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I would like to thank the authors for the changes they made in the manuscript. I have
the feeling it reads much better now and is more accessible to a broader audience.

I still have a couple of comments/suggestions (minor ones):

Line 49-line 76: I am still not sure to understand why the authors choose to focus this
paragraph on the used of gene reporter, which is a very narrow example of the
phenotyping today. I would personally remove this section.

We have removed it

Line 581: "The majority of the work has been made in indoor-setups ": I am really not
sure about that... A lot of tools and methods have been developed recently to work
outdoor and into the field.

We have rephrased it to have a less blunt statement

Reviewer #2: I am appreciated that the authors made big efforts to rewrite this review
according to the reviewer's opinions. In recent years, many similar reviews related with
Plant Phenomics had been published. And the authors stated that: "a detailed review
on different type of data analysis is lacking. In this review, we cover the current and
emerging methods of image acquisition and processing allowing image-based
phenomics". This review should focus on image data analysis depending on different
data type or sensors, which is lacking. Thus, two major issues should be improved and
summarized more clearly in this review. Moreover, some previous comments are
ignored by the authors or the related sentences had been removed, which should be
declared.

We took into consideration all the previous comments, but as we made a major
rewriting, they do not always appear as a word by word answer.

From the previous version:
“We have corrected this (line 222)
17.Line 160-163: please add references.
18.Line 167-169: please add references.
19.Line 173-177: please add references.

20.Line 178-181: More applications of plant phenotpying with LIDAR in recent years
should be cited. Please discuss the disadvantage of the LIDAR.
21.Line 177: the end of the sentence lacks punctuation.
We have rewritten this whole part and included new references
22.Line 186: "14.000 nm" should be change to "14,000 nm". The image which obtained
by thermographic camera should include a range of wavelength. Moreover, please add
the reference.
We have added the reference. We have added fluorescence imaging with the
corresponding ranges and references (line 297-322)

23.Line 196: "as a result of UV light excitation" is not rigorous, and please add the
reference.
We have rewritten this part (see above line 397-322)
24.Line 75-203: more image acquisition techniques, such as x-ray CT, should be
added. And the authors should summarize the merit and drawback of these imaging
techniques.

25.Line 227-229: please add the reference of the "In fact, when information is
measured as entropy, pre-processing causes a decrease in entropy". Or this is the
author's own opinion.
We have rewritten this entire section
26.Line 235-265: please introduce the procedures of image correction and images
enhancement more concisely, and please add the reference.
We have rewritten this entire section
27.Line 271-272: please add the references to the "Leaf Area Index (LAI), biomass,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



chlorophyll concentration, photosynthetic activity", respectively.
28.Line 287: please add the references to the "RDVI" and "MSR".
29.Line 294: what "NIR" and "VIS" represented?
30.Line 301: "EVI (enhanced vegetation index)" should be changed into "enhanced
vegetation index (EVI)". Please check the similar mistake carefully in the main text.
31.Line 305: you should add the meaning of "RED" and "BLUE".
32.Line 267-312: the summarization of indexes in Table 1 is appreciated. But the
"Vegetation indexes" part may not be appropriate for the "Image pre-processing" part,
and this part is too redundant.
33.Line 320: 3D or 3-D.
34.Line 336-337: please add the references of the "1500-1590 nm" and "1390-1430
nm".
35.Line 355: Despite RGB and HSV colour space, other colour components such as
ExG are also frequently used in plant detection. The authors should introduce more
colour components.
36.Line 359-360: please add the references of the "hue can discriminate to detect
chlorophyll".
37.Line 368: what is the meaning of "h(.)"?
38.Line 394: please add the references of the "Gaussian Mixture Model (GMM)". And
what is the meaning of "I"?
39.Line 474: what are the meaning of "(892-934)" and "(281-245)"?
40.Line 476: 28 in SURF?
41.Line 487: please use the full name of "FAST" for the first time.
42.Line 442-517: The authors give too much detail about the features. Little was
introduced about the application of these features in plant phenotyping.
43.Line 538-544: The authors should give some suggestion about when to select
supervised/unsupervised techniques.
44.Line 545-547: I agree that the selection of ML algorithm require actual
experimentation for optimal results. However, there are some general advices, the
author should mention that and give some suggestions.

We have rewritten this part to make it more accessible. As a result,  all the comments
have been taken into account
“

As you can see, the major rewriting does take into account your ideas and
suggestions.

1.The authors should summarize the imaging techniques in one table, which includes
sensors, applications, advantages, disadvantages, and so on.

The authors could find a good example in Table 1 of the reference: "44. Fiorani F,
Schurr U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol."

-We wrote a table as suggested. Please notice that the table is empty on the
algorithms of machine learning and ToF. As of today there isn’t a single paper
published applied to phenomics.
The aforementioned table does describe advantages and disadvantages of
sensors(Fiorani and Schurr). However, during image analysis, the advantages or
disadvantages are a case by case situation. Researchers end up using the procedure
giving better results for the specific image acquisition setup.

The complex combinations of background, reflected image, wavelength, sensors and
the rest of elements that comprise image acquisition, makes it impossible to come with
a single recipe for image analysis. The current review tries to give a number of
methods for the different stages of image processing. But it will always be the
researcher the one to test the different approaches to identify the combinations that
give better results.

So it would be misleading to write for instance that a SIFT algorithm will have
advantages over RGB2Grayscale for stereo vision (see new table 4), as it will depend
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on the image, background, type of plant, etc.

The fact that there are so many publications testing different methods and algorithms
shows that image analysis is very much a trial and error procedure till a defined
pipeline is setup for a specific need. We think this message has to get through.

2.In image analysis section, the structure should be re-organized and more sub-
sections should be added. For example in image pre-processing section, the review
should provide different strategies according to different sensors or data types (such as
CT raw data, hyperspectral raw data, RGB raw data, infrared raw data, and so on).
We disagree with this as once an image is taken, the downstream process does not
depend on the type of sensor used. We made table 4 to show what has been done so
far, as requested. But once you have a matrix of pixels, the rest should be common
procedures.

We have included a comprehensive table (Table 4) has been included as requested

Line 574:
A summary of the complete pipeline of image analysis including sensors,
preprocessing, segmentation procedures, feature extractions and machine learning
algorithms can be found in Table 4.

I believe that different imaging data need different pre-processing strategies. The
authors just reviewed many pre-processing methods, but why choose this method and
how to apply is lacking.

-As we said before this is incorrect, an image is a matrix of pixels. Authors test several
methods and report the one that gave the best results.

The authors stated that: "We cannot conclude that a single preprocessing method will
outperform other methods". Thus, the better or common used preprocessing method to
handle different images is needed and should be listed in one table, which can benefit
broader readers. The similar suggestions of the section "image segmentation, feature
extraction" should be considered to modify this review.

We have added on table 4 a list of the most common used procedures. How to apply
the different methods is a matter of taking the raw data and using different procedures
and see for EACH case what gives better results. As we wrote above, recommending
one over the other would be misleading. Furthermore, the current list of methods will
probably increase in the future as the number of labs doing image analysis has
increased dramatically in the last years.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No
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If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

Not aplicable

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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 16 

Abstract 17 

 18 

The study of phenomes or phenomics has been a central part of biology. The field of 19 

automatic phenotype acquisition technologies based on images has seen an important 20 

advance in the last years. As other high throughput technologies, it bears from a 21 

common set of problems, including data acquisition and analysis. In this review, we 22 

give an overview of the main systems developed to acquire images. We give an in-depth 23 

analysis of image processing with its major issues, and the algorithms that are being 24 

used or emerging as useful to obtain data out of images in an automatic fashion. 25 

 26 

Keywords: algorithms; artificial vision; deep learning; hyperspectral cameras; machine 27 

learning; segmentation 28 

Background 29 

 30 

The development of systems to monitor large fields using Normalized Difference 31 

Vegetation Index (NDVI), started a long successful career over 25 years ago when 32 

NDVI was used in the so-called remote sensing field [1]. It was an important milestone 33 

in the advance of automatic methods for analysing plant growth and biomass [2]. Ever 34 

since, new technologies have increased our capacity to obtain data from biological 35 

systems. The ability to measure chlorophyll status from satellite images allowed plant 36 

health to be measured in large fields and predict crops and productivity in very large 37 

areas such as the Canadian prairies, Burkina Faso or the Indian Basin in Pakistan [3–6]. 38 

Thus, the field of remote sensing is an important basis where knowledge about data 39 

acquisition and analysis started. The development of phenotyping devices using local 40 

cameras for crops took off using an array of technologies including Infrared 41 

thermography to measure stomatal opening or osmotic stress [7–9]. Extraction of 42 

quantitative data from images has been developed to study root development [10–12], 43 

and has found a niche to identify germplasm resistant to abiotic stresses in plants such 44 

as cereals [13], Arabidopsis [14] and for large-scale field phenotyping [15]. There are 45 

several recent reviews addressing the different types of growing setups [16–22], and we 46 

will not cover them in the current review.  47 

 48 
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 3 

Two main aspects to consider are the type of image acquired and how to process it. 50 

There are a number of recent reviews on phenomics and high-throughput image data 51 

acquisition [15,23–26]. In contrast, the majority of the literature concerning image 52 

processing and analysis is found in books where methods are described in detail [27–53 

31]. There are some very good reviews on aspects of data acquisition and analysis i.e. 54 

imaging techniques [32], Machine Learning (ML) for high throughput phenotyping [33] 55 

or software for image analysis [34], but a detailed review on different type of data 56 

analysis is lacking. In this review, we cover the current and emerging methods of image 57 

acquisition and processing allowing image-based phenomics (Figure 1). 58 

 59 

Review 60 

Image acquisition 61 

 62 

Image acquisition is the process through which we obtain a digital representation of a 63 

scene. This representation is known as image and its elements are called pixels (picture 64 

elements). The electronic device used to capture a scene is known as imaging sensor. 65 

CCD (charge-coupled device) and CMOS (complementary metal oxide semiconductor) 66 

are the most broadly used technologies in image sensors. A light wavelength is captured 67 

by small analogic sensors, which will acquire major or minor charge depending on the 68 

amount of incident light. These signals are amplified, filtered, transported and enhanced 69 

by means of specific hardware. A suitable output interface and a lens in the same 70 

housing is all that it is needed to perform image acquisition. The elements enumerated 71 

above conform the main element of computer vision systems, the camera. Time delay 72 

and integration (TDI) is an imaging acquisition mode that can be implemented over 73 

CCD [35] or CMOS [36]. It improves the features of the image acquisition system 74 

considerably. TDI is used in applications that require the ability to operate in extreme 75 

lighting conditions, requiring both high speed and high sensitivity, for example: inline 76 

monitoring, inspection, sorting, and remote sensing (for weather o vegetation 77 

observation) [36].  78 

The aforementioned technologies, CCD, CMOS and TDI confer unique characteristics, 79 

which define the type of data a camera can provide with a degree of robustness. There 80 

are fundamental differences in the type of performance the different sensors offer. In the 81 

last years CMOS technology, has outperformed CCDs in most visible imaging 82 
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 4 

applications. When selecting an imaging sensor (a camera), CCD technology causes less 83 

noise and produces higher quality images, mainly in scenes with bad illumination. They 84 

have a better depth of colour due to their higher dynamic range. On the other hand, the 85 

CMOS sensors are faster at processing images. Due to the hardware architecture for 86 

pixel extraction, they need less electrical power to operate, they allow a Region of 87 

Interest (ROI) to be processed on the device and are cheaper than CCDs. Furthermore, 88 

TDI mode with CCD or CMOS imaging sensors is used for high speed and low light 89 

level applications [37]. The latest technological developments in cameras show that the 90 

trend of the manufacturers such as IMEC, world-leader in nanoelectronics, is to fuse 91 

TDI technology with the CCD and CMOS characteristics in the same device [38]. TDI 92 

technology is expected to be applied to high throughput phenotyping processes in the 93 

nearby future. 94 

 95 

The field of image acquisition is extremely developed with considerable literature but 96 

image acquisition systems can be classified into seven groups that are suitable for 97 

phenotyping. 98 

 99 

1. Mono-RGB vision 100 

 101 

Mono-RGB vision systems are composed of a set comprising a lens, imaging sensor, 102 

specific hardware and IO interface. Depending if they use a line or matrix of pixels, 103 

they are classified in line cameras (or scanners) and matrix cameras. Most computer 104 

vision phenotyping devices are based on mono-RGB vision systems. Examples of 105 

mono-RGB vision devices include “Smart tools for Prediction and Improvement of 106 

Crop Yield (SPICY)”, an automated phenotyping prototype of large pepper plants in the 107 

greenhouse. The system uses multiple RGB cameras to extract two types of features: 108 

features from a 3D reconstruction of the plant canopy and statistical features derived 109 

directly from RGB images [39]. A different approach has been used with two cameras 110 

inside a growth chamber to measure circadian growth features of Petunia, Antirrhinum 111 

and Opuntia [40]. Two cameras with low and high magnifications were used to carry-112 

out phenotype studies of Arabidopsis thaliana seeds. The system is mounted on a three-113 

axis gantry and the rotation of the samples allow the gravitropic bending response to be 114 

determined in the roots and its posterior quantification [41]. Recently a high-throughput 115 

RGB system has been developed to identify Quantitative Trait Loci (QTL) involved in 116 
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 5 

yield in large recombinant inbred lines in maize [42], demonstrating the increasing 117 

impact of this approach in phenomics. 118 

These devices have excellent spatial and temporal resolution, i.e. they can produce a 119 

very large number of images in very short periods and at a very low cost. They are 120 

portable and there are many software tools to perform image processing (Table 1). 121 

Systems based on mono-RGB vision allow a quantification of the plant canopy [43], as 122 

well as sufficient computation of vegetation indices, for most purposes. The main 123 

disadvantages are caused by the overlap of plant organs during growth and nutation 124 

phases and the relative position of the organs with respect to the device that makes the 125 

precise quantification difficult. In addition, these devices are affected by variations in 126 

illumination when used outdoors. The trend in outdoor plant phenotyping is to combine 127 

mono-RGB systems with other systems such as Light Detection and Ranging LIDAR 128 

devices (see below), thermal imaging or adding new bands or filters to the camera that 129 

allow the segmenting of specific regions of the spectrum [44,45]. 130 

 131 

2. Stereo vision  132 

 133 

Stereo vision systems try to correct a drawback of mono-RGB vision systems for 134 

distance measurement. The architecture of stereo vision systems emulates the behaviour 135 

of human vision using two mono vision systems. Basically, and after locating a point in 136 

two mono vision systems, it is possible to compute the distance from the point to the 137 

system. Images produced are known as depth maps [46]. A stereo vision system has 138 

been used by Biskup and colleagues [47] to obtain structural features of plant canopies. 139 

The 3D reconstruction has been successfully employed to obtain 3-D models of plants, 140 

thus demonstrating the power of this approach [48]. Simple depth reconstructions 141 

helped to define stems, leaves and grapes showing the potential of this technology [49]. 142 

A RGB camera mounted on a mobile robot is used as an automated 3D phenotyping of 143 

vineyards under field conditions. Sequentially, the system captures a set of images, 144 

which are used to reconstruct a textured 3D point cloud of the whole grapevine row 145 

[50]. A stereo vision has been developed to perform high throughput analysis of 146 

rapeseed leaf traits. The system uses two identical RGB cameras to obtain stereo images 147 

for canopy and 3-D reconstruction [51]. Developing a 3D-mesh segmentation has 148 

allowed cotton growth to be analysed [52], showing the further possibilities of 3D 149 

imaging.  150 
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 6 

 151 

The main advantage of 3-D systems is their simplicity, two cameras are enough to 152 

obtain depth maps. The stereo vision has evolved in multi-view stereo (MSV) and has 153 

found a place in plant phenotyping [53]. Furthermore, the MSV is a low cost 3D image 154 

acquisition system compared with other technologies such as LIDAR or tomography 155 

imaging [54]. Stereo vision systems have important weaknesses. They are affected by 156 

changes of the scene illumination, they need a high performance computational system 157 

to carry out stereo matching algorithms, and they have a poor depth resolution [55]. 158 

These limitations are increased in outdoor environments, as image segmentation 159 

becomes more challenging. 160 

 161 

3. Multi and hyper spectral cameras  162 

 163 

The multispectral and hyperspectral cameras have been used in numerous fields of 164 

science and in industrial applications [56–61]. The spectral resolution is the main factor 165 

that distinguishes multispectral imagery from hyperspectral imagery [62]. Multispectral 166 

cameras are devices able to capture images from a number of discrete spectral bands. 167 

The number of bands has increased in the last decade as technology has improved. 168 

Currently, the main camera manufacturers offer multispectral cameras acquiring 169 

between three and twenty five bands, including the visible RGB channels, Near Infra-170 

Red (NIR) or a set of custom bands, with a tendency to provide increasing number of 171 

bands [63]. The spectral bands may not be continuous, thus for one pixel we obtain a 172 

vector of information comprising the number of elements corresponding to the number 173 

of bands registered. Hyperspectral systems may reach resolutions of a few nanometers 174 

in wavelength, obtaining for each pixel a digital signature that may contain several 175 

hundreds of continuous bands within a specific range of wavelengths [64]. 176 

Traditionally, both multispectral and hyperspectral imaging have been used for remote 177 

sensing and have an increased number of applications in phenomics. A multispectral 178 

system has been developed to improve the original colour of images for fruit 179 

recognition [65]. The authors fused the original colour image with an infrared image 180 

using the nonlinear Daubechies wavelet transform (DWT). Thus, the additional 181 

information from a second image allows the original one to be improved. 182 

 183 
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 7 

The use of hyperspectral cameras is increasing in phenotyping experiments as they 184 

allow the identification of physiological responses, pathologies or pests in a non-185 

invasive way. Using hyperspectral images, a system has been developed to identify 186 

pathogens in barley leaves using probabilistic topic models [66]. A hyperspectral 187 

microscope was used to determine spectral changes on the leaf and cellular level of 188 

barley (Hordeum vulgare) during resistance reactions against powdery mildew 189 

(Blumeria graminis f.sp. hordei, isolate K1) [67]. A detailed description of the different 190 

wavelengths and combinations used in multispectral and hyperspectral cameras can be 191 

seen in Figure 2, and their uses in Table 2. We expect to see an increase in phenomic 192 

setups using multispectral and hyperspectral cameras in the future. An emerging issue 193 

will be the data analysis as the number of pictures doubles with each additional 194 

spectrum used for analysis (see below). 195 

 196 

4. ToF cameras 197 

 198 

The Time of Flight cameras or ToF cameras have been one of the last imaging devices 199 

to be incorporated into automatic plant phenotyping [68]. ToF has as a general principle 200 

the measurement of the distance between the objective of the camera and each pixel. 201 

This is achieved measuring the time it takes for a signal emitted in NIR to come back, 202 

reflected by the object. This allows a precision 3D reconstruction. Stereo vision coupled 203 

with ToF images have been implemented to increase the performance of methods of 204 

image segmentation to obtain leaf areas [69]. Beyond the tedious hand work required 205 

for manual analysis sampling is done in a non-destructive way. Depth maps obtained by 206 

a ToF camera together with colour images are used to carry out the 3D modelling of 207 

leaves. The system is mounted on a robotic arm which allows image acquisition to be 208 

automated [70]. A ToF has been successfully used to identify QTL regulating shoot 209 

architectures of Sorghum by mean of 3D reconstruction [71]. 210 

Microsoft Kinect is a low cost image acquisition system designed for video gaming 211 

which can be used for characterization and for tracking of phenological parameters [72]. 212 

The device is composed of an infrared projector and camera that generates a grid from 213 

which the location of a nearby object in 3 dimensions can be ascertained [73]. Kinect 214 

has been used to measure plant structure and size for two species growing in California 215 

grassland [74]. The quantitative 3D measurements of the architecture of the shoot and 216 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

structure of the leaves can be performed when proper segmentation algorithms are 217 

developed suggesting some potential for ToF systems [75].  218 

 219 

The main disadvantages of this acquisition system are the low resolution, a reduced 220 

distance range of a few meters and the high dependence on the reflecting surface for 221 

imaging. As a result, they cannot operate under strong sunlight and are more appropriate 222 

for indoor conditions. Its reduced cost and the possibility of obtaining 3D structures of 223 

entire plants, as well as of individual organs make these devices very attractive for 224 

indoor phenotyping. 225 

 226 

5. LIDAR technology 227 

 228 

Light Detection and Ranging (LIDAR) is a remote sensing technology developed at the 229 

beginning of the 70s to monitor the Earth’s Surface [76]. LIDAR uses a laser pulse light 230 

to measure the distance between the light source and the object by calculating the time 231 

of emission and time of reflected light detection. It allows the creation of a cloud of 232 

points that reconstruct the 3D structure of an object [77,78]. LIDAR has been used in 233 

image acquisition from distances of thousands of kilometres to centimetres, 234 

demonstrating the great potential of these type of devices. Satellite-based LIDAR 235 

systems are used for the measurements of vegetation canopy height, area, volume or 236 

biomass, etc. [79–81]. Recent development using both manned and unmanned flights 237 

have allowed the estimation of biomass dynamics of a coniferous forest using Landsat 238 

satellite images together with ground and airborne LIDAR measurements 239 

[82].Terrestrial LIDAR sensors are applied to detect and discriminate maize plants and 240 

weeds from soil surface [83]. Short range LIDAR can be deployed for high-throughput 241 

phenotyping (HTP) systems for cotton plant phenotyping in the field [84] or tomato leaf 242 

area by 3-D laser reconstruction [85]. Fully automated crop monitoring is feasible using 243 

centimetre ranges from robotized or gantry systems [43]. An autonomous robotic 244 

system has allowed 3D mapping of plant structures to be performed with millimetric 245 

precision [86]. A LASER SCAN mounted on a XYZ gantry system was used to 246 

estimate the growth measures and structural information of plants through laser 247 

triangulation techniques [87]. Thus, using different devices LIDAR has an impressive 248 

range of possibilities for plant phenomics. 249 

 250 
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Some shortcomings of LIDAR devices for pant phenotyping are the absence of colour 251 

in the measurement, excessive time to compute the cloud points, low precision for 252 

massive phenotyping, scanning noises caused by wind, rain, insects, small particles in 253 

the air, and the requirement of calibration. Recent advantages suggest that the use of 254 

LIDAR technologies could overcome some of challenges for the next-generation 255 

phenotyping technologies [88]. Developments in multispectral LIDAR instruments 256 

show novel systems which are capable of measuring multiple wavelengths and of 257 

obtaining vegetation indexes (see below) [89,90] or to measure arboreal parameters 258 

[91]. The massive adoption of LASER technologies by autonomous car manufactures 259 

has fostered the development of 3D High Definition LIDAR (HDL) with real time (RT) 260 

capacities. The new 3D HDLs are capable of generating 1.3 million points per second 261 

with precisions of 2 cm and distances of up to 120 meters [92]. These new devices open 262 

the door to the RT massive phenotyping in outdoor and indoor crops. 263 

 264 

6. Thermography and Fluorescence Imaging 265 

 266 

Thermography is a widely-used technology in remote sensing and plant phenotyping 267 

[93–96]. Thermographic cameras are able to acquire images at wavelengths ranging 268 

from 300 to 14,000nm [97], thus allowing the conversion of the irradiated energy into 269 

temperature values, once the environmental temperature is assessed. Plants open 270 

stomata in response to environmental cues and circadian clock depending on the type of 271 

photosynthetic metabolism they have [98,99]. The evapotranspiration can be assessed 272 

with thermography [100], and quantification can be made at different scales such as a 273 

leaf, a tree, a field or a complete region. Water stress and irrigation management are two 274 

fields of application of thermography imaging [101–104]. Thermography imaging can 275 

detect local changes of temperature produced due to pathogen infection or defence 276 

mechanisms [105]. Oerke et al. used a digital infrared thermography to correlate the 277 

maximum temperature difference (MTD) of apple leaves with all stages of scab 278 

development [106].  279 

 280 

Fluorescence imaging has been used in a large number of experimental setups as UV 281 

light in the range of 340-360 nm is reflected by different plant components as discrete 282 

wavelengths [32]. The corresponding wavelengths emitted are cinnamic acids in the 283 

range of green-blue (440-520 nm). Early experiments using reflected fluorescence 284 
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allowed the identification of phenylpropanoid synthesis mutants in Arabidopsis [107]. 285 

Chlorophyll fluorescence emits in red and far-red (690-740 nm). It is an important 286 

parameter that has been studied as a proxy for different biological processes such as 287 

circadian clock or plant health [8,108,109]. A system based on a UV light lamp and a 288 

conventional camera provided of a UV-filter to avoid RGB and IR images has been 289 

used to identify changes in UV absorbance related to pollination [110]. Multicolour 290 

fluorescence detection uses the combination of chlorophyll and secondary metabolites 291 

emitted fluorescence to determine plant health in leaf tissues [111].  292 

 293 

Thermography imaging results in an estimable tool for monitoring of genotypes and 294 

detection of plant diseases [112] where all the specimens are located under strict control 295 

conditions: temperature, wind velocity, irradiance, leaf angle or canopy leaf structures 296 

are potential issues for quality image acquisition. The next generation of thermography 297 

imaging for phenotyping will have to resolve drawbacks related to temporal variations 298 

of environment conditions, aspects relating to angles of view, distance, sensitivity and 299 

reproducibility of the measurements [104]. Both thermographic and fluorescent images 300 

capture a single component and images are in principle easy to analyse as segmentation 301 

based on thresholds can be applied to the acquired images. Combining thermographic 302 

and fluorescent imaging requires sophisticated data analysis methods based on neural 303 

networks to obtain quality data but are an emerging solution [111]. 304 

 305 

7. Tomography imaging  306 

 307 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique which uses 308 

Radio Frequency (RF) magnetic fields to construct tomographic images [113]. 309 

Commonly MRI has been used to investigate the anatomy structure of the body 310 

(especially the brain) in both health and disease [114]. In plant phenomics, MRI is used 311 

to visualize internal structures and metabolites. This method poses a great potential to 312 

monitor physiological processes occurring in vivo [115]. MRI has allowed the 313 

development of root systems over time in bean to be mapped [116], moisture 314 

distribution to be visualized during development in rice [117] and the water presence to 315 

be analysed during maturity process of barley grains [118]. 316 

Positron Emission Tomography (PET) is a nuclear medicine imaging modality that 317 

allows the assessment of biochemical processes in vivo, to diagnose and stage diseases 318 
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and monitor their treatment [119]. Karve et al. [120] presented a study about C-319 

allocation (Carbon allocation from CO2 through photosysthesis) in large grasses such as 320 

Sorghum bicolor. The study concluded that the commercial PET scanners can be used 321 

reliably, not only to measure C-allocation in plants but also to study dynamics in 322 

photoassimilate transport. 323 

 324 

X-ray Computed Tomography (X-ray CT) employs X-rays to produce tomographic 325 

images of specific areas of the scanned object. The process of attenuation of rays 326 

together with a rotation and axial movement over objects produces 3D images [32]. A 327 

high throughput phenotyping system based on X-ray CT is ten times more efficient than 328 

human operators, being capable of detecting a single tiller mutant among thousands of 329 

rice plants [121]. The remarkable penetration of X-rays, has made this technology a 330 

great ally of phenotyping carried out below-ground. The study of root systems and their 331 

quantification has been a field of habitual application of X-ray CT [122–126]. New 332 

developments address the reduction of  penetrability and the increase of the image 333 

resolution of X-ray CT in plant tissue using phosphotungstate as a contrasting agent, 334 

due to its capacity of increasing the contrast and penetrability of thick samples [127]. 335 

 336 

MRI, PET and X-ray imaging techniques are available for screening 3-D objects. MRI 337 

and PET are two non-destructive and non-invasive scanning technologies that have been 338 

applied in plant sciences to acquire 3-D structural information [128]. MRI and PET data 339 

acquisition is time consuming, and software tools need to be further developed to 340 

analyse data and obtain physiologically interpretable results [97]. High-Resolution X-341 

ray computed tomography (HRXCT) promises to be the broadest non-destructive 342 

imaging method used in plant sciences. HRXCT will provide 3-D data at a resolution 343 

suited for detailed analysis of morphological traits of in vivo plant samples and at a 344 

cellular resolution for ex vivo samples [128]. From of a point of view of the devices the 345 

trend will be to increase the resolution of images, the size of the fields of view, and 346 

increase its portability [129]. 347 

 348 

Image analysis 349 

 350 
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Extracting information from images is performed through the process of segmentation. 351 

The aim of a segmentation procedure is to extract the components of an image that are 352 

of interest i.e. object or region of interest from the rest of the image i.e. background of 353 

the image or irrelevant components. Thus, we end up with a partitioned image with 354 

significant regions. The significant regions may be defined as foreground versus 355 

background, or by selecting a number of individual components from an image. The 356 

construction of the selected regions is based on the image characteristics such as colour 357 

(colour spaces), spectral radiance (vegetation indexes), edge detection, neighbour 358 

similarity [130] or combinations that are integrated via a machine learning process 359 

[131]. In some cases, pre-processing is required in order to obtain a meaningful 360 

segmentation. 361 

 362 

 363 

1. Image pre-processing 364 

 365 

Image preprocessing is an important aspect of image analysis. The aim of image 366 

preprocessing is to improve contrast and eliminate noise in order to enhance the objects 367 

of interest in a given image [132]. This process can be extremely helpful to enhance the 368 

feature extraction quality and the downstream image analysis [133]. Preprocessing can 369 

include simple operations such as image cropping, contrast improvement or others 370 

significantly more complex such as dimensionality reduction via Principal Component 371 

Analysis or Clustering [33]. One preprocessing pipeline has been proposed for plant 372 

phenotyping based on converting the image to grayscale, application of a median filter, 373 

binarization and edge detection [134]. A similar preprocessing has been developed to 374 

identify plant species under varying illumination conditions [135]. It comprises 375 

conversion to grayscale, image binarization, smoothing and application of a filter to 376 

detect edges. In a comparative study to analyze leaf diseases, histogram equalization 377 

was found to be the best way to obtain preprocessing of color images converted to 378 

grayscale [136]. However RGB images have been found to perform better than 379 

grayscale conversions when identifying leaf pathogens [137]. 380 

 381 

We cannot conclude that a single preprocessing method will outperform other methods. 382 

The quality and type of image are fundamental to select a type of preprocessing 383 

procedure. Nevertheless, preprocessing is a basic step that can improve image analysis, 384 
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and sometimes make it possible. It should be described in the materials and methods 385 

ofimage procedures to make data comply the new standards -Findability, Accessibility, 386 

Interoperability, and Reusability (FAIR) [138] 387 

 388 

2. Image segmentation 389 

 390 

As we mentioned above, image segmentation is the core of image processing for 391 

artificial vision-based plant phenotyping. Segmentation allows the isolation and 392 

identification of objects of interest from an image, and it aims to discriminate 393 

background or irrelevant objects [139]. The objects of interest are defined by the 394 

internal similarity of pixels in parameters such as texture, colour, statistic [133], etc. 395 

(See a list of Open software libraries for image segmentation in Table 1). 396 

 397 

One of the simplest algorithms used is threshold segmentation, based on creating groups 398 

of pixels on a grayscale according to the level of intensity, thus separating the 399 

background from targets. Such an approach has been used with Android OS (ApLeaf) in 400 

order to identify plant leaves [140].  401 

 402 

The Otsu’s method [141] is a segmentation algorithm that searches for a threshold that 403 

minimizes the weighted within class variance [132]. This method has been used for 404 

background subtraction in a system that records and performs automatic plant 405 

recognition [142], and can give high contrast segmented images in an automatic fashion 406 

[143]. Under certain circumstances, it can underestimate the signal causing under 407 

segmentation, and is significantly slower than other thresholding methods [132].  408 

 409 

The Watershed [144] transformation is a popular algorithm for segmentation. It treats an 410 

image as a topological surface that is flooded, and seed regions are included, usually by 411 

the user. This generates an image with gradients of magnitudes, where crests appear in 412 

places where borders are apparent (strong edges), and causes segmentation to stop at 413 

those points [130]. It has been used to identify growth rate [145], recognition of 414 

partially occluded leaves [56], individual tree crown delineation [146] or leaf 415 

segmentation [147].  416 

 417 
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Grabcut [148] is a segmentation algorithm based on graph cut [149]. It is created on 418 

graph theory to tackle the problem of separating an object or foreground from the 419 

background. The user should mark a rectangle (bounding box) surrounding the object of 420 

interest thus defining the outrebound of the box as background [150]. This algorithm 421 

has been tested to extract trees from a figure but it has been successful only with very 422 

simple backgrounds [151]. More recently Grabcut has been deployed as a segmentation 423 

algorithm in a pipeline for plant recognition with multimodal information i.e. leaf 424 

contour, flower contour etc [152]. Grabcut loses precision or even fails when pictures 425 

have complex backgrounds but is highly precise with simple backgrounds [151,153]. 426 

 427 

Snakes are a special type of active contour [154], and are used as methods to fit lines 428 

(splines) either to open or close edges and lines in an image. These methods have been 429 

used for face recognition, iris segmentation and medical image analysis. Within the 430 

field of plant phenotyping, there are procedures where active contours are used inside a 431 

protocol constructing a vector of features with data of colour intensity, local texture and 432 

a previous knowledge of the plant incorporated via Gaussian Mixture Models, 433 

previously segmented [155] . These steps give an initial rough segmentation upon 434 

which, active contours can operate with a much higher precision. 435 

  436 

Active contours have used for plant recognition via images of flowers [156], based on a 437 

combination of the algorithm proposed by Yonggang and Karl [157] and the model of 438 

active contours without edges [158]. Whilst the work proposed by Minervini et al [155] 439 

appears to give significantly better results compared to those of Suta et al [156], the 440 

usage of images with a natural background maybe related to the apparent differences in 441 

segmentation. Thus, a current problem concerning the comparison of algorithms and 442 

procedures lies on the different backgrounds used for image acquisition. 443 

 444 

3. Features extraction  445 

 446 

Features extraction constitutes one of the pillars of the identification and classification 447 

of objects based on computer vision. Beyond the raw image, a feature is information 448 

which is used to resolve a specific computer vision problem. The features extracted 449 

from an image are disposed in the so-called “feature vectors”. The construction of 450 

feature vectors uses a wide set of methods to identify the objects in an image. The main 451 
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features are edges, intensity of image pixels [39], geometries [159], textures [155,160], 452 

image transformations e.g. Fourier [161], or Wavelet [65,162] or combinations of pixels 453 

of different colour spaces [131]. The end goal of feature extraction is to feed up a set of 454 

classifiers and machine learning algorithms (see below). 455 

 456 

One system proposed uses a feature vector composed of a combination of RGB and CIE 457 

L*a*b* colour spaces to segment the images captured during the day [131]. The night-458 

time image segmentation computed a vector composed of statistical features over two 459 

decomposition levels of the wavelet transform using IR images. 460 

Iyer-Pascuzzi et al. presented an imaging and analysis platform for automatic 461 

phenotyping to identify genes underlying root system architecture. The authors 462 

employed a set of 16 statistical, geometrics and shape features obtained from 2,297 463 

images from 118 individuals such as median and maximum number of roots, the total 464 

root length, perimeter, depth, among others [163].  465 

 466 

There are a number of algorithms to identify invariant features detectors and 467 

descriptors. This type of image analysis ensures the detection of points of interest in a 468 

scale and rotation independent manner. This is crucial for camera calibration and for 469 

matching to produce a set of corresponding image points in 3D image reconstruction. 470 

Furthermore, it allows the identification of points of interest even when they change 471 

scale and/or position or situations of uncontrolled illumination, a common issue when 472 

phenotyping plants. The Scale Invariant Features Transforms (SIFT) [164], Speeded-Up 473 

Robust Features (SURF) [165] and the Histograms of Oriented Gradients (HoG) [166] 474 

are algorithms used to extract characteristics in computer vision and they have been 475 

extended to plant phenotyping. Wei et al. [167] presented an image-based method that 476 

automatically detects the flowering of paddy rice. The method uses a scale-invariant 477 

feature transform descriptor, bag of visual words, and a machine learning method. The 478 

SIFT algorithm has been used to combine stereo and ToF images with automatic plant 479 

phenotyping. It can create dense depth maps to identify pepper leaf in glasshouses [69]. 480 

SIFT and SURF algorithms have been tested for detecting local invariant features for 481 

obtaining a 3D plant model from a multi-view stereo images [168]. A HoG framework 482 

allows the extraction of a reliable quantity of phenotypic data of grapevine berry using a 483 

feature vector composed of colour information [169]. 484 

 485 
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So far, feature extraction is an arduous and difficult task requiring the testing of 486 

hundreds of feature extraction algorithms and a greater number of combinations 487 

between them. This task demands expert skills in different subjects. The success in the 488 

identification does not depend on the robustness of the classification methods, but on 489 

the robustness of the data. 490 

 491 

4. Machine Learning in plant image analysis 492 

 493 

The amount of data generated in current and future phenomic setups with high 494 

throughput imaging technologies has brought the use of Machine Learning (ML) 495 

statistical approaches. Machine Learning is applied in many fields of research [170–496 

172]. As phenotyping can generate Terabytes of information, ML tools provide a good 497 

framework for data analysis. A list of ML libraries can be found in Table 3. A major 498 

advantage of ML is the possibility to explore large datasets to identify patterns, using 499 

combinations of factors instead of performing independent analysis  500 

[33]. 501 

 502 

Among the ML algorithms a predictive model of regression has been used to phenotype 503 

Arabidopsis leaves, based on geometric features as training dataset [159]. Three 504 

different algorithms were tested, k Nearest Neighbour (kNN), Support Vector Machine 505 

(SVM) and Naïve Bayes to segment Antirrhinum majus leaves. Colour images have as a 506 

characteristic vector intensity in the RBG and CIE L*a*b*, while the NIR vector is 507 

obtained with the wavelet transform. The best results were obtained with kNN for 508 

colour images and SVM for NIR. This shows that segmentation has several components 509 

as mentioned before including the wavelength of image acquisition [131]. 510 

 511 

As the specific wavelength used for image acquisition plays a key role in the type of 512 

data obtained, hyperspectral cameras are becoming important tools, however, hyper 513 

images can be in the order of Gbites of size, making ML a necessity. Examples of 514 

coupling hyperspectral and thermal imaging with ML have allowed the early detection 515 

of stress caused by Alternaria in Brassica [173]. The best image classification was 516 

obtained doing a second derivative transformation of the hyperspectral images together 517 

with a back propagation of neural networks allowing the identification of fungi on 518 

leaves days after infection [173]. 519 
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 520 

A current concept derived from ML is Deep Learning (DL) comprising a set of 521 

algorithms aimed to model with a high level of abstraction. This allows the 522 

development of complex concepts starting from simpler ones, thus getting closer to the 523 

idea of Artificial Intelligence (AI) (www.deeplearningbook.org). Convolutional Neural 524 

Networks (CNN), are an example of DL derived of Artificial Neural Networks (ANN). 525 

These multi-layered networks are formed by a layer of neurons that work in a 526 

convolutional way reducing the sampling process and end with a layer of perception 527 

neurons for final classification [174]. Recently DL has been implemented using a CNN 528 

to automatically classify and identify different plant parts [175], thus obtaining both 529 

classification and localization that significantly improve the current methods. A CNN 530 

has been used to detect plant pathogen attacks [176]. Although the training period is 531 

computationally heavy, requiring several hours of CPU clusters, classification was 532 

performed in less than one second [176]. Nevertheless, DL is a step forward in ML and 533 

has great potential to allow the management and analysis of the data produced in 534 

phenomic experiments. 535 

 536 

Although direct testing maybe the best way to determine the superior algorithm in each 537 

case, there is a number of examples that may guide initial approaches [33,177,178]. As 538 

a general rule discriminating methods such as SVM, ANN, K-NN, give better results in 539 

large datasets that are labelled [33]. Generative methods such as Naive Bayes, Gaussian 540 

Mixture Models, Hide Markov Models, give better results with smaller datasets, both 541 

labelled and unlabelled. The use of unsupervised algorithms i.e. k-means may help 542 

identify unexpected characteristics on a dataset. As mentioned above, preprocessing 543 

plays a fundamental role in increasing the ML output. A summary of the complete 544 

pipeline of image analysis including sensors, preprocessing, segmentation procedures, 545 

feature extractions and machine learning algorithms can be found in Table 4. 546 

 547 

Conclusions and future prospects 548 

 549 

The implementation of phenomic technologies is a welcome change towards 550 

reproducibility and unbiased data acquisition in basic and applied research. A successful 551 

approach requires integrating sensors, with wavelength and image acquisitions that will 552 

allow the proper identification of the items under analysis. A lot of work has been made 553 
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in indoor-setups where reasonable conditions can be created to obtain high quality 554 

images, amenable to further processing. The difficulty in outdoor setups increases as a 555 

result of limitations in the actual image acquisition devices and the uncontrolled 556 

conditions that directly affect image quality. The new technologies such as the high 557 

definition LIDAR or the multi-hyperspectral cameras have a great potential to improve 558 

in the near future, specially in outdoor environments. 559 

 560 

The pre-processing and segmentation data are two aspects of data treatment and 561 

acquisition that require careful design in order to avoid distortions and reproducibility 562 

[138]. As images are machine-produced data, but image types and processing 563 

procedures may be very different, the standardization of image capture, preprocessing 564 

and segmentation may play an important role. Furthermore, a single procedure for 565 

image analysis cannot be considered as a better choice and it is the researcher that needs 566 

to assess the different algorithms to come with an optimized procedure for their specific 567 

setup. It is a matter of time that databases with raw image will become part of the 568 

standard in phenomics using images very much like NCBI or Uniprot play a key role in 569 

genomic and proteomic projects. With the decrease in price of hyperspectral devices, 570 

new experiments may be performed that produce even larger data sets, and these data 571 

sets will have to go through Artificial Intelligence-based data analysis in order to give 572 

the researchers results interpretable by humans. We guess that like in other omic 573 

approaches, there will be a confluence to standard procedures that are not currently 574 

common ground, making the current literature look intimidatingly diverse. 575 

Nevertheless, most of the basic processes described here are shared by the different 576 

experimental setups and data analysis pipes.  577 

 578 
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Tables 1488 

Table 1. List of software tools for image processing 1489 

Vision libraries Source Language 

OpenCV 

EmguCV 

http://opencv.org 

http://www.emgu.com/ 

C++, Python, 

Java, C# 

PlantCV 

Scikit-image 

http://plantcv.danforthcenter.org 

http://scikit-image.org 

Python 

 

Bioimagetools, 

bayesimages, edci, DRIP, 

dpmixsim, raster, ... 

https://cran.r-project.org/ R 

Cimg 

Simplecv 

Fastcv 

 

Ccv 

Vxl 

http://cimg.eu 

http://Simplecv.org 

https://developer.qualcomm.com/software/fastcv-

sdk 

http://libccv.org 

http://vxl.sourceforge.net 

C++ 

 

BoofCV 

OpenIMAJ 

JavaCV 

http://boofcv.org 

http://openimaj.org 

https://github.com/bytedeco/javacv 

Java 
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 1492 

Table 2. A list of indexes, the corresponding wavelength ranges and their use to analyse 1493 

plant material. 1494 

 1495 

Index Range nm Applications 

CAI – Cellulose Absorption Index  2200-2000 Quantification mixed soil–plant litter scenes 

[179], estimation of non-photosynthetic biomass 

[180] 

LCA – Lignin-Cellulose Absorption 

Index  

2365-2145 Measure the effects of soil composition and 

mineralogy of crop residue cover [181]  

NTDI – Normalized Difference Tillage 

Index  

2359-1150 Used for identifying crop residue cover in 

conventional and conservation tillage systems 

[182] 

LWVI-1 – Normalized Difference Leaf 

water VI 2 

1094-893 Discrimination of sugarcane varieties, allowed to 

detect large amounts of non photosynthetically-

active constituents within the canopy [183] 

DLAI – Difference Leaf Area Index  1725-970 Used for estimating leaf area index based on the 

radiation measurements in the visible and near-

infrared [184] 

PWI – Plant Water Index  970-902 Water content estimation and study of the 

characteristics of canopy spectrum and growth 

status [185][186] 

NLI – Nonlinear vegetation index 1400-780 Measurement of plant leaf water content. In 

combination with others indexes can detect 

interaction of biochemicals such as protein, 

nitrogen, lignin, cellulose, sugar, and starch [187] 

DWSI – Disease water stress index  1657-547 To predict larval mosquito presence in wetland 

[188]and detect sugarcane 'orange rust' disease 

[189] 

NDVI – Normalized Difference 

Vegetation Index  

800-670 Measurement significant variations in 

photosynthetic activity and growing season length 

at different latitudes [190] 

MCARI – Modified Chlorophyll 

Absorption Ratio Index  

700-670 Study of vegetation biophysical parameters, as 

well as to external factors affecting canopy 

reflectance [191] 

GI – Greenness Index 670-550 Characterization of corn nitrogen status [192] 

CAR – Chlorophyll absorption ratio  700-500 Estimating the concentration of individual 

photosynthetic pigments within vegetation [193] 

GNDVI – Green normalized difference 

vegetation index 

800-550 Providing important information for site-specific 

agricultural decision making [194] and for 

identification of chlorophyll content and tissue 

nitrogen [195] 

 

OSAVI – Optimized Soil Adjusted 

Vegetation Index  

800-670 Measurement with high sensitive of chlorophyll 

content variations and very resistant to the 

variations of LAI and solar zenith angle [196] 

CI r – Coloration Index red 780-710 Mapping of coastal dune and salt marsh 

ecosystems [197] 

CI g – Coloration Index green 780-550 Characterization of the state of soil degradation 

by erosion [198] 
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Table 3. List of Machine Learning software libraries and their languages 1501 

 1502 

Libraries  ML/DL Source Language 

MICE, rpart, Party, 

CARET, randomForest, 

nnet, e1071, KernLab, 

igraph, glmnet, ROCR, tree, 

Rweka, earth, klaR, 

https://cran.r-project.org/ R 

Scikit-learn 

Tensorflow 

Theano 

Pylearn2,  

NuPIC 

Caffe 

PyBrain 

http://scikit-learn.org/stable/ 

https://www.tensorflow.org/ 

http://deeplearning.net/software/theano 

http://deeplearning.net/software/pylearn2 

http://numenta.org/ 

http://caffe.berkeleyvision.org/ 

http://pybrain.org/ 

Python 

Weka 

Spark 

Mallet 

JSAT 

ELKI 

Java-ML 

http://www.cs.waikato.ac.nz/ml/weka/ 

http://spark.apache.org/ 

http://mallet.cs.umass.edu/ 

https://github.com/EdwardRaff/JSAT 

http://elki.dbs.ifi.lmu.de/ 

http://java-ml.sourceforge.net/ 

Java 

Accord 

Multiboost 

Shogun 

LibSVM 

mlpack 

Shark 

MLC++ 

http://accord-framework.net/ 

http://www.multiboost.org/ 

http://shogun-toolbox.org/ 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

http://mlpack.org/ 

http://image.diku.dk/shark/ 

http://www.sgi.com/tech/mlc/source.html 

C#, C++, C 
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Table 4 A list of current procedures procedures for image analysis based on the type of 1508 

sensor used. 1509 

 1510 

Data type /Source Pre-processing Segmentation Feature extraction Machine Learning 

Mono – RGB  

* Homomorphic 

filtering to minimize 

illumination issues in 

outdoor images   

[199] 

 

* Filtering and 

histogram 

equalization in plant 

disease detection 

[136]  

* Many vegetation 

indexes apply to 

segmentation in 

[132] 

 

* NDVI index to 

discriminate 

background 

foreground 

[200] 

 

* Cellular neural 

networks edge 

detection [201] 

 

* HSV-algorithm 

[202] 

* Fourier descriptors 

and Zernike 

moments [201] 

 

* Statistical 

parameters and 

Wavelet transform 

with geometric 

characteristics [131] 

 

* SIFT and SURF in 

3D reconstruction 

images from multiple 

RGB cameras with 

basil specimen [168] 

 

* Histogram to color 

features and Fast 

Fourier Transform + 

Discrete Wavelet 

Transform to texture 

features extraction 

[145] 

* ANN to detect 

Phalaenopsis 

seedling diseases 

[203] 

 

* SVM to detect 

tomatoes leaf viruses 

[204] 

 

* Gaussian mixture 

model to detect 

biotic stress in wheat 

[205] 

 

* k-NN to identify 

leaf disease [206] 

 

* Probabilistic 

Neural Networks and 

Genetic Algorithm 

[201] 

 

* Random forest to 

QTL analysis [207] 

StereoVision *Complete and 

general  pre-

processing pipeline 

[208] 

 

* Rectification of 

image based on SIFT 

and epipolar 

transformation, in 

vitis vinifera 

segmentation [209] 

 

* Camera stereo 

calibration, leaf 

quantifying Brassica 

napus [210] 

 

* RGB2GrayScale 

[211] 

* Align and depth 

estimation [212,213] 

 

 

* Otsu’s method & 

growing region [211] 

 

* SVM to remove 

background [213] 

* Graph-cut and 

local correlation 

[214] 

 

* SURF to stereo 

matching images 

base on theirs feature 

vectors [211] 

 

* Combined with 

thermal images 

(Global and local 

features 

(temperature, depth, 

color) using PCA 

and ANOVA [213] 

 

* Simple statistical 

and intensity values 

[212] 

* SVM identify 

diseased pixels in 

leaves [213] 

 

* SVM & Gaussian 

Processes Classifier 

(GPC) to detect soil 

moisture deficit 

[212] 

Multi-Hyper spectral * Savitzky-Golay 

filter: remove noise 

and smooth the 

image. [215] 

 

* Gaussian filter to 

* NDVI (750-

705/750+705) nm 

with threshold of 

0.20 [218] 

* Pixels averaged to 

obtain average 

reflectance [218] 

* Cascade of data 

mining techniques to 

detect foliar disease 

in barley leaves 

[219] 
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remove noise: 

detection of disease 

in banana leaves 

[216] 

 

* Savitzky-Golay 

filter: detection of 

disease in plants 

[217] 

* Bayes, logistic, 

random forest and 

decision trees to 

detect biotic stress in 

Alternaria genus 

[173] 

 

* k-NN to identify 

leaf disease [206] 

 

* PCA and partial 

least squares 

regression to predict 

water, macro and 

micronutrients 

concentrations [218] 

ToF * Correction of the 

distance error caused 

by the extra 

contribution of 

electrons from 

sunlight using an 

offset parameter [68] 

 

* Carry-out a 

calibration stage 

before to fuse the 

depth data and color 

information [69,70] 

 

* Removal spurious 

individual points 

(outliers) using 

statistical filter [74] 

 

* Removal of lens 

distortion  [220] 

 

* Combine 

hierarchical color 

segmentation with 

quadratic surface 

fitting using ToF 

depth data [70] 

 

* The maximally 

stable extremal 

regions algorithm for 

the segmentation of 

single object over 

background in gray 

level images [221] 

 

* Removal 

background by 

simple thresholding 

pixel values greater 

than a certain 

threshold [220] 

 

*Segmentation 

inspired from the 

maximally stable 

extremal regions 

algorithm [221] 

* SIFT, Hough 

Transform and 

RANSAC algorithm 

to extract relevant 

features [220] 

 

LIDAR * RANSAC 

algorithm to detect 

ground plane [222] 

  

* Reduction of noise, 

filtering points 

clouds based on 

deviation [223] 

* Clustering to detect 

individual plants 

[222] 

* Statistical features 

from reflectace and 

geometry [222] 

 

* Surface feature 

histograms to 

characterize the 

grapevine and wheat 

organs [224] 

* ANN for wheat 

green area index 

measurement [225] 

 

* ANN, SVM, 

logistic regression to 

plant identification 

(the best results) 

[222] 

 

* Generalized linear 

model (the best) to 

model plant richness 

[226] 

 

* SVM obtained 
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highly reliable 

classification about 

96% [224] 

Thermography /   

Flourescence 

*Align with stereo 

images (In 

combination with 

stereo images) 

[212,213] 

 

* Normalize thermal 

information with 

thermal indexes 

[227] 

 

* Trimming 

extraneous images 

from image stack 

[228] 

* Semi automated 

segmentation 

through a geometric 

algorithm 

implemented in 

Python-based 

software ChopIt 

[228] 

 

* Manual 

thresholding 

comparing 

conventional color 

images with 

fluorescences images 

(Fv/Fm) [229] 

* Combined with 

thermal images 

(Global and local 

features: 

temperature, depth, 

color) using PCA 

and ANOVA [213] 

* SVM identify 

diseased pixels in 

leaves [213] 

 

* SVM and Gaussian 

Processes Classifier 

(GPC) to detect soil 

moisture deficit 

[212] 

 

* ANOVA (not ML) 

to analyze different 

water status [227] 

 

* ANN and SVM to 

detect zinc-

deficiency stress 

using fluorescence 

imaging [230] 

MRI/ 

Tomography 

* 2D and 3D Fourier 

transformations 

(MRI) [231] 

 

* Median filter, 

binaryzation, fill 

holes, remove small 

particle and 

morphological filter 

(erosion) [232] 

 

* Re-slicing, 

cropping and 

contrast 

enhancement [233] 

* Yang2011: 

watershed 

segmentation [232] 

 

* Histogram 

thresholding method 

to binaryze the 

image [233] 

* Intensity features, 

Haralick textural 

features, intensity 

local binary pattern 

features, contrast 

features  and Gabor 

intensity textural 

features [233] 

* Supervised 

learning with ANN, 

Mahalanobis 

distance, Linear 

discriminant analysis 

and quadratic 

discriminant analysis 

to determine 

boundary lines [233] 
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 1514 

Figure Legends 1515 

 1516 

 1517 

 1518 

Figure 1. Basic workflow in computer vision-based plant phenotyping 1519 

Figure 2. An overview of different spectra used for phenotyping and the associated 1520 

cameras. Names of different indexes are found in Table 2.  1521 
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