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ABSTRACT 

Background 

Although numerous algorithms have been developed to identify structural variation (SVs) in genomic 

sequences, there is a dearth of approaches that can be used to evaluate their results. This is significant, as 

the accurate identification of structural variation is still an outstanding but important problem in 

genomics. The emergence of new sequencing technologies that generate longer sequence reads can, in 

theory, provide direct evidence for all types of SVs regardless of the length of region through which it 

spans. However, current efforts to use these data in this manner require the use of large computational 

resources to assemble these sequences as well as visual inspection of each region. 

Results 

Here we present VaPoR, a highly efficient algorithm that autonomously validates large SV sets using 

long read sequencing data. We assessed the performance of VaPoR on SVs in both simulated and real 

genomes and report a high-fidelity rate for overall accuracy across different levels of sequence depths. 

We show that VaPoR can interrogate a much larger range of SVs while still matching existing methods 

in terms of false positive validations and providing additional features considering breakpoint precision 

and predicted genotype. We further show that VaPoR can run quickly and efficiency without requiring a 

large processing or assembly pipeline. 

Conclusions 

VaPoR provides a long read based validation approach for genomic SVs that requires relatively low read 

depth and computing resources and thus will provide utility with targeted or low-pass sequencing 

coverage for accurate SV assessment. The VaPoR Software is available at: https://github.com/mills-

lab/vapor. 
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BACKGROUND 

Structural variants (SVs) are one of the major forms of genetic variation in humans and have been 

revealed to play important roles in numerous diseases including cancers and neurological disorders [1, 

2]. Various approaches have been developed and applied to paired-end sequencing to detect SVs in 

whole genomes [3-6], however individual algorithms often exhibit complementary strengths that 

sometimes lead to disagreements as to the precise structure of the underlying variant. The emergence of 

long read sequencing technology, such as Single Molecule Real-Time (SMRT) sequencing from Pacific 

Biosciences (PacBio) [7, 8], can deliver reads ranging from several to hundreds of kilobases and provide 

direct evidence for the presence of an SV. Current strategies make use of de novo assembly to create 

long contigs with minimized error rate [9-11], and then predict SVs, typically with single base 

resolution, through direct comparison of the assembly against the reference. Though such approaches 

are powerful, they require both a very high sequencing depth and significant computing power and are 

currently impracticable for many ongoing research studies. 

The additional information obtained from using long reads can still be leveraged to improve variant 

calling, however. Indeed, such approaches have already been implemented to combine high depth 

Illumina sequencing with lower depth PacBio reads to improve error correction and variant calling in the 

context of de novo genome assembly [12]. With structural variation, the current state of the art is to use 

long reads to manually assess potential SVs using subsequent recurrence (dot) plots [13], where the 

sequences are compared against the reference through a fixed size sliding window (k-mer) and the 

matches are plotted for visual inspection. The k-mer method is of higher robustness compared to direct 

sequences comparison [14], which is why these types of dot plots have been used for decades to 

examine the specific features of sequence alignments [15]. However, they require manual curation and, 

coupled with the computational costs of sequence assembly, are time-consuming and inefficient at scale 

for the high throughput validation of large sets of SVs. 

Here, we present a high-speed long read based assessment tool, VaPoR, that investigates and scores each 

provided SV prediction by autonomously analyzing the recurrence of k-mers within a local read against 

both an unmodified reference sequence at that loci as well as a rearranged reference pertaining to the 

predicted SV structure. A positive score of each read on the altered reference, normalized against the 

score of the read on the original reference, supports the predicted structure. A baseline model is 
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constructed as well by interrogating the reference sequence against itself at the query location. We show 

that our approach can quickly and accurately distinguish true from false positive predictions of both 

simple and complex SVs as well as their underlying genotypes and is also able to assess the breakpoint 

accuracy of individual algorithms. 

 

DATA DESCRIPTION 

Simulated Data: 

Non-overlapping simple deletions, inversions, insertions and duplications as well as complex structural 

variants as previously categorized [5] were independently incorporated into GRCh38 in both 

heterozygous and homozygous states, excluding regions of the genome that are known to be difficult to 

assess as described from the ENCODE project [16]. Detailed descriptions of each simulated SV types 

simulated are summarized in Supplementary Tables 1- 2. We applied PBSIM [17] to simulate the 

modified reference sequences to different read depth ranging from 2X to 70X with a parameters 

difference-ratio of 5:75:20, length-mean 12000, accuracy-mean 0.85 and model_qc model_qc_clr. 

Simulated data can be obtained from https://umich.box.com/v/vapor. 

Real Data 

We applied VaPoR to a set of diverse samples (HG00513 from CHS, HG00731 and HG00732 from 

PUR, NA19238 and NA19239 from YRI) that were initially sequenced by the 1000 Genomes Project 

and for which a high-quality set of SVs were reported in the final phase of the project [18]. These 

samples were recently re-sequenced using PacBio to 20X coverage and therefore provides a platform for 

assessing VaPoR on known data.  The 1000 Genomes Project (1KGP) Phase 3 data were obtained from 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/ and lifted over to GRCh38. 

PacBio sequence data were obtained from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/. 

We have also compared VaPoR against the long read validation approach developed by Layer et al. [3], 

which requires both PacBio and Moleculo long sequences for full evaluation of SVs. These comparisons 
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made use of NA12878, one of few samples that have been sequenced with various technologies 

including Illumina NGS, PacBio and Moleculo with a truth SV set included in the 1KGP Phase 3 report. 

The software for the long-read validation approach was obtained from: https://github.com/hall-lab/long-

read-validation. The PacBio and the Moleculo sequences of this individual were obtained from : 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/ and 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/moleculo/ali

gnment/ respectively. 

 

RESULTS 

We assessed the performance of VaPoR on both simulated sequences and real genomes from the 1000 

Genomes Project to assess the following characteristics: sensitivity and false discovery rate on 

validating structural variants in simple and complex structures; sensitivity of VaPoR on validating 

different levels of predicted breakpoint efficacy; stratification of VaPoR scores by genotype; and time 

and computational cost of VaPoR. 

VaPoR on Simulated Data 

We applied VaPoR to simulated simple deletions, inversions, insertions and duplications as well as 

complex structural variants and first assessed the proportion of SVs that VaPoR is capable of 

interrogating (i.e. passed VaPoR QC). We found that VaPoR can successfully evaluate >80% of 

insertions, >85% deletion-duplications and >90% SVs in all other categories when the read depth is 10X 

or higher. We then assessed the sensitivity and false discovery rate (FDR) at different VaPoR score 

cutoffs and found that a sensitivity >90% is achieved for most SV types across a wide range of read 

depths while maintaining a false discovery rate <10% at a VaPoR score cutoff of 0.15 (Supplementary 

Figures 1-2). We further observed that there were no significant changes of sensitivity or false discovery 

rate once the read depth was at or above 20X and is consistent across different SV types (Figure 2, 

Supplementary Figure 3-4, Supplementary Table 3). 

VaPoR on 1000 Genomes Project Samples 
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We next examined SVs reported on chr1 of 5 diverse individuals from the 1000 Genomes Project [19] to 

assess the sensitivity of VaPoR on real genomes (Table 1), with 197 – 258 SVs reported per individual 

in Phase 3 of the project. We first observed that >95% of deletions and insertions could be successfully 

evaluated by VaPoR. For inversions, there were a limited number of events reported but at maximum 

only 1 event failed the VaPoR quality control per individual. Moreover, we observed 3-8% deletions and 

insertions that are 10Kb or larger in size across the individuals. Such events were rarely fully covered by 

long sequences according their length distribution (Supplementary Figure 5) and were assessed through 

the ‘large variants assessment’ module implemented in VaPoR (Methods, Supplementary Figure 6), out 

of which 100% were successfully evaluated. A sensitivity of >90% was achieved for deletions (Figure 

3a) and >80% for insertions (Figure 3b) at the recommended cutoff of 0.15. 

 To examine the false validation rate of VaPoR, we modified reported events on chr2 to appear at the 

same coordinates on chr1 and assessed them as though they were real events using the same sequence 

data set. VaPoR validated very few deletions or inversion and <10% of insertions. We further compared 

VaPoR against a long-read validation approach developed in conjunction with Lumpy [3] using SVs on 

chr1 of NA12878 reported by the 1kGP Phase 3. VaPoR achieved a sensitivity of 72% for deletions and 

86% for insertions, while the Lumpy-associated approach was only able to assess 11% and 0% 

respectively. Both approaches exhibited a very low false validation rate when synthetically assigning the 

variants to chr2, with 0 for all SV types by the Layer et al approach and varying between 0 and 2.5% for 

VaPoR (Supplementary Table 4).  

SV breakpoint validation and accuracy 

One of the outstanding challenges of SV discovery is the precise determination of its location at 

nucleotide resolution. Many short-read algorithms can correctly identify the presence of an SV but 

report uncertainty at the breakpoints, as can be observed by the reported median confidence intervals of 

+/-85bp across all events in the 1KGP Phase 3 set [18]. We therefore assessed the performance of 

VaPoR to validate SVs with varying degrees of breakpoint accuracy by artificially shifting the 

coordinates of simulated SVs (Supplementary Figures 7-8) and the Phase 3 SVs from the 1000 Genomes 

samples (Figure 3c,d) by -1000 to 1000 base pairs and re-assessing the new positions with VaPoR. 

Using default parameters, VaPoR exhibited a robust validation score up to approximately 200bp overall, 

with some slight differences observed between different SV types. We note that this delineation is 
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partially dependent on the length of the flanking sequence selected, as larger flanking sequences would 

allow for larger breakpoint offsets depending on user preference. SVs with confidence intervals 

bounding expected breakpoint locations can be also be systematically assessed using subsequent VaPoR 

application with offset breakpoints to identify the positions that exhibit the highest score. 

Discrimination of SV types and genotypes 

We identified a small number of SVs in the high quality 1000 Genomes set that did not validate with 

VaPoR. Previous studies have shown that complex rearrangements are often misclassified as simple 

structural changes [5, 13], and indeed upon manual inspection these appeared to consist of multiple 

connected rearrangements. For example, we observed a reported inversion in HG00513 and NA19239 

on chromosome 1 (chr1:239952707-239953529) that was invalidated by VaPoR; an investigation into 

the long-reads aligned in the region showed the signature of an inverted duplication (Figure 4a) which, 

when incorporated into a modified reference that location, matched almost exactly with the read 

sequence (Figure 4b). 

We further explored the distribution of VaPoR scores for this region and others across the sample set 

and observed clear delineations between allelic copy number when fitted with a Gaussian mixture model 

allowing for the generation of genotype likelihoods for each site (Figure 4c). These tracked with our 

expected genotypes for the inverted duplication on chr1 across the 5 individuals queried while showing 

no support for the originally predicted inversion (Figure 4d). This shows that VaPoR is not only able to 

accurately genotype variants but can also distinguish between similar but distinct SV predictions in the 

same region.  

Using these data, we implemented a genotyping module as an option for users to assess predicted 

genotypes with those derived using long reads. We compared the genotype of deletions and inversions 

reported by the 1000 Genomes Phase 3 to the VaPoR genotypes at those loci and observed a non-

reference genotype concordance of 0.83 (Supplementary Table 5). The manual visual inspection of 

regions with discordant genotypes using both the Illumina WGS and PacBio sequence alignments in 

IGV [20] showed the VaPoR genotypes to be consistently correct in such cases. An updated non-

reference genotype concordance of 0.95 was achieved after we integrated these manual inspections into 

the 1000 Genomes set. 
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Runtime and efficiency 

The computation runtime of VaPoR was assessed using 2 Intel Xeon Intel Xeon E7-4860 processors 

with 4GB RAM each on both simulated and real genomes. The runtime of simulated event was observed 

to increase linearly with read depth (Supplementary Figure 9). For events sequenced up to 20X, VaPoR 

takes ~3 seconds to assess a simple SV and ~5s for a complex event. The assessment of real samples 

sequenced at 20X required ~1.4 seconds to assess a simple deletion or insertion and ~6 seconds for an 

inversion (Supplementary Table 6), with a full genome analysis consisting of ~3,000 SVs larger than 

50bp taking 2 CPU hours on average. 

 

DISCUSSION 

Here we present an automated assessment approach, named VaPoR, for exploring various features of 

predicted genomic structural variants using long read sequencing data. VaPoR directly compares the 

input reads with the reference sequences with relatively straightforward computational metrics, thus 

achieving high efficiency in both run time and computing cost. VaPoR exhibits high sensitivity and 

specificity in both simulated and real genomes, with the capability of discriminating partially resolved 

SVs either consisting of similar but incorrect SV types at the same location or correct SVs with offset 

breakpoints. Furthermore, we show that VaPoR performs well at low read depths (5-10X), thus 

providing the option of systematically assessing large-scale SVs with a lower sequencing cost. 
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METHODS 

VaPoR Workflow 

VaPoR takes in aligned sequence reads in BAM format and predicted SVs (>50bp) in various formats 

including VCF and BED. SVs are evaluated by comparing long reads that traverse the reported position 

of the event against reference sequences in two formats: (a) the original human reference to which the 

sample is aligned and (b) a modified reference sequence altered to match the predicted structural 

rearrangement. A recurrence matrix is then derived by sliding a fixed-size window (k-mer) with 1bp step 

through each read to mark positions where the read sequence and reference are identical. The matching 

patterns are then assessed as to the validity of the SV and a validation score is reported. Given the large 

variance of SVs lengths, each SV is stratified into one of two groups: smaller SVs that can be 

completely encompassed within multiple (>10 by default) long sequences, and larger events that are too 

big to fall within individual reads but for which the breakpoint regions can be assessed. Each class of SV 

is interrogated with different statistical models, as described below. The VaPoR workflow is briefly 

summarized in Figure 1. 

Small Variants Assessment: 

For an SV k in sample s that is covered by n reads, the recurrence matrix between each read and the 

reference sequences in original (Ro) and altered (Ra) format is calculated. For each record i that 

corresponds to the fixed-size sequence window position and each format 𝑅𝑥 𝜖 (𝑅𝑜 , 𝑅𝑎), we define a 

distance di,k,s,Rx  as the vertical distance between each record (X=xi,k,s,Rx, Y=yi,k,s,Rx) in matrix x and the 

diagonal (X=xi,k,s,Rx, Y=xi,k,s,Rx) such that di,k,s,Rx = abs(xi,k,s,Rx - yi,k,s,Rx), and the average distance of all 

records would be assigned as the score of each matrix: 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑥 = ∑ 𝑑𝑖,𝑘,𝑠,𝑅𝑥 / 𝑚,

𝑚

𝑖=1

 

where m is the total number of records in the matrix. Sequences that share higher identity with the read 

will have a lower Scorek,s,Rx, such that the score of each read is normalized as: 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅 = 𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑜
 / 𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑎

− 1, 
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where a positive Scorek,s,R represents the superiority of the predicted structure versus the original and 

vice versa for negative Scorek,s,R,. There exists one exceptional case where a duplicated structure resides 

within the predicted SV such that the predicted structure would show higher Scorek,s,R due to the multi-

alignment of duplicated segments. To correct for these intrinsic duplications, VaPoR adopts the directed 

distance di,k,s,Rx = xi,k,s,Rx - yi,k,s,Rx instead, and take the absolute value of their aggregation, such that the 

distance contributed by centrosymmetric duplicated segments would offset each other. 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑥
′ = 𝑎𝑏𝑠(∑ 𝑥𝑖,𝑘,𝑠,𝑅𝑥−𝑦𝑖,𝑘,𝑠,𝑅𝑥) / 𝑚,

𝑚

𝑖=1

 

 

Large Variants Assessment: 

For larger SVs where there are few, if any, long reads that can transverse the predicted SV, VaPoR 

assesses the quality of each predicted junction instead using: 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑥 =

∑ 𝐼 =  {
1, 𝑖𝑓 𝑎𝑏𝑠(𝑥𝑖,𝑘,𝑠,𝑅𝑥 − 𝑦𝑖,𝑘,𝑠,𝑅𝑥) < 0.15 ∗ 𝑥𝑖,𝑘,𝑠,𝑅𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑚
𝑖=1

𝑚
 , 

where a larger Scorek,s,Rx represents higher similarity between the read and the reference sequence. The 

normalized scores of each read is then defined as: 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅 = 𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑎
 / 𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅𝑜

− 1, 

VaPoR Score Calculation: 

With a score assigned to each read spanning through the predicted structural variants, the VaPoR score 

is summarized as: 

𝑆𝑐𝑜𝑟𝑒𝑘,𝑠 =

∑ 𝐼 =𝑛
𝑅=1 {

1, 𝑖𝑓  𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑛

 

to represent the proportion of long reads supporting predicted structure. 
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The highest supportive score (max(𝑆𝑐𝑜𝑟𝑒𝑘,𝑠,𝑅))  is also reported as a reference for users to meet the 

specific requirement of their study design, for which we recommend 0.1 as the cutoff.   

Genotype Assessment: 

The genotype and corresponding likelihood of a predicted SV is assessed by VaPoR using a method 

previously described for SNP genotyping [21]. Based on the assumption of two alleles per genomic site 

and k long reads adopted for the assessment, out of which j (𝒋 ≤ 𝒌) reads were assigned with a non-

positive score, then the log likelihood of a particular genotype g can be estimate as: 

𝒍𝒈 =  −𝒌 ∗ 𝒍𝒐𝒈(𝟐) +  ∑ 𝒍𝒐𝒈 ((𝟐 − 𝒈)𝜺𝒊 + 𝒈(𝟏 − 𝜺𝒊)) + ∑ 𝒍𝒐𝒈 ((𝟐 − 𝒈)(𝟏 − 𝜺𝒊) + 𝒈𝜺𝒊 )

𝒌

𝒊=𝒋+𝟏

 

𝒋

𝒊=𝟏

 

The error rate (𝜀𝑖) was estimated as the proportion of negative reads across the homozygous alternative 

events and the positives across the homozygous reference, which is estimated to be 5% across the 1000 

Genomes samples. The genotype with the highest likelihood is reported as the estimated genotype, with 

the second largest likelihood in –log10 normalized scale reported as the genotype quality score. 

Flexible window size: 

By default, VaPoR uses a window size of 10bp and requires an exact match between sequences, though 

these can be changed to user-defined parameters. However, many regions of the genome contain 

repetitive sequences resulting in an abundance of spurious matches in the recurrence matrix, thus 

introducing bias to the assessment. To address this, VaPoR adopts a quality control step by iteratively 

assessing the reference sequence against itself and tabulating the proportion of matches along the 

diagonal. The window size initially starts at 10bp and iteratively increases by 10bp until either (a) the 

proportion of matches on the diagonal exceeds 40% and the current window size is kept or (b) the 

window size exceeds 40bp whereby the event will be labeled as ‘non-assessable and excluded from the 

evaluation. 
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FIGURE LEGENDS 

Figure 1. Flowchart describing the VaPoR algorithm. As input, the algorithm requires a set of 

structural variants in either VCF or BED format, a series of long reads and/or sequence contigs in BAM 

format, and the corresponding reference sequence. VaPoR then interrogates each variant individually at 

its corresponding reference location, assesses the quality of the region and assigns a score. 

Figure 2. Accuracy of VaPoR on simulated heterozygous and homozygous SVs at varying degrees 

of sequence coverage and VaPoR score cut-offs. Receiver operator curves (ROC) are shown for 

simple deletions, duplications and inversions (a,b) as well as complex rearrangements including inverted 

duplications and deletion-inversion rearrangements (c,d). 

Figure 3. Validation rate and breakpoint accuracy of VaPoR on the 1000 Genomes Projects phase 

3 calls. VaPoR was applied on 5 individuals with reported SVs as a truth set: HG00513, HG00731, 

HG00732, NA19238, NA19239. The validation rate of deletions (a) and insertions (b) are shown here 

across different cutoff scores for VaPoR. Robustness to breakpoint accuracy was assessed by deviating 

breakpoints from their actual positions across varying distances for deletions (c) and insertions (d). 

Figure 4. Validation and genotyping of assessed regions using VaPoR. (a) Dot plot of reference 

genome (GRCh38) to an aligned long read in NA19239 

(m150208_160301_42225_c100732022550000001823141405141504_s1_p0/3831/0_12148) for a 

reported inversion at position chr1:239952707-239953529. The signature is consistent with an inverted 

duplication structure. (b) Dot plot of a different read 

(m150216_212941_42225_c100729442550000001823151505141565_s1_p0/106403/0_13205) against 

the same location, consistent with a non-variant (reference) structure.  (c) Distribution of VaPoR scores 

on all reported SVs on chr1 in samples HG00513, HG00731, HG00732, NA19238, NA19239, stratified 

by color (solid) and modeled with a Gaussian mixture model (dashed). (d) VaPoR scores of SV above 

now stratified by color as indicated in (c) for both reported inversion (red) and predicted inverted 

duplication (blue). 
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TABLES 

Table 1. Sensitivity and false discovery rate of different SV types 

 deletion insertion inversion 

Sample Sens/FDR Sens/FDR Sens/FDR 

HG00513 0.96/0.00 (0.941) 0.80/0.05 (0.93) 0.50/0.00 (0.71) 

HG00731 0.94/0.00 (0.96) 0.85/0.07 (0.97) 0.60/0.00 (1.00) 

HG00732 0.92/0.00 (0.98) 0.92/0.08 (0.96) 0.33/0.00 (0.86) 

NA19238 0.90/0.00 (0.93) 0.88/0.10 (0.96) 1.00/0.00 (1.00) 

NA19239 0.87/0.02 (0.95) 0.73/0.09 (0.96) 0.33/0.00 (1.00) 

1Proportion of SVs passed VaPoR QC, as listed in brackets, are counted 

for events on chr1 and chr2 together. 
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Availability and Requirements 

Project name: VaPoR 

Project home page: https://github.com/millslab/vapor 

Operating systems: Linux, OS X 

Programming languages: Python, R 

Other requirements: Python v2.7.8+, rpy2, HTSeq, samtools v0.19+, pyfasta v0.5.2+, and pysam 

0.9.1.4+. 
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