Supplemental Information

Contents

- Supplementary Figures S1-S14 and Figure Legends
- Supplementary Tables S1-S6
- Supplementary References

Supplementary Figure S1. Telomere analysis of *rap1* mutants in YPH499 and W303-1A

backgrounds.

The genomic DNAs were digested with KpnI, and Southern blotting was performed as

described in Figure 1B (n=2).

Supplementary Figure S2. Characterization of the phospho-specific antibodies against Rap1 S731.

A. Upper panel, the sequence of phosphorylated peptides, which was used to raise phospho-specific antibodies against Rap1 pS731. A cysteine residue was added to the N-terminus to facilitate conjugation with a carrier protein for greater immunogenicity. Lower panel, the peptide spotting showed the specificity of anti-Rap1 pS731 antibodies (n=2). **B.** λ phosphatase assay. Immunoprecipitated Rap1-Myc₁₃ proteins were treated with λ phosphatase and western blotting was conducted using anti-Myc and anti-Rap1 pS731 phospho-specific antibodies (n=2).

Supplementary Figure S3. Telomere analysis of *pif1-m2* and *cdc13-S314A* mutants

containing Myc₁₃-tagged Rap1.

The genomic DNAs were digested with KpnI, and Southern blotting was performed as

described in Figure 1B (n=2).

Supplementary Figure S4. Phosphorylation of Rap1 S731 is cell cycle-independent.

The overnight culture was refreshed to log phase in YPAD, arrested at G1 phase by α factor, and released into cell cycle at 24 °C. Samples were collected at 20-min intervals. **A.** Phosphoryalion of Rap1 S731 and total Rap1 amounts were analyzed by western blot analysis. Asynchronized (Asyn) WT and *rap1-S731A* cells were used as controls (n=2). **B.** Aliquots of cells were collected at 0, 20, 40, 60 and 80 minutes for FACS analysis (n=2).

Supplementary Figure S5. Complementation of Rif1 restored the telomeres shortening phenotype of *rap1-S731D*, while the telomeres remained elongated at the initial back-crossing stage.

A. The schematic cartoon represents that the *rap1* mutants in *rif1* strains (YPH499) were back-crossed with *rap1* mutants (YPH500) to obtain different *rap1* mutant hybrids. **B.** Telomere analysis of the descendants at first 25 population doublings (PD25). The diploid hybrid cells were grown in YPAD medium for genomic DNA extraction. The genomic DNAs were digested with KpnI, and Southern blotting was performed as described in Figure 1B. *rif1* (haploid) and WT (diploid) were used as the telomere length controls (n=2). **C.** Telomere analysis of the descendants at 75 generations (PD75). The diploid hybrid cells were serially restreaked on YPAD plates for three times to reach 75 generations. The genomic DNAs were digested with KpnI, and Southern blotting was performed as described in Figure 1B (n=2).

Supplementary Figure S6. Telomere analysis of WT, rap1-S731A, and rap1-S731D in the

yku80 background.

The genomic DNAs were digested with KpnI, and Southern blotting was performed as described in Figure 1B (n=2).

Supplementary Figure S7. The total Rap1 amounts are comparable between WT, *rap1-S731A* and *rap1-S731D* cells in the *rif1*, *rif2* and *rif1 rif2* backgrounds.

A. Total Rap1 in the *rif1* background. **B.** Total Rap1 in the *rif2* background. **C.** Total Rap1 in *rif1 rif2* background. Upper panel, cell lysates were precipitated by trichloroacetic acid (TCA) and analyzed by western blotting. Endogenous Rap1 protein was detected by polyclonal anti-Rap1 antibodies. Actin was detected by polyclonal anti-actin antibodies as a loading control. The fold of Rap1 over actin compared to that of WT is shown below. Data were expressed as the mean ± s.d.. Lower panel, the normalized data revealed that Rap1 proteins are comparable between WT, *rap1-S731A* and *rap1-S731D* cells in the *rif1*, *rif2* and *rif1 rif2* backgrounds (n=4, NS, non-significant, Student's *t*-test, two-tailed). Bars, s.d.

8

Supplementary Figure S8. EMSA assay of Rap1 fusion proteins showed no noticeable change of the Rap1 binding affinity to telomeric DNA sequence.

A. The aliquots of eluted GST and GST-Rap1(353-827) fusion proteins were resolved on a 10 % SDS-PAGE and stained with Coomassie blue as the EMSA protein loading control. **B.** Left part, the aliquots of eluted GST and GST-Rap1(353-827) fusion proteins were incubated with the ³²P-labeled Scer19 double-stranded oligonucleotides and the reactions were resolved on a 6 % non-denaturing polyacrylamide gel for autoradiography detection. Right part, the 2-fold dilution of fusion proteins were used to perform EMSA (n=2). **C.** Non-labeled Scer19 double-stranded oligonucleotides were added in 3 and 9 times molar excess as cold probes to compete for the Rap1 fusion protein binding (n=2). The minus-labelled (–) lanes contain no cold probe.

Supplementary Figure S9. Absence of phosphorylation does not change the Rap1-Sir3 interaction.

A. Yeast two-hybrid assay revealed that both rap1-S731 mutations do not alter the Rap1-Sir3 interaction (n=4, NS, non-significant, Student's t-test, two-tailed). The Y axis means

VI-R

the relative β-galactosidase activity fold. Bars, s.d. **B.** Co-IP assay demonstrated that the interaction between Rap1 and Sir3 is not changed in the absence of S731 phosphorylation. Endogenous Rap1 was immunoprecipitated from cells overexpressing Sir3-HA₃. Immunoprecipitates were separated by SDS-PAGE. Western blotting was conducted using anti-Rap1 and anti-HA antibodies. WT cells carrying the empty vector were used as a negative control. **C.** Quantification data of Sir3 and Rap1 co-IP (n=4, NS, non-significant, Student's *t*-test, two-tailed). Bars, s.d. **D.** ChIP data indicated that Sir3 binding to VI-R or XV-L telomeres is not disturbed by the lack of Rap1 S731 phosphorylation (n=3, NS, non-significant, Student's *t*-test, two-tailed). Strains expressing HA-tagged proteins and an untagged strain were immunoprecipitated with anti-HA or anti-normal mouse IgG antibodies. The data were presented as in Figure 5A.

Supplementary Figure S10. Rap1 S731 phosphorylation does not modulate

telomere-telomere fusions.

A. Schematic figure of the positions of the primers used for PCR amplification assay. **B.** Telomere fusions occur in neither *rap1-S731A* nor *rap1-S731D* stationary phase mutants. Two independent colonies of WT, *rap1-S731A*, *rap1-S731D* and *rap1-(\Delta)* mutant cells were incubated to stationary phase (6 days) at 30 °C. The genomic DNA was extracted, and X2 and Y2 primers were used to amplify the telomere fusions by PCR. The *rap1-(\Delta*) was used as a control (n=2).

Supplementary Figure S11. Telomere lengthening phenotype of *rap1-S731A* was abrogated in *cdc13-S249/S255A* cells.

Telomere analysis of WT, *rap1-S731A*, and *rap1-S731D* in the *cdc13-S249/S255A* mutation background. The telomere length of each colony derived from the dissected spores was analyzed at 75 generations (PD75). The genomic DNAs were digested with KpnI, and Southern blotting was performed as described in Figure 1B (n=2).

Supplementary Figure S12. ATM/ATR kinases activate different downstream signaling pathways to circumvent progressive telomere shortening puzzle.

In mammalian cells, progressive telomere shortening triggers ATM/ATR kinases to phosphorylate CHK1 and CHK2, activate downstream p53 signaling pathway, and finally cause cellular senescence and/or apoptosis to suppress tumorigenesis. In budding yeast, shortened telomeres induce Tel1/Mec1 to phosphorylate Cdc13 for telomerase recruitment and Rap1 for telomere capping. Α Bownload - GenBank Graphics Saccharomyces cerevisiae strain S288c chromosome IV, complete sequence Sequence ID: CP020126.1 Length: 1566853 Number of Matches: 1 Range 1: 714248 to 714430 GenBank Graphics 🔻 Next Match 🔺 Previous Match Identities Score Expect Gaps Strand 339 bits(183) 183/183(100%) 0/183(0%) 2e-89 Plus/Plus Query 1 TCGTTACAAGGTGATGCCAGATTTGCAAGAGATGTCTTGAAACCTATGGGTTGTAAAATA 60 TCGTTACAAGGTGATGCCAGATTTGCAAGAGATGTCTTGAAACCTATGGGTTGTAAAATA Sbjct 714248 714307 Query 61 120 CTCCTGTAGGTACTTTAAAGCCATTA Sbict 714308 714367 Ouery 121 180 AAACATGTTGATATGGAGO TAACTGCATGTGTTGTTGCCGCT 714427 Sbjct 714368 Query 181 ATT 183 в Bownload - GenBank Graphics Saccharomyces cerevisiae strain S288c chromosome VI, complete sequence Sequence ID: CP020128.1 Length: 271539 Number of Matches: 1 Range 1: 271019 to 271188 GenBank Graphics 🔻 Next Match 🔺 Previous Match Expect Identities Score Gaps Strand 315 bits(170) 170/170(100%) 0/170(0%) 4e-84 Plus/Plus ATCATTGAGGATCTATAATCAACTATAGACATTAATGTATGGATAATCATGAGGATTATA 60 Query 1 Sbjct 271019 ATCATTGAGGATCTATAATCAACTATAGACATTAATGTATGGATAATCATGAGGATTATA 271078 Query 61 TCCGTGTGTAGTGATCCGAACTCAG 120 GGTAAATGGCAAGGGTAAAAACCAGTGAGGCCAT Sbjct 271079 GGTAAATGGCAAGGGTAAAAACCAGTGAGGCCATTTCCGTGTGTGGGGTGCAGGACTCAG 271138 Query 121 GTGAAG 170 GAGTGAAG Sbjct 271139 TTACTATTGATG 271188 С Bownload v GenBank Graphics Sort by: E value • TPA inf: Saccharomyces cerevisiae S288C chromosome XV, complete sequence Sequence ID: BK006948.2 Length: 1091291 Number of Matches: 2 Range 1: 129 to 500 GenBank Graphics ▼ Next Match 🔺 Previous Match Score Expect Identities Gaps Strand 688 bits(372) 0.0 372/372(100%) 0/372(0%) Plus/Plus TAACCCTGTCCAAACCTGTCTCCAAACTTACCCTCCATTACCTTACCTCCCCACT Query 1 60 Sbjct 129 TAACCCTGTCCAACCTGTCTCCAAACTT 188 GCCCCATTTAACCATACCACAGCGAACCACGATCCACAT Query 61 120 CCTGCCCCATTTAACCATACCACAC Sbjct 189 248 ACCCACCGTCCACCATAACCGTTACCCTCCAACTACCCATATCCTACTCCACT 180 Ouery 121 CCGTCCACCATAACCGTTACCCTCCAACTACCCATATCCTACTCCAC Sbjct 249 308 Query 181 GCCATTCCTCTACCATCCATCATCTGGTACTCACTATACTGTTGTTCTACC 240 Sbjct 309 368 AAACGCTAACAAATGATCGTAAATAATACACATAT Query 241 300 AAACGCTAACAAATGATCGTAAATAATA Sbjct 369 428 Query 301 TCCCACCACCACATGCCATACTCACCT 360 τστατατισατατος σατας σος CACATGCCATACTCACCTTCACTTGTATATTGATATG 488 Sbict 429

Supplementary Figure S13. In silico specificity screens of ChIP primers.

In silico specificity of PCRs was assessed by BLAST (NCBI) for A. ARO1-ChIP primers.

B. VI-R-ChIP primers. C. XV-L-ChIP primers.

ATGCTATAGTAT 372 Sbjct 489 ATGCTATAGTAT 500

Query 361

Α

В

Cycles

Supplementary Figure S14. RT-qPCR assay performance in accordance with MIQE guidelines.

Specificity of primers and the amplified PCR products were examined by melt analysis, standard curves and raw data for **A.** *ARO1*-ChIP primers, **B.** VI-R-ChIP primers, and **C.** XV-L-ChIP primers.

Genotype	No. of survivors (% of total)		
	Total studied	Type I	Type II
tlc1	150	140 (93)	10 (7)
tlc1 rap1-S731A	150	127 (85)	23 (15)
tlc1 rap1-S731D	150	142 (95)	8 (5)

Supplementary Table S1. Distribution of survivor types.

Strain	Genotype	Source
YPH501	MAT a/α ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101	(1)
	trp1 Δ 63/trp1 Δ 63 his3 Δ 200/his3 Δ 200 leu2-delta Δ 1/leu2-delta Δ 1	
YPH499	MATa ura3-52 lys2-801 ade2-101 trp1 Δ 63 his3 Δ 200 leu2-delta Δ 1	(1)
YPH500	MATα ura3-52 lys2-801 ade2-101 trp1 Δ 63 his3 Δ 200 leu2-delta Δ 1	(1)
STY2289	YPH499 RAP1-3HA-KanMX6	This study
CWY154	YPH499 <i>rap1-S142A</i>	This study
CWY156	YPH499 <i>rap1-S142D</i>	This study
CWY161	YPH499 rap1-Linker 6S/TA	This study
CWY163	YPH499 rap1-Linker 6SD/TE	This study
CWY187	YPH499 <i>rap1-T364A</i>	This study
CWY188	YPH499 <i>rap1-T364E</i>	This study
CWY165	YPH499 rap1-S479/T486/S594A	This study
CWY168	YPH499 rap1-S479D/T486E/S594D	This study
CWY157	YPH499 <i>rap1-S658/S660A</i>	This study
CWY159	YPH499 rap1-S658/S660D	This study
CWY34	YPH499 rap1-S731A	This study
CWY40	YPH499 <i>rap1-S731D</i>	This study
CWY274	YPH499 <i>rap1-∆C-TRP1</i>	This study
CWY59	YPH499 RAP1-13MYC-KanMX6	This study
CWY60	YPH499 rap1-S731A-13MYC-KanMX6	This study
CWY109	YPH499 <i>yku80::HIS3MX6</i>	This study

Supplementary Table S2. Strains Used in This Study.

CWY111	YPH499 yku80::HIS3MX6 rap1-S731A	This study
CWY113	YPH499 yku80::HIS3MX6 rap1-S731D	This study
CWY221	YPH501 tlc1::LEU2/TLC1 RAP1/RAP1-13MYC-KanMX6 derived	This study
	from STY95	
CWY230	YPH499 yku80::HIS3MX6 RAP1-13MYC-TRP1	This study
CWY241	YPH500 pif1-m2 RAP1-13MYC-TRP1	This study
CWY239	YPH499 cdc13-S314A RAP1-13MYC-TRP1	This study
CWY232	YPH500 tel1::HIS3MX6 RAP1-13MYC-TRP1	This study
CWY233	YPH499 mec1::HIS3MX6 sml1::KanMX4 RAP1-13MYC-TRP1	This study
CWY235	YPH501 tel1::HIS3MX6/TEL1 mec1::HIS3MX6/MEC1	This study
	sml1::KanMX4/SML1 RAP1-13MYC-TRP1/RAP1-13MYC-TRP1	
CWY237	YPH499 tel1::HIS3MX6 mec1::HIS3MX6 sml1::KanMX4	This study
	RAP1-13MYC-TRP1 derived from CWY235	
CWY229	YPH501 rif1::TRP1/RIF1 rif2::HIS3/RIF2	This study
CWY243	YPH501 rif1::TRP1/RIF1 rif2::HIS3/RIF2 rap1-S731A/RAP1	This study
CWY244	YPH501 rif1::TRP1/RIF1 rif2::HIS3/RIF2 rap1-S731D/RAP1	This study
CWY39	YPH500 rap1-S731A	This study
CWY44	YPH500 rap1-S731D	This study
CWY250	YPH499 rif1::TRP1 rap1-S731A	This study
CWY251	YPH499 rif1::TRP1 rap1-S731D	This study
ZJY259	YPH501 cdc13-S249/S255A/CDC13	(2,3)
CWY213	YPH501 cdc13-S249/S255A/CDC13 rap1-S731A/RAP1	This study
CWY215	YPH501 cdc13-S249/S255A/CDC13 rap1-S731D/RAP1	This study

STY95	YPH501 tlc1::LEU2/TLC1	(4)
CWY1	YPH501 tlc1::LEU2/TLC1 rap1-S731A/RAP1	This study
CWY4	YPH501 tlc1::LEU2/TLC1 rap1-S731D/RAP1	This study
CWY148	YPH500 <i>mec1::HIS3MX6 tel1::HIS3MX6 sml1::KanMX4</i> + pKR5	This study
	(TEL1-HA)	
CWY150	YPH500 <i>tel1::HIS3MX6</i> + pJM8 (<i>tel1-HA(KD</i>))	This study
BY4741	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	(5)
LSS90	BY4741 18MYC-MEC1::LEU2 5HA-tel1-KD::kanMXURA3	(6)
	pep4::AUR1 ^r	
LSS93	BY4741 18MYC-mec1-KD::URA3 5HA-TEL1 sml1::His3MX	(6)
	pep4::AUR1 ^r	
L40	MATa his3-delta200 trp1-901 leu2-3, 112 ade2 lys2-801am	Invitrogen
	LYS2::(lexAop)4-HIS3URA3::(lexAop)8-lacZ GAL4	
W303-1A	MATa leu2-3, 112 ura3-1 trp1-1 his3-11, 15 ade2-1 can1-100	(7)
CWY88	W303-1A rap1-S731A	This study
CWY89	W303-1A rap1-S731D	This study
MS179	W303-1A Lev220 <i>bar1::Kan RIF1-</i> Gly ₈ -Myc ₉ <i>adh4::FRT-TEL</i>	(8)
STY2305	MS179 rap1-S731A	This study
CWY14	MS179 rap1-S731D	This study
MS206	W303-1A Lev220 <i>bar1::Kan RIF</i> 2- Gly ₈ -Myc ₉ adh4::FRT-TEL	(8)
STY2307	MS206 rap1-S731A	This study
CWY22	MS206 rap1-S731D	This study
CWY98	W303-1A SIR3-3HA-HIS3MX6	This study

CWY99	W303-1A SIR3-3HA-HIS3MX6 rap1-S731A	This study
CWY100	W303-1A SIR3-3HA-HIS3MX6 rap1-S731D	This study
CWY121	W303-1A sir3::HIS3MX6	This study
CWY123	W303-1A sir3::HIS3MX6 rap1-S731A	This study
CWY125	W303-1A sir3::HIS3MX6	This study
210-3d	W303-1A <i>hml-∆::NAT</i>	(9)
209-1c	W303-1A hml-Δ::NAT pACE1-UBR1 pACE1-ROX1 rap1-(Δ)::KAN	r (9)
CWY270	210-3d <i>hml-∆::NAT rap1-S731A</i>	This study
CWY272	210-3d <i>hml-∆::NAT rap1-S731D</i>	This study
UCC3505	MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1Δ63 ura3-52	(10)
	ppr1::HIS3 adh4::URA3-TEL-VIIL DIA5-1 VR-ADE-TEL	
STY2144	UCC3505 RAP1-TRP1	This study
STY2145	UCC3505 rap1-S731A-TRP1	This study
STY2146	UCC3505 rap1-S731D-TRP1	This study
CWY209	UCC3505 RAP1-TRP1 sir3::KanMX6	This study
CWY275	UCC3505 rap1-∆C-TRP1	This study
UCC3515	MATα ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1Δ63 ura3-52	(10)
	hml::URA3	
STY2147	UCC3515 RAP1-TRP1	This study
STY2148	UCC3515 rap1-S731A-TRP1	This study
STY2149	UCC3515 rap1-S731D-TRP1	This study
CWY210	UCC3515 RAP1-TRP1 sir3::KanMX6	This study
CWY276	UCC3515 rap1-∆C-TRP1	This study

UCC4564	MATα ade2-101 his3- Δ 200 leu2- Δ 1 lys2-801 trp1 Δ 63 ura3-52	(10)
	ppr1::LYS2 hmr::URA3	
STY2150	UCC4564 RAP1-TRP1	This study
STY2151	UCC4564 rap1-S731A-TRP1	This study
STY2152	UCC4564 rap1-S731D-TRP1	This study
CWY211	UCC4564 RAP1-TRP1 sir3::KanMX6	This study
CWY277	UCC4564 rap1-∆C-TRP1	This study

Name	Source
pRS306 <i>RAP1</i>	This study
pRS304 <i>RAP1</i>	This study
pRS304-Rap1-∆C(672-827)	This study
pGEX-4T-Rif1(1709-1916)	This study
pGEX-4T-Rif2(1-395)	This study
pGEX-4T-Rap1(353-827)	This study
pGEX-4T-Rap1(716-746)	This study
pKR5 (<i>TEL1-HA</i>)	(11)
pJM8 (<i>tel1-HA(KD</i>))	(11)
YEpFAT7-SIR3-HA ₃	This study
pBTM116-Rap1(679-827)	(12)
pACT2-Rif1(1614-1916)	(12)
pACT2-Rif2(14-395)	(12)
pACT2-Sir3(356-975)	(12)

Supplementary Table S3. Constructs Used in This Study.

Primer	Sequence
	Site-direct mutagenesis
rap1-S142A	GCGACGCGGATGCGCATGACGCGTTAAATGATATTGATCAATTAG
rap1-S142D	GCGACGCGGATGCCCATGACGACTTAAATGATATTGATCAATTAG
rap1-S237A	GATAATAGCAATTCGAATGCCGATAACAAGGATTCTATCAGGCCC
rap1-S237D	GATAATAGCAATTCGAATGATGATAACAAGGATTCTATCAGGCCC
rap1-S261/T262A	TGGCGCTACGGAAGACGCAGCTAGCGAAAAAGTTATGGTAGACGC
rap1-S261D/T262E	TGGCGCCACGGAAGACGACGAGAGCGAAAAAGTTATGGTAGACGC
rap1-S288/S289A	CAGCTCCTTCGTCAACACGTGGCCGCCACCGCATCAATCA
rap1-S288/S289D	CAGCTCCTTCGTCAACATGTCGACGACACCGCATCAATCA
rap1-S342A	ACAGCAGATGAGGGGAATGCAGCTTTTCAAGCACAAAGGTCCATG
rap1-S342D	ACAGCAGATGAGGGGAATGCAGACTTTCAAGCACAAAGGTCCATG
rap1-T364E	TTGCCCTCCCACAATAAAGCTTCTTTCGAAGATGAGGAAGATGAG
rap1-T364A	TTGCCCTCCCACAATAAAGCATCTTTTGCAGATGAGGAAGATGAG
rap1-S479/T486A	CTGGAAGAGCGCTTATCACAGATGAGGATGCACCCACTGCTATAG
rap1-S479D/T486E	CTGGAAGAGATCTTATCACAGATGAGGATGACCCCACTGCTATAG
rap1-S594A	CCCACTCCTGGCAATTATAACGCGGCCGCCAAGAGGGCAAGAAAT
rap1-S594D	CCCACTCCTGGCAATTACAACGACGCCGCCAAGAGGGCAAGAAAT
rap1-S658/S660A	CTATCCAATATTGCAAATGCATTGCCCTTTGAGTATCCACACGAG
rap1-S658/S660D	CTATCCAATATCGATAATGACTTGCCCTTTGAGTATCCACACGAG
rap1-S731A	GAGATTATGAGCCGGCACAGGCTGAAAAACTGGTACAG
rap1-S731D	ATTTCAGGAGATTATGAGCCTGATCAGGCTGAAAAACTGGTACAG

Supplementary Table S4. Primers Used in This Study.

RAP1-del2014-2481 GAGTATCCACACGAGATTGCGGAATGAGTAATTGAATTAAGTAACA

RAP1-del2014-2481 TGTTACTTAATTCAATTACTCATTCCGCAATCTCGTGTGGATACTC

antisense

pGEX-4T-Rap1 construct

- RAP1-F-716-BamHI GGATCCTTTATGGATAAACTTCATGAAG
- RAP1-R-746-Xhol CTCGAGTATACCAGTTTCATCGCAAAG
- RAP1-F-353-EcoRI TCCCCGGAATTCGGCGCTTTGCCCTCCCACAATAAAG
- RAP1-R-827-Xhol AGCTTCTCGAGTCATAACAGGTCCTTCTC

pGEX-4T-Rif1 (1709-1916)

- RIF1-F-1709-EcoRI CCCCGGAATTCGGAGATAAGGATGCCAATAT
- RIF1-R-1916-Xhol AGCTTCTCGAGATTCATATCATTATCCCTGTTTG

pGEX-4T-Rif2 (1-395)

- *RIF*2-F-1-EcoRI CTCCCGAATTCATGGAGCATGTAGATTCCG
- *RIF*2-R-395-Xhol AGCTTCTCGAGTCTATCATGTACTTTTCGAG

Rap1-HA₃ and Rap1-Myc₁₃ tagging

RAP1-cF2 GGTAGAATGGAAATGAGGAAAAGATTTTTTGAGAAGGACCTGTTAC GGATCCCCGGGTTA

RAP1-cR1 AAGGAGTAAAATAAGTTAAACAATGATGTTACTTAATTCAATTACGA

ATTCGAGCTCGTT

Sir3-HA₃ and sir3::HIS3MX6 construct

SIR3-3HA-F TACGCCTTTTCGATGGATGAAGAATTCAAAAATATGGACTGCATTCG

GATCCCCGGGTTAATTAA

- SIR3-3HA-R GTACATAGGCATATCTATGGCGGAAGTGAAAATGAATGTTGGTGGG AATTCGAGCTCGTTTAAAC
- SIR3-del-F1-F GGGGTTTAAGAAAGTTGTTTTGTTCTAACAATTGGATTAGCTAAACG

GATCCCCGGGTTAATTAA

YEpFAT7-SIR3-HA₃ construct

- SIR3-pro-F GTACAATGTTCTTGGCGAAG
- SIR3-ter-R ACGTCAAGACTGTCAAGGAG

yku80::HIS3MX6 construct

yKU80-del-F ATGTCAAGTGAGTCAACAACTTTCATCGTGGATGTTTCACCATCAC

GGATCCCCGGGTTAATTAA

yKU80-del-R ATTATTGCTATTGTTTGGACTTCCCCTACTGTGTTGTTCACCGCGGA

ATTCGAGCTCGTTTAAAC

ChIP

- AR01-ChIP-F TCGTTACAAGGTGATG
- AR01-ChIP-R AATAGCGGCAACAAC
- VI-R-ChIP-F ATCATTGAGGATCTATAATC
- VI-R-ChIP-R CTTCACTCCATTGCG
- XV-L-ChIP-F TAACCCTGTCCAACCTGTCT
- XV-L-ChIP-R ATACTATAGCATCCGTGGGC

NHEJ

- X2 TGTGGTGGTGGGATTAGAGTGGTAG
- Y2 TTAGGGCTATGTAGAAGTGCTG

EMSA

Scer19 TGTGGTGTGTGGGTGTGTG

Scer19-Rev CACACACCACACACACACA

Supplementary Table S5. MIQE Guidelines Checklist.

ITEM TO CHECK	IMPORTANCE	CHECKLIST	COMMENTS/
			WHERE?
EXPERIMENTAL DESIGN			
Definition of experimental and control	E	YES	Materials and
groups			Methods
Number within each group	E	YES	Materials and
			Methods
Assay carried out by core lab or	D	YES	Investigator's Lab
investigator's lab?			
Acknowledgement of authors'	D	N/A	
contributions			
SAMPLE			
Description	E	YES	Materials and
			Methods
Volume/mass of sample processed	D	YES	Materials and
			Methods
Microdissection or macrodissection	E	N/A	
Processing procedure	E	YES	Materials and
			Methods
If frozen - how and how quickly?	E	N/A	
If fixed - with what, how quickly?	E	YES	Materials and
			Methods
Sample storage conditions and	E	N/A	
duration (especially for FFPE			
samples)			
NUCLEIC ACID EXTRACTION			
Procedure and/or instrumentation	E	N/A	
Name of kit and details of any	E	N/A	
modifications			
Source of additional reagents used	D	N/A	
Details of DNase or RNase treatment	E	N/A	
Contamination assessment (DNA or	E	N/A	
RNA)			

Nucleic acid quantification	E	N/A	
Instrument and method	E	N/A	
Purity (A260/A280)	D	N/A	
Yield	D	N/A	
RNA integrity method/instrument	E	N/A	
RIN/RQI or Cq of 3' and 5' transcripts	E	N/A	
Electrophoresis traces	D	N/A	
Inhibition testing (Cq dilutions, spike	E	N/A	
or other)			
REVERSE TRANSCRIPTION			
Complete reaction conditions	E	N/A	
Amount of RNA and reaction volume	E	N/A	
Priming oligonucleotide and	E	N/A	
concentration			
Reverse transcriptase and	E	N/A	
concentration			
Temperature and time	E	N/A	
Manufacturer of reagents and	D	N/A	
catalogue numbers			
Cqs with and without RT	D	N/A	
Storage conditions of cDNA	D	N/A	
qPCR TARGET INFORMATION			
If multiplex, efficiency and LOD of	E	N/A	
each assay			
Sequence accession number	E	YES	ARO1:
			NC_001136.10
			ChXV-L:
			CP020137.1
			ChVI-R:
			CP020128.1
Location of amplicon	D	YES	Supplementary
			Figure S13.
Amplicon length	E	YES	Supplementary
			Figure S13.

In silico specificity screen (BLAST,	E	YES	Supplementary
etc)			Figure S13.
Pseudogenes, retropseudogenes or	D	N/A	
other homologs?			
Sequence alignment	D	N/A	
Secondary structure analysis of	D	N/A	
amplicon			
Location of each primer by exon or	E	N/A	
intron (if applicable)			
What splice variants are targeted?	E	NO	
qPCR OLIGONUCLEOTIDES			
Primer sequences	E	YES	Supplementary
			Table S4.
RTPrimerDB Identification Number	D	N/A	
Probe sequences	D	N/A	
Location and identity of any	E	N/A	
modifications			
Manufacturer of oligonucleotides	D	YES	MDBio, Inc
Purification method	D	YES	RPC
qPCR PROTOCOL			
Complete reaction conditions	E	YES	Materials and
			Methods
Reaction volume and amount of	E	YES	Supplementary
cDNA/DNA			Table S6.
Primer, (probe), Mg++ and dNTP	E	YES	Supplementary
concentrations			Table S6.
Polymerase identity and	E	YES	KAPA SYBR®
concentration			FAST qPCR Kits
Buffer/kit identity and manufacturer	E	YES	KAPA SYBR®
			FAST qPCR Kits
Exact chemical constitution of the	D	NO	Manufactures
buffer			proprietary
Additives (SYBR Green I, DMSO,	E	YES	Materials and
etc.)			Methods

Manufacturer of plates/tubes and	D	YES	Supplementary
catalog number			Table S6.
Complete thermocycling parameters	E	YES	Materials and
			Methods
Reaction setup (manual/robotic)	D	YES	Manual setup
Manufacturer of qPCR instrument	E	YES	Materials and
			Methods
qPCR VALIDATION			
Evidence of optimization (from	D	N/A	
gradients)			
Specificity (gel, sequence, melt, or	E	YES	Melt analysis
digest)			Supplementary
			Figure S14.
For SYBR Green I, Cq of the NTC	E	YES	Supplementary
			Figure S14.
Standard curves with slope and	E	YES	Supplementary
y-intercept			Figure S14.
PCR efficiency calculated from slope	E	N/A	
Confidence interval for PCR	D	N/A	
efficiency or standard error			
r2 of standard curve	E	YES	Supplementary
			Figure S14.
Linear dynamic range	E	YES	Supplementary
			Figure S14.
Cq variation at lower limit	E	N/A	
Confidence intervals throughout	D	N/A	
range			
Evidence for limit of detection	E	NO	
If multiplex, efficiency and LOD of	E	N/A	
each assay			
DATA ANALYSIS			
qPCR analysis program (source,	E	YES	Materials and
version)			Methods
Cq method determination	E	YES	Materials and

			Methods
Outlier identification and disposition	E	N/A	
Results of NTCs	E	YES	Supplementary
			Figure S14.
Justification of number and choice of	E	YES	Materials and
reference genes			Methods
Description of normalization method	E	YES	Materials and
			Methods
Number and concordance of	D	YES	Materials and
biological replicates			Methods
Number and stage (RT or qPCR) of	E	YES	Materials and
technical replicates			Methods
Repeatability (intra-assay variation)	E	YES	Materials and
			Methods
Reproducibility (inter-assay variation,	D	NO	
%CV)			
Power analysis	D	NO	
Statistical methods for result	E	YES	Biological replicates
significance			
Software (source, version)	E	YES	Bio-Rad CFX
			Manager, version 3.1
Cq or raw data submission using	D	N/A	
RDML			

Supplementary Table S6. Reaction Conditions for qPCR.

Components	Amount		
2x KAPA SYBR® FAST qPCR Master Mix (KAPA BIOSYSTEMS)	10 µL		
Forward Primer (10 µM)	0.4 µL		
Reverse Primer (10 µM)	0.4 µL		
Template DNA	2 µL		
PCR Grade water	7.2 µL		
Total volume	20 µL		
PCR tubes (96 x 0.1 mL plate, LP, LF, NON Sk, BIOplastics catalog number B50601).			

Supplementary References

- Sikorski, R.S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics*, 122, 19-27.
- Shen, Z.J., Hsu, P.H., Su, Y.T., Yang, C.W., Kao, L., Tseng, S.F., Tsai, M.D. and Teng,
 S.C. (2014) PP2A and Aurora differentially modify Cdc13 to promote telomerase
 release from telomeres at G2/M phase. *Nat Commun*, 5, 5312.
- Shen, Z.J., Hsu, P.H., Su, Y.T., Yang, C.W., Kao, L., Tseng, S.F., Tsai, M.D. and Teng,
 S.C. (2015) Corrigendum: PP2A and Aurora differentially modify Cdc13 to promote
 telomerase release from telomeres at G2/M phase. *Nat Commun*, 6, 7819.
- Tsai, Y.L., Tseng, S.F., Chang, S.H., Lin, C.C. and Teng, S.C. (2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. *Mol Cell Biol*, **22**, 5679-5687.
- Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P. and Boeke, J.D. (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast*, 14, 115-132.
- Takata, H., Kanoh, Y., Gunge, N., Shirahige, K. and Matsuura, A. (2004) Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. *Mol Cell*, **14**, 515-522.
- Wallis, J.W., Chrebet, G., Brodsky, G., Rolfe, M. and Rothstein, R. (1989) A hyper-recombination mutation in *S. cerevisiae* identifies a novel eukaryotic topoisomerase. *Cell*, 58, 409-419.
- 8. Sabourin, M., Tuzon, C.T. and Zakian, V.A. (2007) Telomerase and Tel1p preferentially associate with short telomeres in *S. cerevisiae. Mol Cell*, **27**, 550-561.
- Lescasse, R., Pobiega, S., Callebaut, I. and Marcand, S. (2013) End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. *EMBO J*, **32**, 805-815.
- Singer, M.S., Kahana, A., Wolf, A.J., Meisinger, L.L., Peterson, S.E., Goggin, C., Mahowald, M. and Gottschling, D.E. (1998) Identification of high-copy disruptors of telomeric silencing in *Saccharomyces cerevisiae*. *Genetics*, **150**, 613-632.
- Mallory, J.C., Bashkirov, V.I., Trujillo, K.M., Solinger, J.A., Dominska, M., Sung, P., Heyer, W.D. and Petes, T.D. (2003) Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect

DNA repair or telomere length in *Saccharomyces cerevisiae*. *DNA Repair (Amst)*, **2**, 1041-1064.

Feeser, E.A. and Wolberger, C. (2008) Structural and functional studies of the Rap1
 C-terminus reveal novel separation-of-function mutants. *J Mol Biol*, **380**, 520-531.