give an initial rough segmentation upon 464 

which, active contours can operate with a much higher precision. 465 

  466 

Active contours have used for plant recognition via images of flowers [166], based on a 467 

combination of the algorithm proposed by Yonggang and Karl [167] and the model of 468 

active contours without edges [168]. Whilst the work proposed by Minervini et al [165] 469 

appears to give significantly better results compared to those of Suta et al [166], the 470 

usage of images with a natural background maybe related to the apparent differences in 471 

segmentation. Thus, a current problem concerning the comparison of algorithms and 472 

procedures lies on the different backgrounds used for image acquisition. 473 

 474 

3. Features extraction  475 

 476 

Features extraction constitutes one of the pillars of the identification and classification 477 

of objects based on computer vision. Beyond the raw image, a feature is information 478 

which is used to resolve a specific computer vision problem. The features extracted 479 

from an image are disposed in the so-called “feature vectors”. The construction of 480 

feature vectors uses a wide set of methods to identify the objects in an image. The main 481 

features are edges, intensity of image pixels [49], geometries [169], textures [165,170], 482 

image transformations e.g. Fourier [171], or Wavelet [75,172] or combinations of pixels 483 

of different colour spaces [141]. The end goal of feature extraction is to feed up a set of 484 

classifiers and machine learning algorithms (see below). 485 

 486 
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One system proposed uses a feature vector composed of a combination of RGB and CIE 487 

L*a*b* colour spaces to segment the images captured during the day [141]. The night-488 

time image segmentation computed a vector composed of statistical features over two 489 

decomposition levels of the wavelet transform using IR images. 490 

Iyer-Pascuzzi et al. presented an imaging and analysis platform for automatic 491 

phenotyping to identify genes underlying root system architecture. The authors 492 

employed a set of 16 statistical, geometrics and shape features obtained from 2,297 493 

images from 118 individuals such as median and maximum number of roots, the total 494 

root length, perimeter, depth, among others [173].  495 

 496 

There are a number of algorithms to identify invariant features detectors and 497 

descriptors. This type of image analysis ensures the detection of points of interest in a 498 

scale and rotation independent manner. This is crucial for camera calibration and for 499 

matching to produce a set of corresponding image points in 3D image reconstruction. 500 

Furthermore, it allows the identification of points of interest even when they change 501 

scale and/or position or situations of uncontrolled illumination, a common issue when 502 

phenotyping plants. The Scale Invariant Features Transforms (SIFT) [174], Speeded-Up 503 

Robust Features (SURF) [175] and the Histograms of Oriented Gradients (HoG) [176] 504 

are algorithms used to extract characteristics in computer vision and they have been 505 

extended to plant phenotyping. Wei et al. [177] presented an image-based method that 506 

automatically detects the flowering of paddy rice. The method uses a scale-invariant 507 

feature transform descriptor, bag of visual words, and a machine learning method. The 508 

SIFT algorithm has been used to combine stereo and ToF images with automatic plant 509 

phenotyping. It can create dense depth maps to identify pepper leaf in glasshouses [79]. 510 

SIFT and SURF algorithms have been tested for detecting local invariant features for 511 

obtaining a 3D plant model from a multi-view stereo images [178]. A HoG framework 512 

allows the extraction of a reliable quantity of phenotypic data of grapevine berry using a 513 

feature vector composed of colour information [179]. 514 

 515 

So far, feature extraction is an arduous and difficult task requiring the testing of 516 

hundreds of feature extraction algorithms and a greater number of combinations 517 

between them. This task demands expert skills in different subjects. The success in the 518 

identification does not depend on the robustness of the classification methods, but on 519 

the robustness of the data. 520 
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 521 

4. Machine Learning in plant image analysis 522 

 523 

The amount of data generated in current and future phenomic setups with high 524 

throughput imaging technologies has brought the use of Machine Learning (ML) 525 

statistical approaches. Machine Learning is applied in many fields of research [180–526 

182]. As phenotyping can generate Terabytes of information, ML tools provide a good 527 

framework for data analysis. A list of ML libraries can be found in Table 3. A major 528 

advantage of ML is the possibility to explore large datasets to identify patterns, using 529 

combinations of factors instead of performing independent analysis  530 

[43]. 531 

 532 

Among the ML algorithms a predictive model of regression has been used to phenotype 533 

Arabidopsis leaves, based on geometric features as training dataset [169]. Three 534 

different algorithms were tested, k Nearest Neighbour (kNN), Support Vector Machine 535 

(SVM) and Naïve Bayes to segment Antirrhinum majus leaves. Colour images have as a 536 

characteristic vector intensity in the RBG and CIE L*a*b*, while the NIR vector is 537 

obtained with the wavelet transform. The best results were obtained with kNN for 538 

colour images and SVM for NIR. This shows that segmentation has several components 539 

as mentioned before including the wavelength of image acquisition [141]. 540 

 541 

As the specific wavelength used for image acquisition plays a key role in the type of 542 

data obtained, hyperspectral cameras are becoming important tools, however, hyper 543 

images can be in the order of Gbites of size, making ML a necessity. Examples of 544 

coupling hyperspectral and thermal imaging with ML have allowed the early detection 545 

of stress caused by Alternaria in Brassica [183]. The best image classification was 546 

obtained doing a second derivative transformation of the hyperspectral images together 547 

with a back propagation of neural networks allowing the identification of fungi on 548 

leaves days after infection [183]. 549 

 550 

A current concept derived from ML is Deep Learning (DL) comprising a set of 551 

algorithms aimed to model with a high level of abstraction. This allows the 552 

development of complex concepts starting from simpler ones, thus getting closer to the 553 

idea of Artificial Intelligence (AI) (www.deeplearningbook.org). Convolutional Neural 554 
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Networks (CNN), are an example of DL derived of Artificial Neural Networks (ANN). 555 

These multi-layered networks are formed by a layer of neurons that work in a 556 

convolutional way reducing the sampling process and end with a layer of perception 557 

neurons for final classification [184]. Recently DL has been implemented using a CNN 558 

to automatically classify and identify different plant parts [185], thus obtaining both 559 

classification and localization that significantly improve the current methods. A CNN 560 

has been used to detect plant pathogen attacks [186]. Although the training period is 561 

computationally heavy, requiring several hours of CPU clusters, classification was 562 

performed in less than one second [186]. Nevertheless, DL is a step forward in ML and 563 

has great potential to allow the management and analysis of the data produced in 564 

phenomic experiments. 565 

 566 

Although direct testing maybe the best way to determine the superior algorithm in each 567 

case, there is a number of examples that may guide initial approaches [43,187,188]. As 568 

a general rule discriminating methods such as SVM, ANN, K-NN, give better results in 569 

large datasets that are labelled [43]. Generative methods such as Naive Bayes, Gaussian 570 

Mixture Models, Hide Markov Models, give better results with smaller datasets, both 571 

labelled and unlabelled. The use of unsupervised algorithms i.e. k-means may help 572 

identify unexpected characteristics on a dataset. As mentioned above, preprocessing 573 

plays a fundamental role in increasing the ML output. 574 

 575 

Conclusions and future prospects 576 

 577 

The implementation of phenomic technologies is a welcome change towards 578 

reproducibility and unbiased data acquisition in basic and applied research. A successful 579 

approach requires integrating sensors, with wavelength and image acquisitions that will 580 

allow the proper identification of the items under analysis. The majority of the work has 581 

been made in indoor-setups where reasonable conditions can be created to obtain high 582 

quality images, amenable to further processing. The difficulty in outdoor setups 583 

increases as a result of limitations in the actual image acquisition devices and the 584 

uncontrolled conditions that directly affect image quality. The new technologies such as 585 

the high definition LIDAR or the multi-hyperspectral cameras have a great potential to 586 

improve in the near future, specially in outdoor environments. 587 

 588 
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The pre-processing and segmentation data are two aspects of data treatment and 589 

acquisition that require careful design in order to avoid distortions and reproducibility 590 

[148]. As images are machine-produced data, but image types and processing 591 

procedures may be very different, the standardization of image capture, preprocessing 592 

and segmentation may play an important role. It is a matter of time that databases with 593 

raw image will become part of the standard in phenomics using images very much like 594 

NCBI or Uniprot play a key role in genomic and proteomic projects. With the decrease 595 

in price of hyperspectral devices, new experiments may be performed that produce even 596 

larger data sets, and these data sets will have to go through Artificial Intelligence-based 597 

data analysis in order to give the researchers results interpretable by humans. We guess 598 

that like in other omic approaches, there will be a confluence to standard procedures 599 

that are not currently common ground, making the current literature look intimidatingly 600 

diverse. Nevertheless, most of the basic processes described here are shared by the 601 

different experimental setups and data analysis pipes. 602 

 603 

Abbreviations 604 

 605 

AI: Artificial intelligence 606 

ANN: Artificial neural networks 607 

CAI: Cellulose Absorption Index  608 

CAR: Chlorophyll absorption ratio  609 

CCD: Charge coupled device 610 

Cig: Coloration green 611 

Cir: Coloration Index red 612 

CMOS: Complementary metal oxide semiconductor 613 

CNN: Convolutional neural networks 614 

CPU: Central processing unit 615 

DL: Deep learning 616 

DLAI: Difference Leaf Area Index 617 

DSWI: Disease water stress index  618 

DWT: Daubechies wavelet transform 619 

EVI: Enhanced vegetation index 620 

FAIR: Findability, Accessibility, Interoperability, and Reusability  621 

GI: Greenness Index 622 
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GMM: Gaussian mixture model 623 

GNDVI: Green normalized difference vegetation index 624 

HOG: Histograms of oriented gradients 625 

KNN: K nearest neighbour 626 

LAI: Leaf area index 627 

LCA: Lignin-Cellulose Absorption Index 628 

LIDAR: Light detection and ranging 629 

LWVI-1: Normalized Difference Leaf water VI 1 630 

MCARI: Modified Chlorophyll Absorption Ratio Index 631 

MCFI: Multicolour fluorescence imaging 632 

ML: Machine learning 633 

NDVI: Normalized Difference Vegetation index 634 

NIR: Near infrared 635 

NLI:  Nonlinear vegetation index 636 

NTDI: Normalized Tillage Difference Index  637 

OSAVI: Optimized Soil Adjusted Vegetation Index  638 

PCA: Principal component analysis 639 

PWI: Plant Water Index  640 

QTL: Quantitative trait locus 641 

RGB: Red, green, blue 642 

ROI: Region of interest 643 

SIFT: Scale invariant features transforms 644 

SURF: Speeded-up robust features 645 

SVM: Support vector machine 646 

TDI: Time delay and integration 647 

ToF: Time of flight 648 
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Tables 1393 

Table 1. List of software tools for image processing 1394 

Vision libraries Source Language 

OpenCV 

EmguCV 

http://opencv.org 

http://www.emgu.com/ 

C++, Python, 

Java, C# 

PlantCV 

Scikit-image 

http://plantcv.danforthcenter.org 

http://scikit-image.org 

Python 

 

Bioimagetools, 

bayesimages, edci, DRIP, 

dpmixsim, raster, ... 

https://cran.r-project.org/ R 

Cimg 

Simplecv 

Fastcv 

 

Ccv 

Vxl 

http://cimg.eu 

http://Simplecv.org 

https://developer.qualcomm.com/software/fastcv-

sdk 

http://libccv.org 

http://vxl.sourceforge.net 

C++ 

 

BoofCV 

OpenIMAJ 

JavaCV 

http://boofcv.org 

http://openimaj.org 

https://github.com/bytedeco/javacv 

Java 
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 1397 

Table 2. A list of indexes, the corresponding wavelength ranges and their use to analyse 1398 

plant material. 1399 

 1400 

Index Range nm Applications 

CAI – Cellulose Absorption Index  2200-2000 Quantification mixed soil–plant litter scenes 

[189], estimation of non-photosynthetic biomass 

[190] 

LCA – Lignin-Cellulose Absorption 

Index  

2365-2145 Measure the effects of soil composition and 

mineralogy of crop residue cover [191]  

NTDI – Normalized Difference Tillage 

Index  

2359-1150 Used for identifying crop residue cover in 

conventional and conservation tillage systems 

[192] 

LWVI-1 – Normalized Difference Leaf 

water VI 2 

1094-893 Discrimination of sugarcane varieties, allowed to 

detect large amounts of non photosynthetically-

active constituents within the canopy [193] 

DLAI – Difference Leaf Area Index  1725-970 Used for estimating leaf area index based on the 

radiation measurements in the visible and near-

infrared [194] 

PWI – Plant Water Index  970-902 Water content estimation and study of the 

characteristics of canopy spectrum and growth 

status [195][196] 

NLI – Nonlinear vegetation index 1400-780 Measurement of plant leaf water content. In 

combination with others indexes can detect 

interaction of biochemicals such as protein, 

nitrogen, lignin, cellulose, sugar, and starch [197] 

DWSI – Disease water stress index  1657-547 To predict larval mosquito presence in wetland 

[198]and detect sugarcane 'orange rust' disease 

[199] 

NDVI – Normalized Difference 

Vegetation Index  

800-670 Measurement significant variations in 

photosynthetic activity and growing season length 

at different latitudes [200] 

MCARI – Modified Chlorophyll 

Absorption Ratio Index  

700-670 Study of vegetation biophysical parameters, as 

well as to external factors affecting canopy 

reflectance [201] 

GI – Greenness Index 670-550 Characterization of corn nitrogen status [202] 

CAR – Chlorophyll absorption ratio  700-500 Estimating the concentration of individual 

photosynthetic pigments within vegetation [203] 

GNDVI – Green normalized difference 

vegetation index 

800-550 Providing important information for site-specific 

agricultural decision making [204] and for 

identification of chlorophyll content and tissue 

nitrogen [205] 

 

OSAVI – Optimized Soil Adjusted 

Vegetation Index  

800-670 Measurement with high sensitive of chlorophyll 

content variations and very resistant to the 

variations of LAI and solar zenith angle [206] 

CI r – Coloration Index red 780-710 Mapping of coastal dune and salt marsh 

ecosystems [207] 

CI g – Coloration Index green 780-550 Characterization of the state of soil degradation 

by erosion [208] 
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Table 3. List of Machine Learning software libraries and their languages 1406 

 1407 

Libraries  ML/DL Source Language 

MICE, rpart, Party, 

CARET, randomForest, 

nnet, e1071, KernLab, 

igraph, glmnet, ROCR, tree, 

Rweka, earth, klaR, 

https://cran.r-project.org/ R 

Scikit-learn 

Tensorflow 

Theano 

Pylearn2,  

NuPIC 

Caffe 

PyBrain 

http://scikit-learn.org/stable/ 

https://www.tensorflow.org/ 

http://deeplearning.net/software/theano 

http://deeplearning.net/software/pylearn2 

http://numenta.org/ 

http://caffe.berkeleyvision.org/ 

http://pybrain.org/ 

Python 

Weka 

Spark 

Mallet 

JSAT 

ELKI 

Java-ML 

http://www.cs.waikato.ac.nz/ml/weka/ 

http://spark.apache.org/ 

http://mallet.cs.umass.edu/ 

https://github.com/EdwardRaff/JSAT 

http://elki.dbs.ifi.lmu.de/ 

http://java-ml.sourceforge.net/ 

Java 

Accord 

Multiboost 

Shogun 

LibSVM 

mlpack 

Shark 

MLC++ 

http://accord-framework.net/ 

http://www.multiboost.org/ 

http://shogun-toolbox.org/ 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

http://mlpack.org/ 

http://image.diku.dk/shark/ 

http://www.sgi.com/tech/mlc/source.html 

C#, C++, C 
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Figure Legends 1412 

 1413 

 1414 

 1415 

Figure 1. Basic workflow in computer vision-based plant phenotyping 1416 

Figure 2. An overview of different spectra used for phenotyping and the associated 1417 

cameras. Names of different indexes are found in Table 2.  1418 
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