Supplementary Information

References

- 1. Overgaard, M., Borch, J., and Gerdes, K. (2009) RelB and RelE of Escherichia coli Form a Tight Complex That Represses Transcription via the Ribbon–Helix–Helix Motif in RelB. J Mol Biol, **394**(2), 183–196.
- 2. Maisonneuve, E., Castro-Camargo, M., and Gerdes, K. (2013) (p) ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. *Cell*, **154**(5), 1140–1150.
- 3. Li, G.-W., Burkhardt, D., Gross, C., and Weissman, J. S. (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. *Cell*, **157**(3), 624–635.
- 4. Cataudella, I., Sneppen, K., Gerdes, K., and Mitarai, N. (2013) Conditional cooperativity of toxin-antitoxin regulation can mediate bistability between growth and dormancy. *PLoS Comput Biol*, **9**(8), e1003174.

1 Supplementary Tables

Parameter	Meaning	Value	Remark
K _o	Dissociation constant be-	$3 \ \mu m^{-3}$	Assumed. This parameter is insensitive to persister
	tween A_2T and promoter		properties (Fig. S7).
β_T	Maximal reduction of	20	Assumed. This parameter is insensitive to persister
	toxin production by free		properties (Fig. S7).
	toxins		
β_A	Maximal reduction of an-	10	Experimental measurements gave $\beta_A/\beta_T \approx 0.5$ (Table
	titoxin production by free		I).
	toxins		
β_0	Maximal growth reduc-	200	Assumed. This parameter is insensitive to persister
	tion by free toxins	2	properties (Fig. S7).
K_t	Association constant be-	$3 \ \mu m^3$	Ref. [1] measured that the dissociation constant is
	tween A_2 and T , and be-		0.33nM. Here we use that $1nM$ approximately corre-
	tween A_2T and T		sponds to 1 molecule per μm^3 . This parameter is insen-
		4 1	sitive to persister properties (Fig. S7).
$d_{A,low}$	Degradation rate of anti-	$2.9 * 10^{-4} s^{-1}$	The half life of antitoxins in low (p)ppGpp level is ap-
	toxins with low (p)ppGpp		proximately 40 min.
	level	x 0 10-1 -1	
$d_{A,high}$	Degradation rate of	$5.8 * 10^{-4} s^{-1}$	The half life of antitoxins in high (p)ppGpp level is ap-
	antitoxins with high		proximately 20 min (fitted to the RelB measurement in
	(p)ppGpp level	0.0 10-5 -1	Ref. [2]).
$\frac{d_T}{D}$	Degradation rate of toxins	$\frac{3.9 \times 10^{-3} s^{-1}}{200}$	Assume that the half life of toxins is 300 min.
D	Michaelis-Menten con-	$200 \ \mu m^{-3}$	Assumed. This parameter is insensitive to persister
	Dilution note of colle	$7.9 \pm 10 - 4_{0} - 1$	The doubling time of colla with low (n)nnCnn lovel
10	Dilution rate of cens	1.8 * 10 - 5 -	in a doubling time of cens with low (p)ppGpp level is assumed to be 40 min. So we have $\Gamma_{\rm e}/(1 + 1)$
			Is assumed to be 40 mm. So we have $10/(1 + 2)$
			$\beta_0 \sum_i [I_f^{\gamma'}] / (\sum_i [I_f^{\gamma'}] + D)) = \ln(2)/2400s^{-1}$. Under
			high (p)ppGpp level, we assume that cells do not grow,
	Maximal production rate	$12 \mu m^{-3} e^{-1}$	Equation for antitoxing is in the steady states with low.
O_A	of antitoxin dimers	$12\mu m$ s	(n)ppCpp level
σπ	Maximal production rate	$2.1 \mu m^{-3} s^{-1}$	Equation for toxins is in the steady states with
01	of toxins	2.1µm 0	low(p)ppGpp levels
$[A]_{0}$	Steady state level of anti-	$200 \ \mu m^{-3}$	Assumed
[2]]0	toxins with low (p)ppGpp	200 µm	rissumed.
	level		
$[T]_0$	Steady state level of toxins	$59 \ \mu m^{-3}$	We choose the ratio of production rates to be $A: T = 6$:
[]0	with low (p)ppGpp level	/	1 based on ribosome profiling data [3]. The degradation
			rate of antitoxin is $1/(40min) + d_A$ and the rate of toxin
			is $1/(40min) + d_T$. So the ratio of degradation rates is
			$A: T = (1/(40min) + d_A)/(1/(40min) + d_T) \approx 1.76.$
			Therefore, the steady state level satisfies that $[A]_0$:
			$[T]_0 \approx 3.4:1.$
r_+	Transition rate of	$2.9 * 10^{-8} s^{-1}$	Fitted
·	(p)ppGpp from low		
	level to high level		
r_{-}	Transition rate of	$2.9 * 10^{-5} s^{-1}$	Fitted
	(p)ppGpp from high		
	level to low level		

 Table S1. Parameter values in the model

2 Supplementary Figures

Figure S1. Schematic description of stochastic transition from dormancy to growth following bistability-based mechanism. If molecular noises induce one or few TA systems to a temporarily high-antitoxin-low-toxin level (step 1), cellular growth remains repressed as the other TA systems keep producing free toxin proteins. This slow growth rate may drive the switched TA systems back to dormancy state since toxins are long-lived and are sensitive to cell dilution while antitoxins are not [4] (step 2). Therefore, a successful transition requires a simultaneous switching of all TA systems to the growth state (step 3-4).

Figure S2. The effect of RelE expression on the growth of SC34 cells. SC34 cells containing the pSEM3187 plasmid were grown at 37°C in LB zeocin (70 μ g/ml) medium to OD₆₀₀ ~ 0.1 in a FLUOstar Omega Microplate Reader (BMG Labtech) before IPTG was added to the cultures (0 time) at different concentrations.

Figure S3. Steady states and nullclines of the model for coupled TA systems without (p)ppGpp fluctuation (related to Fig. 3) The steady states (black cross) and nullclines (blue for d[A]/dt = 0 and red for d[T]/dt = 0) are computed by assuming that all TA systems share the same concentrations. *n* represents the number of TA systems.

Figure S4. Steady states and nullclines of the model for 10 coupled TA systems with (p)ppGpp fluctuation (related to Table S1). The figures are produced as described in Fig. S3.

Figure S5. Sample simulation trajectory of the model with 10 coupled TA systems (related to Fig. 4a)

Figure S6. Sensitive parameters of the model for coupled TA systems with (p)ppGpp fluctuation (related to Table S1) We implement the model with parameter values listed in Table S1 and modulate the value of the parameter indicated in the figure. We simulate the model and produce the dependency of the amount of accumulated free toxins (left) and waking up times (right) on the duration of (p)ppGpp fluctuation following the same procedure for Fig. 5. Blue dots: parameter value reduces by 1.25 folds; red dots: parameter value is not changed; yellow dots: parameter value increases by 1.25 folds. (a) Change in the ratio of production rates (σ_A/σ_T). We keep the value of σ_T and change the value of σ_A accordingly. (b) Change in the degradation rates of antitoxins under low (p)ppGpp levels ($d_{A,low}$). We keep the value of $d_{A,high}/d_{A,low}$ unchanged. (c) Change in the effect of (p)ppGpp on antitoxin degradation rates ($d_{A,high}/d_{A,low}$). We keep the value of $d_{A,low}$ and change $d_{A,high}$ accordingly. (d) Change in the degradation rate of toxins (d_T). (e) Change in the translation inhibition on antitoxins (β_A). (f) Change in the value of dilution rate (Γ_0).

Figure S7. Insensitive parameters of the model for coupled TA systems with (p)ppGpp fluctuation (related to Table S1). We follow the same procedure as described in Fig. S6 caption. (a) Change in the dissociation constant between DNA and trimers A_2T (K_o). (b) Change in the translation inhibition on toxins (β_T). We keep the values of the ratios β_A/β_T and β_0/β_T and change the value of β_T accordingly. (c) Change in the translation inhibition on cellular growth (β_0). (d) Change in the association constant between antitoxins and toxins (K_T). (e) Change in the Michaelis-Menten constant for toxins' activity (D).

3. Sequences of the plasmid constructs

pSEM3187

pMB1 origin rop lacl zeocin^R $rrnBT_1T_2$ synthetic promoter with a lac operator Ribosome binding site and relE ORF Stop codon Start codon TAAATCAAAA GAATAGCCCG AGATAGGGTT GAGTGTTGTT CCAGTTTGGA ACAAGAGTCC 60 ACTATTAAAG AACGTGGACT CCAACGTCAA AGGGCGAAAA ACCGTCTATC AGGGCGATGG 120 CCCACTACGT GAACCATCAC CCAAATCAAG TTTTTTGGGG TCGAGGTGCC GTAAAGCACT 180 AAATCGGAAC CCTAAAGGGA GCCCCCGATT TAGAGCTTGA CGGGGAAAGC CGGCGAACGT 240 300 GGCGAGAAAG GAAGGGAAGA AAGCGAAAGG AGCGGGGCGCT AGGGCGCTGG CAAGTGTAGC GGTCACGCTG CGCGTAACCA CCACACCCGC CGCGCTTAAT GCGCCGCTAC AGGGCGCGTA 360 AAAGGATCTA GGTGAAGATC CTTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT 420 TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT TTTTGTGATG CTCGTCAGGG GGGCCGGAGCC TATGGAAAAAA CGCCAGCAAC GCGGCCTTTT 1080 TACGGTTCCT GGCCTTTTGC TGGCCTTTTG CTCACATGTT CTTTCCTGCG TTATCCCCTG 1140

ATTCTGTGGA TAACCGTATT ACCGCCTTTG AGTGAGCTGA TACCGCTCGC CGCAGCCGAA 1200 CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCTATGGT GCACTCTCAG TACAATCTGC 1260 TCTGATGCCG CATAGTTAAG CCAGTATACA CTCCGCTATC GCTACGTGAC TGGGTCATGG 1320 CTGCGCCCCG ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG 1380 CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTG**TCA**G AGGTTTTCAC 1440 CGTCATCACC GAAACGCGCG AGGCAGCTGC GGTAAAGCTC ATCAGCGTGG TCGTGCAGCG 1500 ATTCACAGAT GTCTGCCTGT TCATCCGCGT CCAGCTCGTT GAGTTTCTCC AGAAGCGTTA 1560 ATGTCTGGCT TCTGATAAAG CGGGCCATGT TAAGGGCGGT TTTTTCCTGT TTGGT**CAC**TG 1620 ATGCCTCCGT GTAAGGGGGA TTTCTGTTCA TGGGGGTAAT GATACCGATG AAACGAGAGA 1680 GGATGCTCAC GATACGGGTT ACTGATGATG AACATGCCCG GTTACTGGAA CGTTGTGAGG 1740 GTAAACAACT GGCGGTATGG ATGCGGCGGG ACCAGAGAAA AATCACTCAG GGTCAATGCC 1800 AGCCGAACGC CAGCAAGACG TAGCCCAGCG CGTCGGCCGC CATGCCGGCG ATAATGGCCT 1860 GCTTCTCGCC GAAACGTTTG GTGGCGGGAC CAGTGACGAA GGCTTGAGCG AGGGCGTGCA 1920 AGATTCCGAA TACCGCAAGC GACAGGCCGA TCATCGTCGC GCTCCAGCGA AAGCGGTCCT 1980 CGCCGAAAAT GACCCAGAGC GCTGCCGGCA CCTGTCCTAC GAGTTGCATG ATAAAGAAGA 2040 CAGTCATAAG TGCGGCGACG ATAGTCATGC CCCGCGCCCA CCGGAAGGAG CTGACTGGGT 2100 TGAAGGCTCT CAAGGGCATC GGTCGAGATC CCGGTGCCTA ATGAGTGAGC TAACTTACAT 2160 TAATTGCGTT GCGC**TCA**CTG CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT 2220 AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCCAG GGTGGTTTTT 2280 CTTTTCACCA GTGAGACGGG CAACAGCTGA TTGCCCTTCA CCGCCTGGCC CTGAGAGAGT 2340 TGCAGCAAGC GGTCCACGCT GGTTTGCCCC AGCAGGCGAA AATCCTGTTT GATGGTGGTT 2400 AACGGCGGGA TATAACATGA GCTGTCTTCG GTATCGTCGT ATCCCACTAC CGAGATATCC 2460 GCACCAACGC GCAGCCCGGA CTCGGTAATG GCGCGCATTG CGCCCAGCGC CATCTGATCG 2520 TTGGCAACCA GCATCGCAGT GGGAACGATG CCCTCATTCA GCATTTGCAT GGTTTGTTGA 2580 AAACCGGACA TGGCACTCCA GTCGCCTTCC CGTTCCGCTA TCGGCTGAAT TTGATTGCGA 2640 GTGAGATATT TATGCCAGCC AGCCAGACGC AGACGCGCCG AGACAGAACT TAATGGGCCC 2700 GCTAACAGCG CGATTTGCTG GTGACCCAAT GCGACCAGAT GCTCCACGCC CAGTCGCGTA 2760 CCGTCTTCAT GGGAGAAAAT AATACTGTTG ATGGGTGTCT GGTCAGAGAC ATCAAGAAAT 2820 AACGCCGGAA CATTAGTGCA GGCAGCTTCC ACAGCAATGG CATCCTGGTC ATCCAGCGGA 2880

TAGTTAATGA	TCAGCCCACT	GACGCGTTGC	GCGAGAAGAT	TGTGCACCGC	CGCTTTACAG	2940
GCTTCGACGC	CGCTTCGTTC	TACCATCGAC	ACCACCACGC	TGGCACCCAG	TTGATCGGCG	3000
CGAGATTTAA	TCGCCGCGAC	AATTTGCGAC	GGCGCGTGCA	GGGCCAGACT	GGAGGTGGCA	3060
ACGCCAATCA	GCAACGACTG	TTTGCCCGCC	AGTTGTTGTG	CCACGCGGTT	GGGAATGTAA	3120
TTCAGCTCCG	CCATCGCCGC	TTCCACTTTT	TCCCGCGTTT	TCGCAGAAAC	GTGGCTGGCC	3180
TGGTTCACCA	CGCGGGAAAC	GGTCTGATAA	GAGACACCGG	CATACTCTGC	GACATCGTAT	3240
AACGTTACTG	GTTTCACATT	CACCACCCTG	AATTGACTCT	CTTCCGGGCG	CTATCATGCC	3300
ATACCGCGAA	AGGTTTTGCG	CCATTCGATG	<mark>GTGTC</mark> CGGGA	TCTCGACGCT	CTCCCTTATG	3360
CGACTCCTGC	ATTAGGAAGC	AGCCCAGTAG	TAGGTTGAGG	CCGTTGAGCA	CCGCCGCCGC	3420
AAGGAATGGT	GCATGCCGGC	ATGCCGCCCT	TTCGTCTTCA	AGAATTAATT	CCCAATTCCC	3480
CAGGCATCAA	ATAAAACGAA	AGGCTCAGTC	GAAAGACTGG	GCCTTTCGTT	TTATCTGTTG	3540
TTTGTCGGTG	AACGCTCTCC	TGAGTAGGAC	AAATCCGCCG	GGAGCGGATT	TGAACGTTGC	3600
GAAGCAACGG	CCCGGAGGGT	GGCGGGCAGG	ACGCCCGCCA	TAAACTGCCA	GGAATTAATT	3660
CCCCAGGCAT	САААТААААС	GAAAGGCTCA	GTCGAAAGAC	TGGGCCTTTC	GTTTTATCTG	3720
TTGTTTGTCG	GTGAACGCTC	TCCTGAGTAG	GACAAATCCG	CCGGGAGCGG	ATTTGAACGT	3780
TGCGAAGCAA	CGGCCCGGAG	GGTGGCGGGC	AGGACGCCCG	CCATAAACTG	CCAGGAATTA	3840
ATTCCCCAGG	САТСАААТАА	AACGAAAGGC	TCAGTCGAAA	GACTGGGCCT	TTCGTTTTAT	3900
CTGTTGTTTG	TCGGTGAACG	CTCTCCTGAG	TAGGACAAAT	CCGCCGGGAG	CGGATTTGAA	3960
CGTTGCGAAG	CAACGGCCCG	GAGGGTGGCG	GGCAGGACGC	CCGCCATAAA	CTGCCAGGAA	4020
TTAATTCCCC	AGGCATCAAA	ТААААСGААА	GGCTCAGTCG	AAAGACTGGG	CCTTTCGTTT	4080
TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT	GAGTAGGACA	AATCCGCCGG	GAGCGGATTT	4140
GAACGTTGCG	AAGCAACGGC	CCGGAGGGTG	GCGGGCAGGA	CGCCCGCCAT	AAACTGCCAG	4200
GAATTAATTC	CCCAGGCATC	AAATAAAACG	AAAGGCTCAG	TCGAAAGACT	GGGCCTTTCG	4260
TTTTATCTGT	TGTTTGTCGG	TGAACGCTCT	CCTGAGTAGG	ACAAATCCGC	CGGGAGCGGA	4320
TTTGAACGTT	GCGAAGCAAC	GGCCCGGAGG	GTGGCGGGCA	GGACGCCCGC	CATAAACTGC	4380
CAGGAATTGG	GGATCGGAAT	TAATTCCCGG	TTTAAACCGG	GGATCTCGAT	CCCGCGAAAT	4440
TAATACGACT	CACTATAGGG	GAATTGTGAG	CGGATAACAA	TTCCCC	GA CCTTCCCG	4500
TTTCGCTCAA	GTTAGTATAA	AAAAGCAGGC	TTCAACGGAG	CTCGTCGACC	CGGGTACAAT	4560
TCTCAGTCCT	GCTCCTCGGC	CACGAAGTGC	ACGCAGTTGC	CGGCCGGGTC	GCGCAGGGCG	4620

AACTCCCGCC CCCACGGCTG CTCGCCGATC TCGGTCATGG CCGGCCCGGA GGCGTCCCGG 4680 AAGTTCGTGG ACACGACCTC CGACCACTCG GCGTACAGCT CGTCCAGGCC GCGCACCCAC 4740 ACCCAGGCCA GGGTGTTGTC CGGCACCACC TGGTCCTGGA CCGCGCTGAT GAACAGGGTC 4800 ACGTCGTCCC GGACCACACC GGCGAAGTCG TCCTCCACGA AGTCCCGGGA GAACCCGAGC 4860 CGGTCGGTCC AGAACTCGAC CGCTCCGGCG ACGTCGCGCG CGGTGAGCAC CGGAACGGCA 4920 CTGGTCAACT TGGCCATGGT TTAGTTCCTC ACCTTGTCGT ATTATACTAT GCCGATATAC 4980 TATGCCGATG ATTAATTGTC AACACGTGCT CGAGTACCAA GCTTCTGTTT TGGCGGATGA GCAGAAGGCC ATCCTGACGG ATGGCCTTTT TGCGTTTGAA TTCTCACTCA TTAGGCACCC 5460 CAGGCTTTAC ACTTTATGCT TCCGGCTCGT ATAATGTGTG GAATTGTGAG CGCTCACAAT 5520 TT*CTGCAG*AG CAGGCCCTT**A TG**GCGTATTT TCTGGATTTT GACGAGCGGG CACTAAAGGA 5580 ATGGCGAAAG CTGGGCTCGA CGGTACGTGA ACAGTTGAAA AAGAAGCTGG TTGAAGTACT 5640 TGAGTCACCC CGGATTGAAG CAAACAAGCT CCGTGGTATG CCTGATTGTT ACAAGATTAA 5700 GCTCCGGTCT TCAGGCTATC GCCTTGTATA CCAGGTTATA GACGAGAAAG TTGTCGTTTT 5760 CGTGATTTCT GTTGGGAAAA GAGAACGCTC GGAAGTATAT AGCGAGGCGG TCAAACGCAT 5820 TCTCTGA**TAA GGATCC**GCCT ACCTTTCACG AGTTGCGCAG TTTGTCTGCA AGACTCTATG 5880 AGAAGCAGAT AAGCGATAAG TTTGCTCAAC ATCTTCTCGG GCATAAGTCG GACACCATGG 5940 CATCACAGTA TCGTGATGAC AGAGGCAGGG AGTGGGACAA AATTGAAATC AAATAATGAT 6000 TTTATTTTGA CTGATAGTGA CCTGTTCGTT GCAACAAATT GATAAGCAAT GCTTTTTTAT 6060 AATGCCAACT TAGTATAAAA AAGCTGAACG AGAAACGTAA AATGATATAA ATATCAATAT 6120 ATTAAATTAG ATTTTGCATA AAAAACAGAC TACATAATAC TGTAAAACAC AACATATGCA 6180 GTCACTATGA ATCAACTACT TAGATGGTAT TAGTGACCTG TAACAGAGCA TTAGCGCAAA 6240 GCTTGGCACT GGCCGTCGTT TTACAACGTC GTGACTGGGA AAACCCTGGC GTTACCCAAC 6300 TTAATCGCCT TGCAGCACAT CCCCCTTTCG CCAG 6334

Sequence of the mCherry-YFP fragment in pSEM4063

GGTACC AAAA	AGATCCTGAC	ATTTGTAATT	ACAAGAGGTG	TAAGAC <mark>ATG</mark> G	TGAGCAAGGG	60
CGAGGAGGAT	AACATGGCCA	TCATCAAGGA	GTTCATGCGC	TTCAAGGTGC	ACATGGAGGG	120
CTCCGTGAAC	GGCCACGAGT	TCGAGATCGA	GGGCGAGGGC	GAGGGCCGCC	CCTACGAGGG	180
CACCCAGACC	GCCAAGCTGA	AGGTGACCAA	GGGTGGCCCC	CTGCCCTTCG	CCTGGGACAT	240
CCTGTCCCCT	CAGTTCATGT	ACGGCTCCAA	GGCCTACGTG	AAGCACCCCG	CCGACATCCC	300
CGACTACTTG	AAGCTGTCCT	TCCCCGAGGG	CTTCAAGTGG	GAGCGCGTGA	TGAACTTCGA	360
GGACGGCGGC	GTGGTGACCG	TGACCCAGGA	CTCCTCCCTG	CAGGACGGCG	AGTTCATCTA	420
CAAGGTGAAG	CTGCGCGGCA	CCAACTTCCC	CTCCGACGGC	CCCGTAATGC	AGAAGAAGAC	480
CATGGGCTGG	GAGGCCTCCT	CCGAGCGGAT	GTACCCCGAG	GACGGCGCCC	TGAAGGGCGA	540
GATCAAGCAG	AGGCTGAAGC	TGAAGGACGG	CGGCCACTAC	GACGCTGAGG	TCAAGACCAC	600
CTACAAGGCC	AAGAAGCCCG	TGCAGCTGCC	CGGCGCCTAC	AATGTCAACA	TCAAGTTGGA	660
CATCACCTCC	CACAACGAGG	ACTACACCAT	CGTGGAACAG	TACGAACGCG	CCGAGGGCCG	720
CCACTCCACC	GGCGGCATGG	ACGAGCTGTA	CAAG TCTAGA	CCAGTACGTG	TGACGCTGGA	780
TGAACTC TGA	TGGTCTCGAG	CAGCGGCATG	GTTAGTAAAG	GAGAAGAACT	TTTCACTGGA	840
GTTGTCCCAA	TTTTAGTTGA	ACTAGATGGC	GACGTGAACG	GTCATAAGTT	CAGTGTCTCC	900
GGCGAAGGTG	AGGGTGATGC	AACGTACGGT	AAGTTAACTT	TGAAGTTAAT	ATGTACAACC	960
GGCAAGCTGC	CTGTTCCCTG	GCCTACCCTG	GTGACAACGT	TAGGTTATGG	GTTGATGTGC	1020
TTTGCTAGAT	ACCCAGATCA	CATGAAAAGG	CATGACTTCT	TTAAATCTGC	AATGCCAGAA	1080
GGTTACGTCC	AAGAACGTAC	TATTTTCTTT	AAAGATGACG	GTAATTATAA	AACTAGGGCT	1140
GAAGTTAAAT	TCGAAGGTGA	CACACTTGTA	AATCGAATAG	AGTTAAAGGG	GATTGATTTC	1200
AAAGAGGATG	GTAATATTCT	AGGCCATAAA	CTTGAATATA	ACTATAATTC	ACACAACGTT	1260
TACATTACCG	CCGACAAGCA	GAAGAATGGA	ATCAAAGCCA	ATTTTAAGAT	TAGACACAAT	1320
ATTGAGGATG	GTGGAGTACA	GCTTGCTGAT	CATTACCAAC	AAAATACCCC	GATCGGTGAT	1380
GGACCAGTTT	TGCTACCCGA	TAACCATTAT	CTGTCCTATC	AAAGCAAATT	GTCAAAAGAT	1440
CCTAACGAAA	AAAGAGACCA	CATGGTACTC	TTGGAATTTG	TAACAGCTGC	TGGGATTACA	1500
CATGGCATGG	ATGAACTATA	CAAAGGTTCT	GGAACCGCA T	AA TAA <i>GTCGA</i>	С	1551

11

Sequence of the mCherry-YFP fragment in pSEM4049

GGTACCAAAA AGATCTTGAC ATTTGTAATT ACAAGAGGTG TAAGACAAGGG TGAGCAAGGG

120

//

			CAAG TCTAGA	AGCGTCTCGA	GCAGCGGCAT	780
GGTTAGTAAA	GGAGAAGAAC	TTTTCACTGG	AGTTGTCCCA	ATTTTAGTTG	AACTAGATGG	840
CGACGTGAAC	GGTCATAAGT	TCAGTGTCTC	CGGCGAAGGT	GAGGGTGATG	CAACGTACGG	900
TAAGTTAACT	TTGAAGTTAA	TATGTACAAC	CGGCAAGCTG	CCTGTTCCCT	GGCCTACCCT	960
GGTGACAACG	TTAGGTTATG	GGTTGATGTG	CTTTGCTAGA	TACCCAGATC	ACATGAAAAG	1020
GCATGACTTC	TTTAAATCTG	CAATGCCAGA	AGGTTACGTC	CAAGAACGTA	CTATTTTCTT	1080
TAAAGATGAC	GGTAATTATA	AAACTAGGGC	TGAAGTTAAA	TTCGAAGGTG	ACACACTTGT	1140
AAATCGAATA	GAGTTAAAGG	GGATTGATTT	CAAAGAGGAT	GGTAATATTC	TAGGCCATAA	1200
ACTTGAATAT	AACTATAATT	CACACAACGT	TTACATTACC	GCCGACAAGC	AGAAGAATGG	1260
AATCAAAGCC	AATTTTAAGA	TTAGACACAA	TATTGAGGAT	GGTGGAGTAC	AGCTTGCTGA	1320
TCATTACCAA	CAAAATACCC	CGATCGGTGA	TGGACCAGTT	TTGCTACCCG	ATAACCATTA	1380
TCTGTCCTAT	CAAAGCAAAT	TGTCAAAAGA	TCCTAACGAA	AAAAGAGACC	ACATGGTACT	1440
CTTGGAATTT	GTAACAGCTG	CTGGGATTAC	ACATGGCATG	GATGAACTAT	ACAAAGGTTC	1500
TGGAACCGCA	TAA TAA GTCG	AC				1522