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We here give the derivations and arguments that were left out of the main text for clarity.
For brevity we will here only keep the ’b’ of ’bulk’ in the subscript, for example writing vb

instead of vbulk.

1 Heuristic solution for of the hierarchical TASEP model

The average TASEP motor velocity

For the TASEP, gap sizes are geometrically distributed as (21)

PTASEP(g; a) = (1− a) ag, (1)

for some constant a < 1. Unless a motor is blocked by another motor (g = 0), it will hop forward
with rate k, and the average velocity of motors can be calculated as

vb = k

∞∑
g=1

PTASEP (g; a) = ka. (2)

From this it follows that a = vb/k, and we can write

PTASEP(g; vb/k) =
(

1− vb/k
)(

vb/k
)g
. (3)

Intra- and trans-peloton gap sizes

The inclusion of dynamic roadblocks will split the motor dynamics into an intra-peloton and
a trans-peloton TASEP describing gap sizes below and above the roadblock shadow ∆. In line
with our heuristic argument, we assume there to be no roadblocks within a peloton. Apart from
the leading motor, all motors within a peloton thus attempt to hop forward with rate kip. The
pelotons themselves are controlled by the leading motor, which faces a trans-peloton gap filled
with roadblocks and thus attempts to hop forward with rate ktp. Assuming that the gap-size
distribution is geometric both below and above the roadblock shadow, we can now write our
normalized heuristic gap-size distribution for the intra- and trans-peloton regimes as

Pip(g; vb/kip) =

(
vb/kip

)g
∆−1∑
g=0

(vb/kip)
g

=
(

1− vb/kip

)(
vb/kip

)g
+O

[(
vb/kip

)∆
]
, g < ∆

Ptp(g; vb/ktp) =

(
vb/ktp

)g
∞∑
g=∆

(vb/ktp)
g

=
(

1− vb/ktp

)(
vb/ktp

)g−∆
, g ≥ ∆.

(4)
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The above equations are valid when (kip/ktp)∆ is large, which we refer to as the stable
peloton regime (SPR). The condition for the SPR can intuitively be seen as combining the
strength of the attraction between motors and roadblocks (kip/ktp) and its range (∆). Due to the
SPR conditions exponential dependence on the roadblock shadow size, we expect physiological
systems where the roadblock size is substantially larger than the motor step to always be in the
SPR. In this limit, we have

Pip(g; vb/kip) = PTASEP(g; vb/kip), g < ∆,

Ptp(g; vb/ktp) = PTASEP(g −∆; vb/ktp), g ≥ ∆
(5)

With these conditional distributions, we can now calculate the average gaps sizes for both regimes

〈g〉bip =
∞∑

g=0

gPTASEP(g; vb/kip) =
vb

kip − vb
,

〈g〉btp =
∞∑

g=∆

gPTASEP(g −∆; vb/ktp) = ∆ +
vb

ktp − vb
.

(6)

Defining pb as the probability of a gap in the bulk being a trans-peloton gap, we can write
the average gap between motors as 〈g〉b = (1−pb)〈g〉bip +pb〈g〉btp. Taking the average motor size
into account, the average motor density is the inverse of the typical distance between the fronts
of neighboring motors,

ρb
m =

1

〈g〉b + δm

=
1

(1− pb) 〈g〉bip + pb〈g〉btp + δm
. (7)

The relative fraction of trans peloton gaps

Combining the intra- and trans-peloton distributions we can write the complete gap-size
distribution of the hierarchical TASEP as

PhTASEP(g; vb/kip, v
b/ktp,∆) =

{
(1− pb)PTASEP(g; vb/kip), g < ∆
pbPTASEP(g −∆; vb/ktp), g ≥ ∆

. (8)

In steady state, the probabilistic flow from intra- to trans-peloton gaps (a peloton is split in two)
and from trans- to intra-peloton gaps (two pelotons merge) should balance. The motor ahead of
a gap of size ∆−1 hops with an average rate v and extends the gap to size ∆, inducing the mean-
field probabilistic flow vbPhTASEP(∆− 1; vb/kip, v

b/ktp,∆) = vb(1− pb)PTASEP(∆− 1; vb/kip).
In turn, a motor behind a gap of size hops forward with an average rate and decreases the gap
to size ∆− 1, inducing the probabilistic flow
ktpPhTASEP(∆; vb/kip, v

b/ktp,∆) = ktpp
bPTASEP(0; vb/ktp). In the steady state these two flows

should balance, and equating these rates gives

pb =
[〈g〉btp −∆]

[〈g〉btp −∆] + 〈g〉bip
(
kip
vb

)∆
. (9)

Taken together, Equations 6, 7, and 9 relate the average density in the system to the velocity
and the microscopic model parameters. In Figure 2 C in the main text we compare the gap-size
distribution resulting from our heuristic arguments (solid lines) with ones generated through
simulations of the BRM (dots) at different motor densities
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2 Relation between heuristic arguments and mean-field solution
of BRM

For periodic boundary conditions and irreversible roadblock binding, there exists a mean-field
solution for the special case δm = δrb = 1 [2]. It is informative to consider our more general but
less precise heuristic approach in the light of this mean-field solution. We first present a short
summary of the mean-field solution, and then show how a few approximations give our heuristic
results. The gap-size distribution for the BRM in the mean-field is given by

PBRM(g) =

g∏
y=1

vb

k(y)

∞∑
g=0

g∏
y=1

vb

k(y)

. (10)

Here k(g) is the average stepping rate of a motor into a gap of size g. This average stepping
rate can be determined by calculating the probability of a roadblock with binding rate kb being
bound to a lattice site after a time t since the last motor passed, Prb(t) = 1− e−kbt. If we make
the mean-field assumption that the motor moves with the average velocity v of the system, the
probability of a roadblock being bound can be written in terms of the gap size to the motor
ahead Prb(g) = 1 − e−gkb/vb . The effective stepping rate of a motor as a function of the gap
ahead is now given by

k(g) = Prb(g)ktp+(1− Prb(g)) kip = ktp+(kip − ktp) e−gkb/v
b

= ktp+(kip − ktp) e−g/(∆−1) (11)

where we in the last step introduced the roadblock shadow ∆ = 1 + vb/kb for the BRM, and in
direct analogy with our heuristic approach. If we now approximate k(g) by a step function

k(g) =

{
kip, g < ∆
ktp, g ≥ ∆

(12)

the gap-size distribution is given by

PBRM(g) ∝


(
vb/kip

)g
, g < ∆(

ktp/kip

)∆−1(
vb/ktp

)g
, g ≥ ∆

(13)

Enforcing normalization, Equation 13 implies Equation 4.

3 Observable bulk quantities

In addition to the motor density, there are other interesting observables that can be calculated
if we know the average velocity in the bulk. Among them are the current of motors, J = ρb

mv
b,

and the average number of motors in a peloton, 〈np〉b = 1/pb. Further, only gaps between
pelotons are filled with roadblocks, and then typically only beyond the roadblock shadow. If we
let ρeq

rb be the equilibrium roadblock occupancy in the absence of motor activity, we can estimate
the average roadblock occupancy as

ρb
rb = ρeq

rb

pb[〈g〉btp −∆]

〈g〉b + δm

. (14)

In supplementary Figure 1 we illustrate the relationships derived for various observables and
check our arguments against simulations of the BRM. In Figure 1 A-D we show the effect of
varying the trans-peloton hopping rates for long roadblock equilibration times. As predicted by
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our analytical arguments, up to a critical motor density ρ1 the velocity remains approximately
constant (Figure 1 A), and the total current of motors grows linearly with the motor density
(Figure 1 B), while the roadblock occupancy decreases linearly with motor density (Figure 1 C).
At the critical density, and long before the track is completely covered by motors, all roadblocks
are evicted. For motor densities above the critical density, the velocity and motor current
follows the relationship for the TASEP without roadblocks (the ipTASEP) (Figure 1 A and
B). In Figure 1 D we plot the typical peloton size up to the critical density, after which whole
system acts as one large roadblock-excluding peloton. In Figure 1 E-H we vary the roadblock
equilibration times. For rapid roadblock equilibration (red curves Figure 1 E-H) the roadblock
shadow is small, gaps are largely filled with roadblocks, and the system is well described by
a single TASEP with roadblocks in every gap (the tpTASEP) (dashed line in Figure 1 E). In
this regime, the total density of roadblocks decreases weakly with motor density (red curve
Figure 1 G), as roadblock shadows are small and the motor footprints are all that excludes the
roadblocks. For intermediate roadblock equilibration times (the blue curves in Figure 1 E-H)
the roadblock shadow is larger, resulting in peloton formation, a velocity that is less sensitive
to motor density, and a system that is better at evicting roadblocks. The breakdown of our
predictions for roadblock densities and peloton size in the case of fast roadblock binding (red
and blue curves in Figure 1 G and H) is not surprising given that we here have small enough
roadblock shadows to push the system outside the SPR.
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Figure 1: General model captures bulk dynamics of the BRM. Solid lines are analytical pre-
dictions and symbols are results from Monte Carlo simulations. Within the rows, each color represents
the same parameter values, while green represents the same parameter values across all panels. (A)-
(D) Systems in the SPR: the parameter values are kipτ = 20 for all curves, with ktp/kip = 0.8 (red),
ktp/kip = 0.5 (blue), and ktp/kip = 0.2 (green). The dashed line in (A) is the velocity relation for the
ipTASEP. (E)-(H) Sweep from stable to non-stable pelotons: the parameter values are ktp/kip = 0.2 for
all curves, and kipτ = 20 (green), kipτ = 10 (blue), kipτ = 2 (red). The dashed line in (E) is the velocity
relation for the tpTASEP. In (A) and (E) we show the velocity, in (B) and (F) the motor current, in
(C) and (G) the roadblock occupancy and in (D) and (H) the peloton size, all as a function of motor
density. In the SPR, it only makes sense to talk about pelotons when there are roadblocks in the system
(ρbulkm < ρ1), and we only show the burst size as a function of motor activity for these densities. For
small enough roadblock shadows (red and blue line in Figure (E)-(H) our description breaks down as the
system falls outside the SPR.
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4 Asymptotic behavior in the SPR

We here show how Equations 6, 7, and 9 can be solved explicitly in terms of the motor density
rather than velocity in the limit SPR. For notational convenience we introduce the average excess
trans-peloton gap 〈g̃〉btp and the critical density ρ0, to write Equation (9) as

pb =
〈g̃〉btpρ0

1 + 〈g̃〉btpρ0
, 〈g̃〉btp = 〈g〉btp −∆ =

vb

ktp − vb
, ρ0 =

1

〈g〉bip

(
vb

kip

)∆

. (15)

In the SPR, the transition density ρ0 is very small by definition. In the limit ρ0〈g̃〉btp � 1,

pelotons are small and pb is close to one, and Equation 3 can be written as

1/ρb
m − δm ≈ 〈g〉bip (16)

Here we have a system controlled by the tpTASEP. In the limit ρ0〈g̃〉btp � 1, pelotons are large,

pb is small, and Equation 7 can be written as

1/ρb
m − δm ≈ 〈g〉bip + 〈g̃〉btp(〈g̃〉btp + ∆)ρ0. (17)

If the first two terms on the right hand side dominate, we have the standard ipTASEP. If the
last term dominates, we have a composite system. Taken together, there are three limits given
by

〈g〉btp ≈ 1/ρb
m − δm, ρb

m � ρ0

〈g̃〉btp ≈ 1√
ρ0ρbm

, ρ0 � ρb
m � ρ1 = 1

〈g〉bip+δm

〈g〉bip ≈ 1/ρb
m − δm, ρ1 � ρb

m.

(18)

In the middle regime is large, and the average velocity (see Equation 6) is close to ktp,

vb = ktp

(
1−

√
ρ0ρb

m

)
. (19)

Using Equations 18 and 19, all observables can be written to leading order in 1/ρ0 as

vb = ktp, 〈g〉bip =
ktp

kip − ktp
, 〈g〉btp =

1√
ρ0ρb

m

,

〈np〉b =

√
ρb

m

ρ0
,

ρb
rb

ρeq
rb

= 1− ρb
m

ρ1
, ρ0 =

kip − ktp

ktp

(
ktp

kip

)ktpτ+δrb
(20)

In this regime, (ρ0 � ρm � ρ1), the average bulk peloton size is large, and that is why we refer
to this as the stable peloton regime.

5 The bulk state is never reached

With the parameter values in Table 1 in the main text, the bulk state is given by

〈g〉bip ≈ 0.4, 〈g〉btp ≈ 1
5 · 1082

√
ρm

� 1, vb ≈ 3/s, 〈np〉b ≈ 5 · 1082√ρm � 1. (21)

From the above it is clear that the average steady-state peloton size 〈np〉b is in general enormous
throughout the experimentally accessible range, and that the true bulk-dynamics will never be
reached over a finite gene. Judging by the size of bulk pelotons, polymerases that meet along
the gene stay together until termination, invariably producing bursts of RNA production.
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6 Initiation limited dynamics

Without roadblocks, and if the initiation rate kin is limiting, the density and the distribution of
motors at the start of the lattice are the same as in the bulk [3]. With the inclusion of road-
blocks, the microscopic organization among motors and roadblocks can change from the start
of the lattice to the bulk. Here we assume that the density of motors is low enough, such that
once a motor is initiated it is only slowed down by other motors when it encounters a peloton.
This condition means that once the initiation site is cleared, motors step away much faster at
the beginning of the lattice than a new motor typically initiates. We will refer to this regime as
the slow initiation regime, and we detail its extent below.

The formation of pelotons

A schematic kymograph for the TASEP with roadblocks and open boundary conditions
is shown in supplementary Figure 2. At the start of the lattice, the time gaps between newly
initiated motors are exponentially distributed with rate kin. As the motors move into the system,
those motors that happened to have a roadblock bound ahead will start inducing peloton-forming
traffic jams. For convenience we here call these jams proto-pelotons, and they will grow until
all motors between roadblocks are absorbed into one peloton. Once all motors are collected into
pelotons, we will refer to these as the fully formed pelotons. We here set out to determine the
nature of this peloton formation, and what effects it has on both motor and roadblock density
profiles.

In all the expressions below, the superscript ’in’ refers to the first site after the initiation
site for which x = 0. For a roadblock to bind to the first site after a motor just left, the motor
first has to take δrb steps and then a roadblock has to bind, all before another motor initiates.
Considering the splitting probabilities for each step, we can write the probability of a roadblock
binding between two motor initiation events as

pin =

(
1

1 + kinτ in
m

)δrb 1

1 + kinτ
. (22)

Here τ in
m is the average time it takes a motor to take a step at the start of the track,

τ in
m =

1− pin

kip
+
pin

ktp
. (23)

The definition of the slow initiation regime implies τ in
m � 1/kin, and Equation 22 can be simplified

as

pin =
e−δrbτ

in
m kin

1 + kinτ
. (24)

Equation 23 and 24 can be used to solve for pin explicitly in the steady state,

pin = Λ−1W

(
kinτ

1 + kinτ
δrb Λ e−kinδrb/kip

)
, Λ =

(
1

ktp
− 1

kip

)
1

τ
, (25)

where W is the Lambert W function. In the limit of low initiation rates we can write

pin =
1

1 + kinτ̃
, τ̃ = τ + δrb/ktp. (26)

Next we calculate the typical time it takes for n∗p motors to aggregate into a peloton. Let
∆x be the typical distance that the proto-peloton back end moves between two motors joining
(supplementary Figure 2). From the geometry of typical times and distances sketched in the
kymograph of supplementary Figure 2, we can write
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∆t kip = ∆x

〈g〉inip =
ktp

kip−ktp
(1/kin + δm/kip + ∆t) ktp = ∆x+ δm + 〈g〉inip

 ⇒ ∆x =
1

kinτ Λ
− δrb, (27)

where Λ is given in Equation (25). In the last step above, we used the fact that we are con-
sidering the slow initiation regime, kin � kip, ktp. Proto-pelotons grow as more and more motor
catch up, and again ignoring correlations, the final size n∗p of a proto peloton is geometrically
distributed as

P (n∗p) = pin(1− pin)
np*−1 ⇒ 〈n∗p〉 = 1/pin. (28)

Here the first factor in the probability function accounts for the probability of having a roadblock
in a gap, and the following factors accounts for the probability of having no roadblocks in the
preceding n∗p − 1 gaps. The probability that a proto-peloton is still growing at position x, or
equivalently the probability that n∗p > x/∆x, is then given by

Pgrow(x) =
∑

np*>x/∆x

pin(1− pin)
n∗
p−1

= (1− pin)
x/∆x

. (29)

Letting 〈np(x)〉 be the size of the average proto-peloton at a distance from the initiation site,
we can now write down the discrete evolution equation 〈np(x+ ∆x)〉 = 〈np(x)〉+ 1 ·Pgrow, with
〈np(0)〉 = 1, giving

〈np(x)〉 =

x/∆x∑
n=1

(1− pin)
n

+ 〈np(0)〉 = 〈n∗p〉 −
[
〈n∗p〉 − 1

]
e−x/xp , xp = −∆x/ ln

(
1− pin

)
. (30)

Though strictly only true for x in multiples of ∆x, we take the above equation to be valid for
any position x ≥ 0.

The macroscopic effects of peloton formation

We now turn to calculate how the gradual growth of the proto pelotons impacts the motor
density and velocity. The motor number density ρm(x) at any position x is defined as the
fraction of time that a site is occupied by (say) the front of a motor. The proto-peloton size at
position x tells us that the fraction 〈np(x)〉pin motors take an average time 1/ktp to step, while
the rest take 1/kip, giving the average stepping time

τm(x) =
〈np(x)〉pin

ktp
+

1− 〈np(x)〉pin

kip
, τm(0) = τ in

m . (31)

The total time T between the seeding of two pelotons (supplementary Figure 2) averages over
peloton sizes to

〈T 〉 = 〈n∗p〉
(
1/kin + δmτ

in
m

)
. (32)

The fraction of time that the track is occupied by motors at position x is then

ρm =
〈np〉τm(x)

〈T 〉
=

τm(x)

1/kin + δmτ0
m

= ρ∗m + (ρin
m − ρ∗m)e−x/xp (33)

where the ρ∗m denotes the motor density where the proto pelotons have fully formed. The average
motor hopping rate can similarly be written as
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km(x) = pin〈np(x)〉ktp + (1− pin〈np(x)〉)kip = k∗ + (kin − k∗)e−x/xp . (34)

Though true for the TASEP, note that here the average motor hopping rate (Equation 34) is
typically not the same as the average velocity v(x) = τ−1

m (x) in our system. With the velocity
defined this way, it satisfies the standard relation J = ρm(x)v(x) where J = 〈np〉∗/〈T〉 is the
flux of motors.

In supplementary Figure 2 we indicate the times and positions where there typically are
roadblocks in pink. Moving away from the initiation site, the fraction of time a site is occupied
by roadblocks grows because motors that have not yet caught up with a proto peloton move faster
than the proto pelotons themselves. The moving front of equilibrating roadblocks (intersection
of white and pink region in supplementary Figure 2) is typically offset with respect to the last
motor of the peloton by a distance δrb (see dashed square in supplementary Figure 2). Taking
the offset δrb into account, Equation 29 implies that a fractionPgrow(x+δrb) of the proto pelotons
is still evolving when the front of equilibrating roadblocks is at position x. The increase of the
average time a site at position x (see supplementary Figure 2) is occupied by a roadblock then
grows with distance as

trb(x+ ∆x) = trb(x) + (1/ktp − 1/kip) ∆xPgrow(x+ δrb), trb(0) = 1/kin. (35)

This expression can be summed in the same manner as we previously summed to solve for
〈np(x)〉 in Equation 30, yielding

trb(x) = [1/ktp − 1/kip] ∆xe−δrb/xp
(
〈n∗p〉 − 1

) (
1− e−x/xp

)
+ 1/kin. (36)

The total fraction of time a site is covered by roadblocks is now

ρrb(x) = ρeq
rb

trb(x)

〈T 〉
= ρ∗rb − (ρin

rb − ρ∗rb)e−x/xp . (37)

Relative changes are often easier to measure experimentally than absolute changes, therefore
we here also give the relative changes in velocity and density at the beginning, and compared
to well after the pelotons are formed

ρ∗m − ρin
m

ρ∗m
= (1− pin)

(
1− ktp

kip

)
,

v∗ − vin

v∗
= −(1− pin)

(
kip

ktp
− 1

)
,

ρ∗rb − ρin
rb

ρ∗rb
=

1

1 + pin

1−pin
∆x+δm

∆x · eδrb/xp
.

(38)

To have an appreciable motor density and velocity evolution, we need only the typical peloton
to have a size of a few motors. In the limit of low initiation rates, the above can be written as

ρ∗m − ρin
m

ρ∗m
=

kinτ̃

1 + kinτ̃

(
1− ktp

kip

)
,

v∗ − vin

v∗
= − kinτ̃

1 + kinτ̃

(
kip

ktp
− 1

)
,

ρ∗rb − ρin
rb

ρ∗rb
=

kinτ̃

eδrb/xp + kinτ̃
.

(39)

We see that relative changes along the track grow in magnitude with the initiation rate, but
that the effect saturates around kin ≈ 1/τ̃ for motor-density and velocity changes, while the
roadblock density saturates later, around kin ≈ eδrb/xp/τ̃ . Interestingly, we see that the total
shift in motor density and velocity along the track is set solely by the ratio of motor stepping
rates with and without roadblocks ahead.
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Figure 2: A schematic kymograph of the system with open boundary conditions. Motors
(grey) initiate on the left side of the lattice, with an initiation site free of roadblocks. As motors travel
into the system, their speed depends on if there is a roadblock (pink) ahead of them. With a roadblock
ahead, the motor speed is ktp, while without roadblock ahead it is kip. The typical time that a roadblock
at position x is bound before being evicted by the next peloton is given by trb(x). The right figure is a
magnification of the region defining ∆x, which is the typical distance a motor travels to catch up with
the proto peloton since the last motor caught up.

7 Bursts from terminating pelotons

The peloton-forming dynamics of our model will manifest as burst of motor activity if viewed
from a specific position (for example the transcription-termination site). Using the average
velocity of the system, we can translate the average gap-sizes to average time gaps between
motors arrivals

τip =
〈g〉ip + δm

v
, τtp =

〈g〉tp + δm

v
. (40)

Letting ktr be the rate of reaction when the process is in the on state, koff be the rate at
which the system transitions to the off state, and kon be the rate at which the system transitions
back to the on state, we can relate our first-principles model to the phenomenological two-state
model traditionally used to describe transcriptional bursts (Figure 4 C in the main text) [4].
As both models generate double exponentials, we relate them to each other by equating the
time constant and the corresponding relative probabilistic weight. Since we are interested in
describing transcriptional bursts, we here consider the limit where the two-state model gives
clearly separated bursts, kon � koff + ktr. In this limit we have, to leading order in kon,
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p =
koff

koff + ktr
, τip =

1

koff + ktr
, and τtp =

1

kon

(
1 +

koff

ktr

)
. (41)

The relations in Equation 41 can be inverted to give

ktr =
1− p
τip

, koff =
p

τip
, and kon =

1

(1− p)τtp
. (42)

For the bulk we can in principle calculate the corresponding two-state model using Equation
6, though this state is likely never reached. The physiologically more interesting situation is
just after the initial pelotons have fully formed. The relative probability of a gap being between
pelotons is then (see Equation 26)

p = pin =
1

1 + kinτ̃
. (43)

Once the initial pelotons have formed beyond xp, we know that the average velocity is ktp, and
we have

〈g〉∗ip =
ktp

kip − ktp
⇒ τ∗ip =

1

kip − ktp
+
δm

ktp
. (44)

The trans-peloton gaps can be written as (see supplementary Figure 2)

〈T 〉 = τ∗tp + τ∗ip (〈np〉∗ − 1)

⇒ τ∗tp = 〈T 〉 − τ∗ipkinτ̃ =

(
1

kin
+
δm

ktp

)
+

(
1

kin
− 1

kip − ktp

)
kinτ̃

(45)

Combining Equations 42-45 we have

ktr =
kinτ̃

1 + kinτ̃

1

τ∗ip
, koff =

1

1 + kinτ̃

1

τ∗ip
, and kon =

1 + kinτ̃

kinτ̃

1

τ∗tp
. (46)

In the main text we are interested in the case where motors are large and the initiation rate
is low compared to motor stepping rates. In this limit we have

ktr =
kinτ̃

1 + kinτ̃

ktp

δm
, koff =

1

1 + kinτ̃

ktp

δm
, and kon =

1

τ̃ + kinτ̃
1+kinτ̃

δm
ktp

≈ 1

τ̃
. (47)

Here the approximate relation should be valid in the case of transcription through nucleosomes as
here the roadblock are substantially larger than the motors, and τ̃ is consequently substantially
larger than δm/ktp.

8 Monte Carlo Simulations

We validate our heuristic arguments using a random-sequential-update Monte Carlo scheme with
fixed time step dt to simulate our model. During a Monte Carlo step on a lattice of size L + 1
there are L + 1 possible events: all the motors on the lattice can make a step forward, bound
roadblocks can unbind, roadblocks in solution can bind to an empty lattice site, and a motor
can bind at the start of the lattice. The time step is chosen small enough that the probability of
any event occurring with rate k in a time dt can be approximated as kdt. In our simulation kip

is the fastest rate, and we choose kipdt = 0.1. We verified that our results are robust towards
changes in dt. Without roadblocks, the time to equilibration for periodic systems scales with the
system size as L3/2 [1]. With roadblocks, the time to equilibration is expected to be larger due
to the slow peloton dynamics. For the simulations with periodic boundary conditions we waited
L2/dt iterations for the system to reach steady state and let simulations run a total amount

10



of 10L2/dt iterations, and checked that the peloton size did not change for longer equilibration
times. The velocities presented in supplementary Figure 1 and Figure 5 in the main text are
calculated by averaging over the instantaneous hopping rates of the motors.
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