±

	lohd Salleh ^{1,2*} , Jazmín Ramos-Madrigal ¹ , Fernando Peñaloza ^{3,4} , Shanlin Liu ^{1,5} , Mikkel-Holg
Sinding ^{1,6}	, Riddhi P. Patel ^{3,7} , Renata Martins ³ , Dorina Lenz ³ Jörns Fickel ^{3,8} , Christian Roos ⁹ , Mohd S
Shamsir ² ,	Mohammad Shahfiz Azman ¹⁰ , Burton K. Lim ¹¹ , Stephen J. Rossiter ¹² , Andreas Wilting ³ , M
Thomas F	P. Gilbert ^{1,13*}
*Correspo	ondence: <u>faezah@fbb.utm.my</u> and <u>tgilbert@snm.ku.dk</u>
¹ Centre fo	or GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster
Voldgade	5-7, 1350, Copenhagen, Denmark
² Faculty o	f Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru
Johor, Ma	alaysia
³ Leibniz Ir	nstitute for Zoo and Wildlife Research, Alfred-Kowalke Strasse 17, 10315 Berlin, Germany.
⁴ Undergra	aduate Program on Genomic Sciences, Universidad Nacional Autonoma de Mexico, 62210
Cuernava	ca, Mexico
⁵BGI-She	nzhen, Shenzhen, GuangDong, China
⁶ Natural H	listory Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318, Oslo, Norway
⁷ Freie Uni	iversität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany
⁸ Universit	y of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str 24-25, 14476
Potsdam,	Germany
⁹ Gene Ba	nk of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute
Primate R	Research, Kellnerweg 4, 37077, Göttingen, Germany
¹⁰ Forest E	Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysi
¹¹ Departm	nent of Natural History, Royal Ontario Museum, Toronto, Canada
¹² School o	of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, Lo
E1 4NS, l	Jnited Kingdom
	Iniversity Museum, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Background:

Southeast (SE) Asia is one of the most biodiverse regions in the world and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia's genetic diversity is still poorly characterised. The growing interest in using environmental DNA (eDNA) to assess and monitor SE Asian species, in particular threatened mammals - has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples.

Findings:

Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species.

Conclusion:

Our new database of 52 taxa will strongly enhance the utility of eDNA approaches for monitoring mammals in SE Asia, as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia's threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database.

Keywords:

invertebrate-derived (iDNA), metabarcoding, GenBank, Taxonomic assignment

Data description:

Context

Southeast (SE) Asia is one of the most biodiverse regions in the world, hosting ~20% of mammal species, but is experiencing rapid deforestation for agriculture and development. To assess the ecological consequences of land-use change, there is growing interest in using environmental DNA (eDNA) to monitor mammal populations, particularly threatened taxa that often underpin conservation policies [1–4]. Yet current efforts are hampered by the lack of a reference database of mitochondrial barcodes and complete mitogenome sequences. Currently there are 922 mammalian mitogenomes available in Genbank. Unfortunately most are not tagged by location/origin. Data mining through manual screening of each mitogenomes resulted in 174 terrestrial mammal species which are typical to SE Asia. In this work, 30 novel species are added, contributing to ~17% expansion of the current SE Asia mammal mitogenome database.

DNA extraction

Genomic DNA was extracted from different sample types of 72 small mammals, comprising 52 species, listed in Table 1 and Table 2. DNA from modern tissue and blood samples was isolated using the Qiagen DNeasy extraction kit (Qiagen, Hilden, Germany, [QIAGEN, RRID:SCR_008539]) or Invitek DNA extraction kit (Invitek GmbH, Berlin, Germany), as per standard protocols following the manufacturer's guidelines. Historical samples obtained from the Zoological Museum, Natural History Museum of Denmark, University of Copenhagen (ZM, KU) were treated differently according to type of tissue (Additional file 1a), while at the German Primate Center DNA extraction from museum specimens followed Liedigk et al. (2015) [5] using the Gen-IAL First All tissue kit (Gen-IAL, Troisdorf, Germany).

Data Validation and Quality Control

Mitogenome sequencing, assembly and annotation

Mitogenomes were generated using several approaches. In Copenhagen, author FMS constructed

Illumina shotgun libraries with insert sizes ranging between 50 bp to 400 bp. To construct libraries, DNA was sheared to the target size range using Bioruptor® XL (Diagenode, USA [Diagenode, RRID:SCR_014807]) and converted into an Illumina-compatible sequencing library using the NEBNext E6070 kit (New England Biolabs, UK). The libraries were PCR amplified with index primers and purified using Qiaquick columns (Qiagen, Hilden, Germany) according to the manufacturer's instruction (Additional file 1b). Multiple libraries were combined together into three pools, normalized to 10 nM and sequenced across three lanes of Illumina HiSeq 2500 using SR100bp chemistry. In Berlin and Goettingen, mitogenomes were generated by author PRP and CR using overlapping PCR products using long range PCR (Additional file 1c) followed by library construction and MiSeq sequencing, or Sanger sequencing as described in [6] and [5, 7, 8], respectively. Author RM's mitogenomes were done using methods outlined in [9]. Further details about laboratory methods are described in Additional file 1.

Raw reads for FMS samples were assembled independently by authors FMS and FP using two different approaches, then compared for consistency. Author FMS trimmed the reads for sequencing adapters, low quality stretches and leading/tailing Ns using AdapterRemoval 1.2 (AdapterRemoval, RRID:SCR_011834) [10]. The mitochondrial genome was reconstructed with MITObim v1.8 [11] using the reference mitogenome of the closest species available in GenBank as the seed reference (Additional file 2). In order to obtain the mapping statistics of the samples, we ran PALEOMIX v 1.2.6 [12] with default parameters where reads shorter than 25 bp after trimming were discarded. The trimmed reads were aligned against the newly assembled mitogenome generated by MITObim using Burrows–Wheeler Aligner (BWA) [13]. Alignments showing low-quality scores and PCR duplicates were further removed using the MarkDuplicates program from Picard tools, and reads were locally realigned around small insertions and deletions (indels) to improve overall genome quality using the IndelRealigner tool from the Genome Analysis Toolkit (GATK), (GATK, RRID:SCR_001876)[14]. In contrast, author FP inputted the trimmed reads into mitoMaker [15] which performs a de-novo and reference-based assembly using SOAPdenovoTrans v1.03 (SOAPdenovo-Trans, RRID:SCR_013268) [16] and MITObim v1.7 [11]. Post

assembly, the FMS and FP mitogenomes were manually compared for consistency by FMS to generate the final consensus sequences. These assemblies were automatically annotated using tRNAscan-SE v1.4 (tRNAscan-SE, RRID:SCR_010835) [17] and BLAST v2.2.29 (NCBI BLAST, RRID:SCR_004870) [18] using the mitochondrial genomes found in the NCBI RefSeq (RefSeq, RRID:SCR_003496) [19] as references.

For mitogenome constructed by author RM, Illumina sequence reads were de-multiplexed according to the respective indexes with the Illumina software bcl2fastq v2.17 (Illumina, San Diego, CA, USA) and adapters were clipped from the sequence reads with the software cutadapt v1.3 [20]. Quality trimming was done through a sliding window approach (10 bp; Q20) and all reads shorter than 20 bp were removed from the analyses. Mitogenome references from target or closely related species were used for mapping of the sequencing reads. Aligned reads were de-duplicated using MarkDuplicates from Picardtools v1.106 (Picard, RRID:SCR 006525) (https://github.com/broadinstitute/picard). VariantCalling was carried out using Samtools v1.1 (SAMTOOLS, RRID:SCR 002105)[13] and Bcftools v1.2 (SAMtools/BCFtools, RRID:SCR 005227) [21] For each sample, GATK [14] Variant Calling output files were further filtered to have a minimum read coverage $\geq 3x$, and variants were only called when the

corresponding base was represented by \geq 50%, otherwise this position was "N"-masked.

Numbers of raw reads generated for each samples and mapping statistics for all 72 mitogenome assemblies are shown in Additional file 2. Sanger sequenced mitogenomes were checked with 4Peaks 1.8 (4Peaks, RRID:SCR 000015) [22], assembled with SeaView 4.5.4 [23] and annotated with DOGMA [24]. All mitogenomes were checked manually by eye to identify possible errors caused by insertion and deletions in Tablet [25]. The final mitochondrial genomes have been uploaded to GenBank (accession numbers are provided in Table 1 and Table 2). The details of all new mitogenomes assembled in this work are given in Table 1 and Table 2. Mitogenomes (60 samples) with known localities were geotagged and mapped to display its geographical distribution (Figure 1).

Phylogenetic analysis

All the sequenced mitogenomes were aligned using MAFFT v7.158b (MAFFT, RRID:SCR_011811) [26], using the E-INS-i option (Additional file 3). RAxML v8.0.26 (RAxML, RRID:SCR_006086) [27] was used to perform the phylogenetic analysis with a GTR+GAMMA model of nucleotide substitution. To obtain node support, we used 100 bootstrap pseudo-replicates (Figure 2). The newick file is provided as Additional file 4.

Re-use Potential

We anticipate that the now expanded mitogenome reference dataset for SE Asian mammals will provide benefits for a number of research areas. Firstly it should enhance the power of eDNA and other metabarcoding/barcoding approaches that relate to the identification of SE asian mammals, by conferring the ability to identify more species to the species level. This in turn has practical applications for those monitoring SE Asia's threatened mammal biodiversity, combatting trade in mammal species and so on. Secondly the data will also have relevance to phylogenetic and population studies based on mtDNA data, which will be of use as we investigate the evolutionary history of this biodiversity hotspot.

Availability of supporting data

Raw shotgun data are deposited in the SRA under bioproject number PRJNA361218 and is available in the GigaScience repository, GigaDB [28].

Abbreviations

SE: South East; eDNA: environmental deoxyribonucleic acid; bp: basepair; PCR: polymerase chain reaction; BWA: Burrows–Wheeler Aligner; GATK: Genome Analysis Toolkit; BLAST: Basic Local Alignment Search Tool; NCBI RefSeq: National Center for Biotechnology Information Reference Sequence Database; MAFFT: Multiple Alignment using Fast Fourier Transform ; RAxML: Randomized Axelerated Maximum Likelihood.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was funded by the Malaysian Government (FMS), Lundbeck Foundation grant R52-5062 (MTPG), Leibniz-Association grant SAW-2013-IZW-2 (JF), the German Federal Ministry of Education and Research grant BMBF FKZ: 01LN1301A (AW) and the German Primate Center (CR).

Authors' contributions

FMS, AW, JF and MTPG conceived the project. FMS, MHSS, MSS, MSA, RM, PRP, CR, BKL, and SJR collected the samples and extracted the genomic DNA. FMS, RM, PRP and CR constructed the libraries and did sequencing. FMS, JRM, FP, SL, PRP, RM, DL and CR assembled the mitogenomes and performed mitogenome analysis. FMS, SL, PRP and MTPG wrote the article. All authors discussed the project and data. All authors read and approved the final manuscript.

Acknowledgements

We thank the Danish National High-throughput Sequencing Centre for assistance in generating Illumina data. We also thank the staff of the zoos in Hannover, Copenhagen, Gettorf, Belfast, Bristol, Howletts Wild Animal Park, the staff of the Ludwig-Maximilans-University Munich, the Bavarian State Collection Munich, the National Museums Scotland, Edinburgh, the Natural History Museum Berlin, Naturalis Leiden, and the Zoological Museum, Natural History Museum of Denmark, University of Copenhagen for providing samples for this work. BKL gratefully acknowledges the Indonesian and Malaysian government authorities for issuing scientific permits.

Author details

¹Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark. ²Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia. ³Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke Strasse 17, 10315 Berlin, Germany. ⁴Undergraduate Program on Genomic Sciences, Universidad Nacional Autonoma de Mexico, 62210 Cuernavaca, Mexico. ⁵BGI-Shenzhen, Shenzhen, GuangDong, China. ⁶Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318, Oslo, Norway. ⁷Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany. ⁸University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str 24-25, 14476 Potsdam, Germany. ⁹Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany. ¹⁰Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia. ¹¹Department of Natural History, Royal Ontario Museum, Toronto, Canada. ¹²School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. ¹³NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.

References

- 1. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367
- 2. Lee P-S, Gan HM, Clements GR, Wilson J-J (2016) Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests. Genome 59:1008–1022
- 3. Schnell IB, Sollmann R, Calvignac-Spencer S, Siddall ME, Douglas WY, Wilting A, Gilbert MTP (2015) iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool-prospects, pitfalls and avenues to be developed. Front Zool 12:24
- 4. Schnell IB, Thomsen PF, Wilkinson N, Rasmussen M, Jensen LRD, Willerslev E, Bertelsen MF, Gilbert MTP (2012) Screening mammal biodiversity using DNA from leeches. Curr Biol 22:R262–3
- 5. Liedigk R, Kolleck J, Böker KO, et al (2015) Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics 16:222
- 6. Patel RP, Förster DW, Kitchener AC, et al (2016) Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. Open Science 3:160350
- 7. Roos C, Zinner D, Kubatko LS, et al (2011) Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 11:77
- 8. Liedigk R, Roos C, Brameier M, Zinner D (2014) Mitogenomics of the Old World monkey tribe Papionini. BMC Evol Biol 14:176
- 9. Fortes GG, Paijmans JLA (2015) Analysis of Whole Mitogenomes from Ancient Samples. Methods Mol Biol 1347:179–195
- 10. Lindgreen S (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes 5:337
- 11. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res.
- Schubert M, Ermini L, Der Sarkissian C, et al (2014) Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc 9:1056–1082
- 13. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760
- 14. McKenna A, Hanna M, Banks E, et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
- 15. mitoMaker. https://sourceforge.net/projects/mitomaker/. Accessed 26 May 2017
- 16. Xie Y, Wu G, Tang J, et al (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666
- 17. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

- 18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421
- RefSeq: NCBI Reference Sequence Database. https://www.ncbi.nlm.nih.gov/refseq. Accessed 26 May 2017
- 20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12
- 21. bcftools. https://github.com/samtools/bcftools. Accessed 26 May 2017
- 22. Nucleobytes: software for science. http://nucleobytes.com. Accessed 26 May 2017
- 23. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224
- 24. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255
- 25. Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2012) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform bbs012
- 26. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
- 27. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

28. Salleh FM, Ramos-Madrigal J, Penaloza F, Liu S, Sinding MS, Patel RP, Martins R, Lenz D, Fickel J, Roos C, Shamsir MS, Azman MS, Lim BK, Rossiter SJ, Wilting A, Gilbert MP. Supporting data for "An expanded mammal mitogenome dataset from Southeast Asia" GigaScience Database. 2017. http://dx.doi.org/10.5524/100313

Tables and Figures

- 1. Table 1: List of mitogenomes assembled in this work that supplement pre-existing mitogenome references already available in GenBank
- 2. Table 2: List of mitogenomes assembled in this work that have no previous complete mitogenome reference available in GenBank
- 3. Figure 1: Geographical distribution of mitogenomes assembled in this work (60 mitogenomes with known locality)

4. Figure 2: Phylogenetic tree of mitogenomes assembled in this work

Additional files

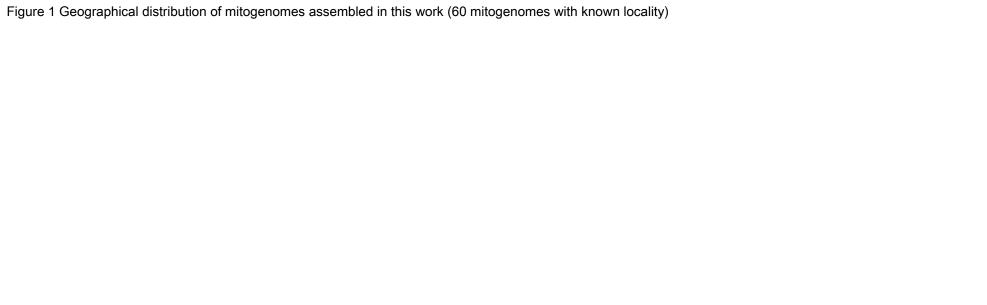
- 1. Additional file 1: DNA extraction of historical samples, library construction and primer information
- 2. Additional file 2: Sample information sheet of mitogenomes assembled in this work
- 3. Additional file 3: Alignment of mitogenomes assembled in this work
- 4. Additional file 4: Newick file for phylogenetic tree

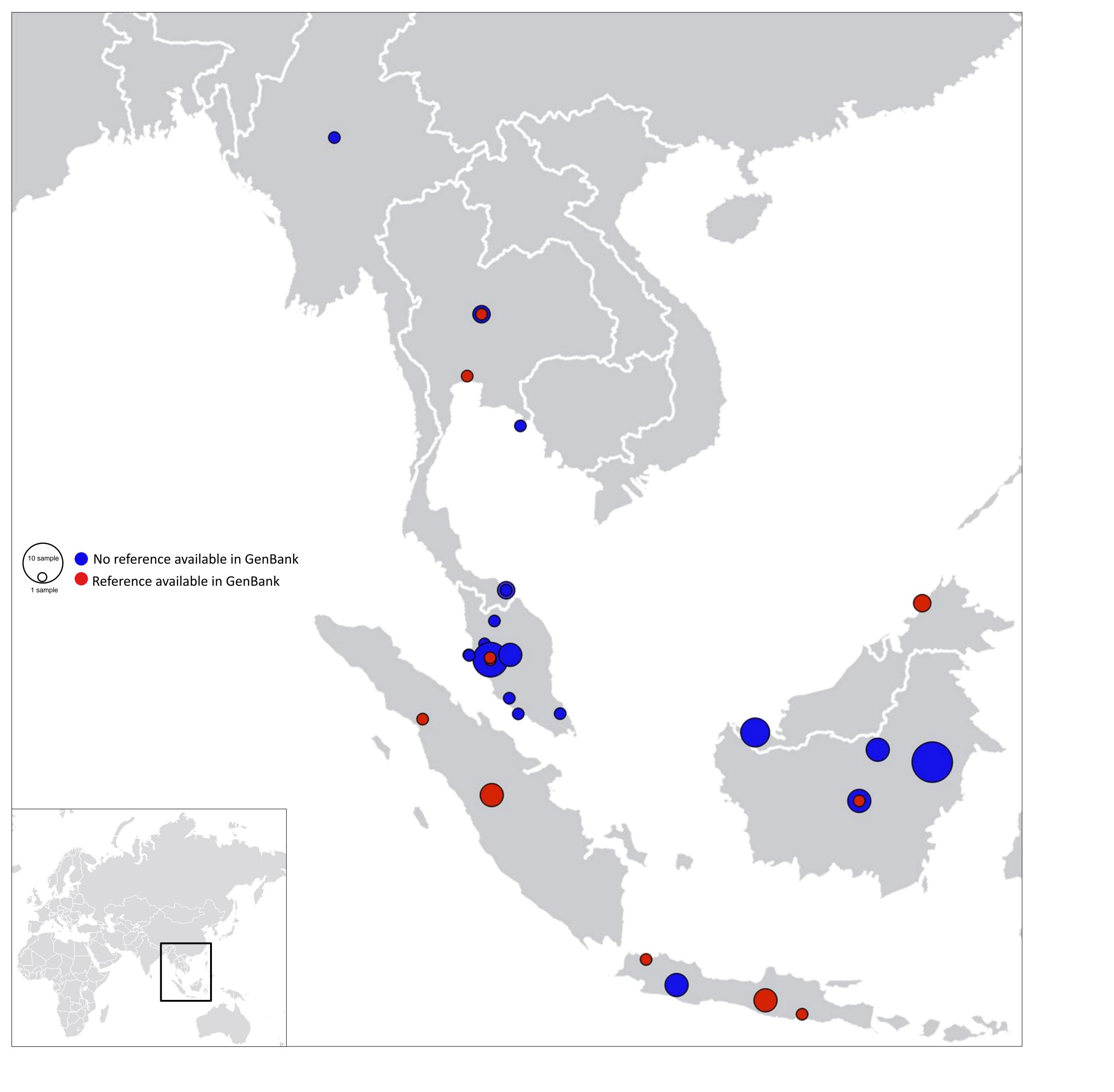
No	GenBank ID	Common name	Genus	Species	Assembly Size	Locality	Source	Sample date of collection	Data by
1	KY117537	Hog deer	Axis	porcinus	16402	CPH Zoo	ZM, KU	21/8/1912	FMS/FP
2	KY117538	Pallas's squirrel	Callosciurus	erythraeus	16656	Bangkok, Thailand	ZM, KU	25/5/1969	FMS/FP
3	KX265095	Bay Cat	Catopuma	badia	16960	Sabah, Malaysia	National Museum Scotland American	20/04/2000	PRP
4	KX224524	Asiatic Golden Cat	Catopuma	temminckii	16,960	Thailand	Museum of National History, New York.	10/10/1927	PRP
5	KY117545	Sumatran Rhino	Dicerorhinus	sumatrensis	16466	Sumatra, Indonesia	Naturalis, Leiden, The Netherlands	1880	RM
6	KY117546	Least pygmy squirrel	Exilisciurus	exilis	16637	Indonesia	ROM	16/06/1993	FMS/FP
7	KY117548	Hose's mongoose	Herpestes	javanicus	16340	Java, Indonesia	ZM, KU	12/3/1947	FMS/FP
8	KY117550	Three-striped ground Squirrel	Lariscus	indsignis	16399	Maybe Malaysia	ZM, KU	unknown	FMS/FP
9	KY117592	Black Crested Macaque	Масаса	nigra	16558	captive	Gettorf Zoo, Germany	18/07/2000	CR
10	KY117593	Northern Pig- tailed Macaque	Macaca	leonina	16554	captive	Ludwig- Maximilans- University Munich, Germany	6/3/1995	CR
11	KY117594	Southern pig- tailed macaque	Macaca	nemestrina	16531	Peninsular Malaysia	National Museum Scotland, Edinburgh, UK	unknown	CR
12	KT288227	Marbled Cat	Pardofelis	marmorata	17218	Sumatra, Indonesia	National Archaeological Museum of the Netherlands, Leiden	30/08/1930	PRP
13	KY117602	Sumatra Surili	Presbytis	melalophos	16558	captive	Howletts Wild Animal Park, UK	23/7/1999	CR
14	KR135743	Flat-headed Cat	Prionailurus	planiceps	17704	Sabah, Malaysia	Sabah wildlife department	25/04/2000	PRP
15	KY117580	Malayan Field Rat	Rattus	tiomanicus	16415	SPF Bidor, Perak, Malaysia	FRIM	12/2/2011	FMS/FP
16	KY117579	Malayan Field Rat	Rattus	tiomanicus	16312	Indonesia	ROM	01/06/1993	FMS/FP
17	KY117581	Malayan Field Rat	Rattus	tiomanicus	16305	Hutan Simpan Chikus, Tapah Perak, Malaysia	FRIM	13/1/2011	FMS/FP
19	KY117582	Black Giant Squirrel	Ratufa	bicolor peninsulae	16600	Bang Nara, Malakka, Thailand	ZM, KU	3/12/1932	FMS/FP

Table 1: List of mitogenomes assembled in this work that supplement pre-existing mitogenome references already available in GenBank

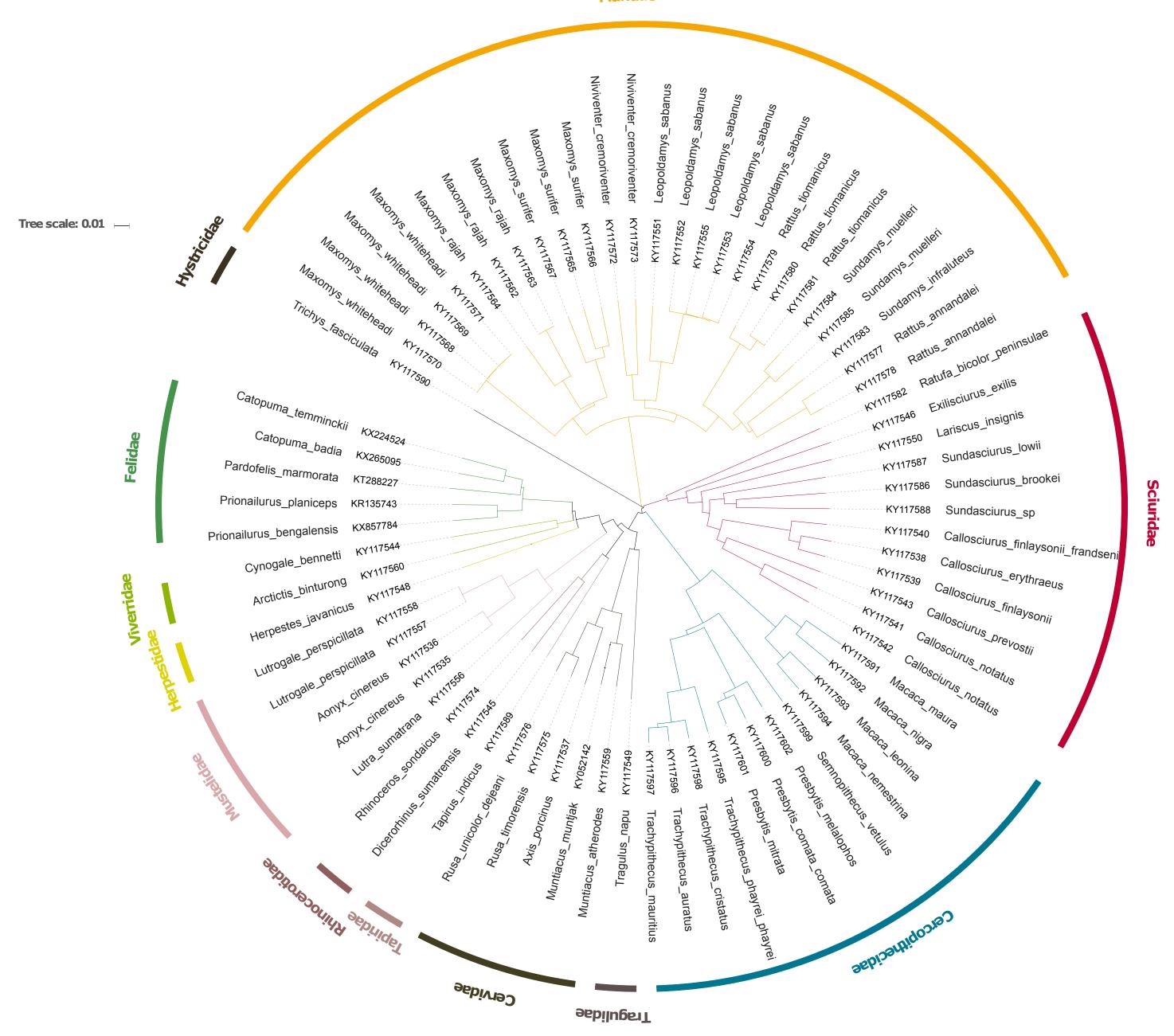
18	KY117574	Javan Rhino	Rhinoceros	sondaicus	16417	Java, Indonesia	Copenhagen Natural History Museum	unknown	RM
20	KY117575	Javan Rusa	Rusa	timorensis	16437	Toeloeng Agoeng, West Java, Indonesia	Naturalis, Leiden, The Netherlands	unknown	RM
21	KY117576	Indian Sambar Deer	Rusa	unicolor dejeani	16437	Mentawai, Indonesia	Naturalis, Leiden, The Netherlands	unknown	RM
22	KY117599	Western Purple-faced Langur	Semnopithecu s	vetulus	16545	captive	Belfast Zoo, UK	9/11/1998	CR
23	KY117589	Malayan Tapir	Tapirus	indicus	16794	captive	Copenhagen Zoo	11/1/2015	FMS/FP
24	KY117598	Silvered Langur	Trachypithecu s	cristatus	16551	North Sumatra, Indonesia	Bavarian State Collection Munich, Germany	1911	CR

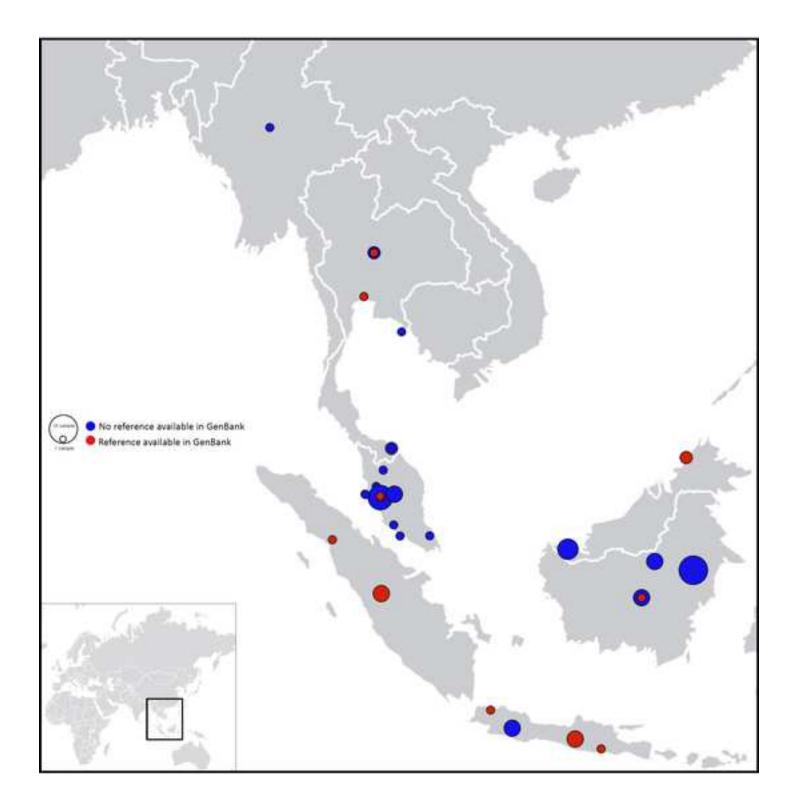
ZM, KU: Zoological Museum, University of Copenhagen; ROM: Royal Ontario Museum; FRIM: Forest Research Institute, Malaysia


No	GenBank ID	Common name	Genus	Species	Assembly Size	Locality	Source	Sample date of collection	Data by
1	KY117536	Asian Small- clawed Otter	Aonyx	cinereus	16153	captive	Copenhagen Zoo	08/08/11	FMS/FP
2	KY117535	Asian Small- clawed Otter	Aonyx	cinereus	16153	Sarawak, Malaysia	British Museum of Natural History, London	25/8/2010	FMS/FP
3	KY117560	Binturong	Arctictis	binturong	17067	unknown	Tierpark, Berlin	29/11/2010	PRP
4	KY117541	Plantain Squirrel	Callosciurus	notatus	16582	Hutan Bidor, Perak, Malaysia	FRIM	11/2/2011	FMS/FP
5	KY117542	Plantain squirrel	Callosciurus	notatus	16599	East Kalimantan, Indonesia	ROM	03/06/1993	FMS/FP
6	KY117543	Prevost's squirrel	Callosciurus	prevostii	16674	East Kalimantan, Indonesia	ROM	15/06/1993	FMS/FP
7	KY117540	Variable squirrel	Callosciurus	finlaysonii frandseni	15747	Koh Chang, Thailand	ZM, KU	14/1/1900	FMS/FP
8	KY117539	Variable squirrel	Callosciurus	finlaysonii	16489	Central Thailand	ZM, KU	2/2/1928	FMS/FP
9	KY117544	Sunda Otter Civet	Cynogale	bennetti	15784	Borneo	British Museum of Natural History, London	25/8/2010	FMS/FP
10	KY117549	Greater Mouse deer	Tragulus	пари	15778	Bang Nara, Thailand	ZM, KU	11/10/1931	FMS/FP
11	KY117552	Long-tailed Giant Rat	Leopaldamys	sabanus	15973	G. Telapak Buruk, Negeri Sembilan, Malaysia	FRIM	24/2/2010	FMS/FP
12	KY117553	Long-tailed Giant Rat	Leopaldamys	sabanus	15972	Teluk Segadas, P. Pangkor, Perak, Malaysia	FRIM	19/3/2010	FMS/FP
13	KY117554	Long-tailed Giant Rat	Leopaldamys	sabanus	15974	Hutan Simpan Temengor,Ger ik Perak, Malaysia	FRIM	23/1/2014	FMS/FP
14	KY117555	Long-tailed Giant Rat	Leopaldamys	sabanus	15972	Hutan Simpan Lenggor, Kluang, Johor, Malaysia	FRIM	19/2/2014	FMS/FP
15	KY117551	Long-tailed giant rat	Leopaldamys	sabanus	15974	Malaysia	ROM	28/05/1993	FMS/FP
16	KY117556	Hairy-nosed otter	Lutra	sumatrana	16580	Bang Nara, Thailand	ZM, KU	1/4/1939	FMS/FP
17	KY117557	Smooth- coated otter	Lutrogale	perspicillata	16042	Melaka, Malaysia	British Museum of Natural History, London	25/8/2010	FMS/FP


Table 2: List of mitogenomes assembled in this work that have no previous complete mitogenome reference available in GenBank

18	KY117558	Smooth- coated otter	Lutrogale	perspicillata	16041	Bang Nara, Thailand	ZM, KU	24/1/1933	FMS/FP
19	KY117591	Moor macaque	Macaca	maura	16563	captive	Hannover Zoo, Germany	20/8/1998	CR
20	KY117564	Rajah/Brown Spiny Rat	Maxomys	rajah	16200	Indonesia	ROM	06/06/1993	FMS/FP
21	KY117562	Rajah/Brown Spiny Rat	Maxomys	rajah	16296	Teluk Segadas, P. Pangkor, Perak, Malaysia	FRIM	19/3/2010	FMS/FP
22	KY117563	Rajah/Brown Spiny Rat	Maxomys	rajah	16296	Pasir Bogak, P.Pangkor, Perak, Malaysia	FRIM	18/3/2010	FMS/FP
23	KY117567	Red Spiny Rat	Maxomys	surifer	16286	50 ha, Pasoh, Negeri Sembilan, Malaysia	FRIM	12/6/2008	FMS/FP
24	KY117566	Red Spiny Rat	Maxomys	surifer	16290	Indonesia	ROM	21/05/1993	FMS/FP
25	KY117565	Red Spiny Rat	Maxomys	surifer	16286	Malaysia	ROM	17/05/2013	FMS/FP
26	KY117570	Whitehead's Spiny Rat	Maxomys	whiteheadi	16316	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	FMS/FP
27	KY117571	Whitehead's Spiny Rat	Maxomys	whiteheadi	16316	Keruing Trail, FRIM, Kepong, Selangor, Malaysia	FRIM	13/3/2013	FMS/FP
28	KY117568	Whitehead's Spiny Rat	Maxomys	whiteheadi	16287	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	FMS/FP
29	KY117569	Whitehead's Spiny Rat	Maxomys	whiteheadi	16429	Bukit Tapah, Perak, Malaysia	FRIM	23/3/2011	FMS/FP
30	KY052142	Indian muntjac	Muntiacus	muntjak	16354	West Java, Indonesia	Vienna NHM	1858	RM
31	KY117559	Bornean yellow muntjac	Muntiacus	atherodes	16354	Koemai, West Borneo	Bonn NHM	1938	RM
32	KY117573	Dark-tailed Tree Rat	Niviventer	cremoriventer	16322	Track 5 (G.Inas), Kedah, Malaysia	FRIM	5/11/2009	FMS/FP
33	KY117572	Dark-tailed tree rat	Niviventer	cremoriventer	16234	Malaysia	ROM	17/05/2013	FMS/FP
34	KY117600	Grizzled Leaf Monkey	Presbytis	comata comata	16551	captive	Howletts Wild Animal Park, UK Howletts Wild	23/12/1999	CR
35	KY117601	Mitred Leaf Monkey	Presbytis	mitrata	16555	captive	Howletts Wild Animal Park, UK American	12/11/1998	CR
36	KX857784	Leopard cat	Prionailurus	bengalensis	16989	Thailand	Museum of National History, New York.	25/02/1924	PRP


37	KY117578	Annandale's Sundaic Rat	Rattus	annandalei	16297	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	FMS/FP
38	KY117577	Annandale's Sundaic Rat	Rattus	annandalei	16301	Hutan Simpan Bikam, Perak, Malaysia	FRIM	11/2/2011	FMS/FP
39	KY117583	Mountain giant Sunda rat	Sundamys	infraluteus	16297	Malaysia	ROM	18/05/2013	FMS/FP
40	KY117585	Müller's Giant Sunda Rat	Sundamys	meulleri	16326	Track 1 (G.Inas), Kedah, Malaysia	FRIM	5/11/2009	FMS/FP
41	KY117584	Müller's giant Sunda rat	Sundamys	meulleri	16304	Malaysia	ROM	01/06/2013	FMS/FP
42	KY117586	Brooke's squirrel	Sundasciurus	brookei	16417	East Kalimantan, Indonesia	ROM	13/06/1993	FMS/FP
43	KY117587	Low's squirrel	Sundasciurus	lowii	16307	East Kalimantan, Indonesia	ROM	06/06/1993	FMS/FP
44	KY117588	Low's squirrel	Sundasciurus	sp	16458	East Kalimantan, Indonesia	ROM	21/06/1993	FMS/FP
45	KY117595	Phayre's Langur	Trachypithecu s	phayrei phayrei	16548	South West Myanmar	Natural History Museum Berlin, Germany	unknown	CR
46	KY117596	East Javan Ebony Langur	Trachypithecu s	auratus	16552	captive	Bristol Zoo, UK	26/10/2010	CR
47	KY117597	West Javan Ebony Langur	Trachypithecu s	mauritius	16554	West Java , Indonesia	Naturalis Leiden; Netherlands	unknown	CR
48	KY117590	Long-tailed porcupine	Trichys	fasciculata	16328	Borneo	ZM, KU	5/10/1894	FMS/FP


ZM, KU: Zoological Museum, University of Copenhagen; ROM: Royal Ontario Museum; FRIM: Forest Research Institute, Malaysia; NHM: Natural History Museum

Click here to download Figure 4 Figure 1.pdf 🛓

README file salleh et al

Click here to access/download Supplementary Material READMEsallehetal.txt Data Information salleh et al

Click here to access/download Supplementary Material 1DatainformationSallehetal.docx Additional file 2 Sample information sheet of 72 SE asian small mammal mitogenomes

Click here to access/download Supplementary Material 5 Additional file 2.xlsx Additional file 3 Alignment of mitogenomes assembled in this work

Click here to access/download Supplementary Material 5 Additional file 3.fa Additional file 4 newick

Click here to access/download Supplementary Material 5 Additional file 4 newick.txt 5Additional File 1 CR 150617

Click here to access/download Supplementary Material 5Additional file 1_CR 150617.docx

1 Reviewer reports:

- 2 **Reviewer #2**: Douglas Yu
- 3 This paper should be published, and the mitogenomes will come in handy. I did, however,
- 4 check genbank for the assemblies, but they are mostly not available (the two Catopuma
- 5 assemblies are available but under a separate paper). are the assemblies under publication
- 6 embargo? I have no other comments. Yes, the data is currently still under publication embargo.
- 7

8 Reviewer #1: John-James Wilson

- 9 Thank you for this opportunity to review a GigaScience Data Note.
- 10 This is an important dataset (as the authors nicely explain) with a vast range of potential
- 11 usages. In particular, this dataset could be an invaluable resource to the application of mammal
- 12 monitoring via eDNA and iDNA approaches in Southeast Asia, which is an applied research
- 13 area in which my lab has done some preliminary work [Genome, 2016, 59(11): 1008-1022,
- 14 10.1139/gen-2015-0193].
- 15 The data all appears to be readily available and has been generated following standard
- 16 protocols from a variety of collections and labs from around the world. As such, this Data Note
- 17 represents an impressive collaboration. Given that this is largely novel data, any discrepancies
- 18 in terms of species identifications etc., will only become apparent as more similar data
- 19 accumulates, and through incorporation of this data into future analyses. Therefore the release
- 20 of this data is commendable.
- 21

24

Consequently, my comments are restricted to minor issues regarding the context of the dataand the presentation of the Data Note.

25 Abstract

- 26 The title and abstract highlight Southeast Asia, but samples were obtained from localities as
- 27 geographically widespread as Sri Lanka (South Asia) and Taiwan (East Asia). While these
- samples may represent species also found in Southeast Asia (?), it is possible they could be
- 29 quite divergent (in their mitochondrial sequences) from conspecifics from Southeast Asia
- 30 proper. In any case, it would be good to justify how the selection of samples obtained for
- 31 mitogenome sequencing was done, if the authors want to retain the emphasis on this
- 32 geographic region.
- 33

34 We have removed the three samples below, now making the total mitogenomes 72.

35

No	ID	Voucher	Genebank ID	Genus	Species	Locality
43	MRE	20805.a	KY117561	Muntiacus	reevesi	Shin-Yi, Taiwan
17	54	CN2322	KY117547	Herpestes	hosei	Ceylon
45	MVA	91131	KY052092	Muntiacus	vaginalis	Gangtok, South Sikkim, India

36

39 40	- Mitochondrion barcodes or mitochondrial barcodes? Corrected to mitochondrial barcodes
41	- The phase "we have contributed to this need" is a bit confusing. A better phrase may be "we
42 43	have partially addressed this need".corrected
44	- It may be clearer to say the 32 species had no previous mitogenome available rather than
45 46	have no current mitogenome available. corrected
47	- It would be good to say how mammal species from SEA now have mitogenomes available.
48	What percentage do the 32 novel mitogenomes from this study contribute?
49	Currently there are 922 mammalian mitogenomes available in Genbank. Unfortunately most are
50	not tagged by location/origin. Data mining through manual screening of each mitogenomes
51	resulted in 174 terrestrial mammal species which are typical to SE Asia. In this work, 30 novel
52	species are added, contributing to ~17% expansion of the current SE Asia mammal
53	mitogenome database. You can view the full list in the link below:
54	https://docs.google.com/spreadsheets/d/1t3pkxCMKbogQjX5YfLGW1waDaD9NL1_eMYzI5CdF
55	oJo/edit#gid=611706729
56	Use we there we are the Malaysia is a low second without the horse discussion of a second is a first we which a second second
57 50	- I'm not sure why Malaysia is a keyword given the broad range of countries from which samples
58 59	were obtained? removed
59 60	Data description
61	-The context is a bit brief, but may be adequate for a Data Note?
62	The context is a bit blief, but may be adequate for a Data Note?
63	-Could GPS coordinates be given in table 1 and 2? I would find this more useful than the map.
64	The GPS locations are given in Additional file 2. We decided not to add them in Tables 1 and 2 because
65	most samples, especially museum specimens don't have their exact location documented (e.g Sumatra).
66	The GPS presents a rough location with accuracy around 100 km. Thus, we thought the map would be
67	better to show the mitogenome distribution in this work.
68	
69 70	-In the tables I suggest not to italicise the vernacular English name, to avoid confusion with
70 71	scientific names. corrected
72	Scientific names. confected
73	-In the tables, in the assembly size column, sometimes a comma is used and other times not.
74	corrected
75	
76	-Museum is miss-spelled in the table footers and in other places in the tables. corrected
77	
78	-In my experience West Malaysia is most commonly referred to as Peninsular Malaysia. It would
79	be good to include states and provinces in the localities if known. Also, it would be good to be
80	consistent and always put the country name i.e. Sumatra, Indonesia. Besides, a strange spelling
81	is used for Malacca/Melaka. corrected
82	

83	-Central Siam is present-day Thailand? Ceylon is Sri Lanka? In general it would be good to
84	convert all country/state/city names to their currently used forms. The specimen/museum label
85	form of the locality could be given in another column in the table or in parentheses if necessary.
86	corrected
87	
88	
89	-For the DNA extraction protocols (which are given very briefly) it would be good to state that
90	these are standard protocols- that they were performed following the manufacturer's guidelines
91	or following given references etc. I know reference are given in a few cases, but not all.
92	corrected
93	
94	-I'm not sure what the phylogenetic analysis contributes to this Data Note.
95	It shows a clearer taxonomical order distribution of mitogenomes presented in this work.
96	
97	
98	
99	
100	
101	