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S1 Supplementary Notes

S1.1 Performance comparisons between the DeBooster models with different
feature encoding schemes

We added two more computational experiments to investigate the individual contributions
of the new feature vector and the deep boosting model to our final prediction. In the first
experiment, we used the same feature vector but switched to a traditional Adaboost model to
make prediction (denoted as “Adaboost”). In the second experiment, we dropped the word
order feature encoding scheme but used the same deep boosting method to predict binding sites
(denoted as “Fewer-feature”). The results of these two computational experiments are shown in
Table S1 in which the prediction results of both original DeBooster model and previous DBN
model are also shown for comparisons. In these two experiments, both “Adaboost” and “Fewer-
feature” models achieved similar performance to that of the previous DBN method, but did not
perform as well as DeBooster. Therefore, both the deep boosting method and the new feature
vector significantly contribute the final excellent prediction results of DeBooster.

Next, to investigate whether the performance of DeBooster can be improved if the structural
features were also added, we first predicted the secondary structures from the RNA sequence and
then used the bag-of-word models with the word lengths of 1, 2 and 3 to encode the structural
features. We then used the deep boosting model to train from both sequence and structural
features (i.e., the combination of both original sequence features and new structural features).
We found that adding the structural features did not improve greatly the performance (Table
S1). Thus, we chose to use only the sequence features in our model.

S1.2 Comparison to GraphProt with respect to the generated sequence mo-
tifs

We also compared the sequence logos generated by DeBooster and GraphProt (Fig S4).
The RBPs shown here are the same as the those shown in the GraphProt paper [1]. Since
there may be many different reference motifs that were reported previously in the literature,
to be fair, here we chose the same literature sources as in the GraphProt paper [2-9]. Overall,
DeBooster seemed to generate better motifs than GraphProt in various cases. For example,
the SFRS1 motif generated by DeBooster has a C at the end of the AG rich sequence, which
was consistent with the literature [2] but was not captured by GraphProt. For TDP43, the
Debooster result showed an obvious UG repeat pattern [5], while the sequence logo generated
by GraphPort seemed to be dominated by U. In addition, the UGUANAUA motif [6] for PUM2

*To whom correspondence should be addressed. Tel: +86 10 62781693; Fax: +86 10 62797331; Email:
zengjy321@tsinghua.edu.cn. TThese authors contributed equally to the paper.



was more recognizable by DeBooster than GraphProt. Furthermore, the ACUAAC motif [6] for
QKI was more clearly shown in the DeBooster result. This comparison further demonstrated
the superiority of DeBooster over GraphProt in detecting the sequence features of RBP binding
sites. Comparisons for the sequence motifs for all the 24 training datasets are also shown in Fig

S5.

S1.3 Comparison to GraphProt with respect to the recovery of false nega-
tives

We also tested the performance of GraphProt on the task of recovering false negatives. Table
S2 showed the AUROC scores of GraphProt when using different combinations of training and
testing datasets. Compared to Fig 3b in the main text, we found obvious that DeBooster
outperformed GraphProt on this task. For each pair of training and testing datasets, all results
predicted by DeBooster showed the AUROC scores larger than 0.9, while only two of the 12
GraphProt results were above 0.9.

S1.4 Comparison to GraphProt with respect to the analysis of the regulation
of mRINA degradation

We also tested GraphProt using the same sequences as in the analysis of the regulation of
mRNA degradation in the main text. Fig S6 shows the test results, which corresponds to Figs
5b-5d in the main text. Here the UTRs were grouped according to the fold changes of their
mRNA half-lives after MOV 10 knock-down. In Fig 5b and Fig S6a, we calculated the fraction of
the UTRs that contained at least one predicted MOV10 binding site in each group. As the fold-
changes of mRNA half-lives decreased, the fraction of UTRs with the predicted MOV10 binding
also decreased in both DeBooster and GraphProt results. In Fig 5c and Fig S6b, we calculated
the sum of positive DeBooster scores or GraphProt margins for each group, and found a similar
decreasing trend in both results. In particular, if we grouped the UTRs according to the sum
of positive DeBooster scores or GraphProt margins, their fold-changes of mRNA half-lives were
also significantly different (Figs 5d and S6¢). Thus, DeBooster and GraphProt both performed
well and yielded similar results on this task.

On the other hand, in practice DeBooster runs much faster than GraphProt on such large-
scale data analysis tasks, as DeBooster takes only sequence features as input while GraphProt
requires the prediction of RNA secondary structure, which is often a time-consuming process. We
also conducted a simple test to compare the running time of both DeBooster and GraphProt. In
particular, we ran both methods to predict 10,000 samples using the same machine. DeBooster
took only 13 seconds to complete the prediction, while GraphProt took about one hour and 11
minutes. Thus, there is still an advantage to use DeBooster to perform a prediction task on
millions of samples.

S1.5 Comparison to GraphProt with respect to the analysis of ADARI1 bind-
ing patterns

We also compared the performance of DeBooster and GraphProt on predicting different
types of ADARI binding sites (Fig S7). Tests were performed using the transcriptome data only
from chromosome 17, as it would take too long for GraphProt to predict all the samples from the
whole human transcriptome. For the binding-editing distances of the new predicted sites, both
DeBooster and GraphProt showed significant difference between the three models, although
GraphProt predictions displayed overall larger binding-editing distances. However, the motifs
generated by GraphProt for the three models seemed alike. The sequence motifs generated by
GraphProt were all homologous GC rich elements (Fig S7c). There may be several reasons to



DBIN DeBooster Adaboost Fewer-feature With structure

ALKBHS5 0.714 0.752 0.718 0.733 0.736
C170RF85 0.820 0.866 0.838 0.848 0.847
C220RF28 0.792 0.840 0.802 0.830 0.828
CAPRIN1 0.834 0.903 0.849 0.873 0.878
AGO2 0.809 0.863 0.819 0.845 0.850
ELAVL1 0.966 0.972 0.960 0.965 0.967
SFRS1 0.931 0.950 0.926 0.937 0.940
HNRNPC  0.962 0.958 0.955 0.951 0.955
TDP43 0.876 0.909 0.889 0.895 0.906
TIA1 0.891 0.902 0.889 0.889 0.900
TIAL1 0.870 0.886 0.863 0.868 0.881
AGO1-4 0.881 0.908 0.867 0.882 0.893
ELAVL1(B) 0.961 0.976 0.961 0.957 0.962
ELAVL1(A) 0.966 0.972 0.961 0.963 0.967
EWSRI1 0.966 0.969 0.961 0.953 0.957
FUS 0.980 0.982 0.978 0.964 0.967
ELAVL1(C) 0.994 0.995 0.993 0.979 0.983
IGF2BP1-3 0.879 0.883 0.857 0.870 0.878
MOV10 0.854 0.918 0.876 0.888 0.894
PUM?2 0.971 0.973 0.960 0.961 0.967
QKI 0.983 0.980 0.975 0.976 0.979
TAF15 0.983 0.988 0.980 0.978 0.983
PTB 0.983 0.943 0.939 0.939 0.940
ZC3H7B 0.796 0.897 0.812 0.852 0.856

Table S1: The area under receiver operator characteristic curve (AUROC) scores of DBN,
DeBooster, Adaboost, DeBooster with fewer features, and DeBooster with structure features,
respectively.

Train & Test datasets ELAVL1 ELAVL1(A) ELAVL1(B) ELAVL1(C)

ELAVL1 - 0.840 0.859 0.905
ELAVL1(A) 0.850 - 0.843 0.892
ELAVL1(B) 0.869 0.843 - 0.905
ELAVL1(C) 0.848 0.831 0.837 -

Table S2: Cross-dataset AUROC scores calculated using GraphProt predictions.



explain why the three GraphProt models showed almost identical motifs: (i)As shown by the
previous validation tests, DeBooster may generate better motifs than GraphProt. So maybe
GraphProt was just not able to learn the difference between the motifs of the three models. (ii)
In the training datasets shown in Fig 2a in the main text, all binding sites were less than 75 nt,
while the ADARI1 binding sites were much longer (average 190 nt). So maybe it was a harder
task for GraphProt to learn the motifs in such long sequences. (iii) Maybe there was actually no
difference between the motifs of the three models, and DeBooster simply learned some bias. We
argued that this was not likely the case, because the binding-editing distances of the predicted
sites recovered by the three models displayed significant difference, which indicated that there
may exist some intrinsically different binding features between these three groups of binding
sites.

S1.6 The influence of mutations inside and outside the RBP binding sites

If a mutation occurs outside the binding region, it should generally have nearly no effect on
RBP binding, as it does not directly change the nucleotide sequence of the binding sites. On
the other hand, in some cases, it may also have some slight influence, because it may cause
the changes of local RNA secondary structure. In our DeBooster model, if a mutation nearby
(but not inside) the binding sites appears in the flanking 150 nt regions, it may also change
the prediction score. Nevertheless, such changes should be generally smaller compared to those
caused by mutations inside the binding sites.

In the validation tests shown in the main text, some RBPs’ binding sites spanned the whole
40 nt window, but others had shorter binding regions that was less than 40 nt. In particular, the
average lengths of binding sites for QKI, FUS, HNRNPC and PTB, whose average lengths of
binding sites were 31 nt, 25 nt, 39 nt and 26 nt, respectively. So several positions near the sides
of the 40 nt windows shown in Fig 9f and Figs S3a, S3d for these RBPs actually corresponded
to the prediction scores of binding sites for those mutations in the flaking regions. The changes
of the prediction scores were actually relatively smaller in these positions, which indicated that
the mutations in the flanking regions generally have less effect on the changes of the prediction
scores.

We further investigated the p values derived from Student’s t tests by examining the differ-
ence between the effects of pathogenic and neutral mutations on the changes of the DeBooster
prediction scores, as in the previous statistical tests that we conducted in Fig 8. Fig S8 shows
the analysis results on those mutations near 5" and 3’ splice sites for seven RBPs. Among these
seven proteins, QKI, FUS and PTB have average lengths of binding sites less than 40 nt. Cor-
respondingly, we also observed obvious decrease in the p values near the edges of binding sites
for these three RBPs. For other four RBPs (i.e., SFRS1, TIA1, TDP43 and HNRNPC) whose
binding sites cover almost the whole 40 nt window (HNRNPC binding sites cover 39 nt), the
p values did not display such a change pattern. All these results indicated that the mutations
occurring outside the RBP binding sites generally have less influence on the predicted binding
scores than those within the binding regions.

S1.7 The distributions of the predicted binding scores in different character-
ized genomic regions across the transcriptome

We performed a comparative analysis of the binding scores predicted by DeBooster for indi-
vidual RBPs in different characterized genomic regions across the transcriptome. In particular,
we used RefSeq [10] and UCSC [11] genome annotations for human release hgl9. For all differ-
ent types of genomic regions, including exons, introns and UTRs, we randomly selected 10,000
records whose lengths were equal to the average length of all RBP binding sites in training
data. For each record of splice sites and stop codons, we also extended the selected sites both



upstream and downstream such that the splice site or stop codon was located at the center of
each sample. After that, we used the trained DeBooster model to infer the prediction scores of
individual selected regions.

The transcriptome-wide analysis showed that the distributions of the prediction scores of
DeBooster over different characterized genomic regions may reflect the functions of individual
RBPs (Fig S1). In particular, C17ORF85 (also known as NCBP3) had high prediction scores
in the 5 UTRs, which was consistent with the known fact that C170RF85 binds to the m7G
caps of mRNAs, and is actively involved in mRNA transport [12]. In addition, EWRS1, FUS
and TAF15 all belong to the FET family and share similar patterns of binding preferences. For
example, their binding sites were enriched near 3’ splice sites, which agreed with the previous
study [13]. Consistent with the previous results derived from PAR-CLIP experiments [6], our
results also showed that both PUM2 and IGF2BP1-3 binding sites were enriched in the 3’ UTRs.
This observation aligned with the previous evidences that PUM2 binds to the 3’ UTRs of mRNAs
and regulates the miRNA-mediated mRNA degradation [14], and the IGF2BP proteins play an
important role in the regulation of mRNA transport [15]. Also, as MOV10 mainly functions as
an RNA helicase regulating mRNA stability [16], it was not surprising to see that its binding
targets were enriched in the 3’ UTRs while depleted in the 5" UTRs. The argonaute proteins
(AGO1-4) have important regulatory functions in miRNA processing and miRNA-mediated
gene silencing [17]. Previous experiments also found that these argonaute proteins bind to splice
sites, especially 3’ splice sites, and actively participate in splicing regulation [18]. These known
functions of the argonaute proteins can also be reflected in our comparative studies, in which
both 3’ UTRs and regions near 3’ splice sites displayed relatively higher prediction scores than
other regions. TDP43 plays an important role in multiple aspects of gene regulation, such as
DNA/RNA binding and splicing [19]. A previous study [20] showed that TDP43 has a relatively
large proportion of intronic binding sites and a small portion of exonic binding targets. Such a
result was also consistent with our observation. ELAVLI1, as called HUR, is a well-known RBP
that increases mRNA stability and regulates alternative splicing [21]. Both previous PAR-CLIP
experiments [22] and our comparative studies conformed that the ELAVL1 binding sites are
significantly enriched in the 3’ UTRs and near the 3’ splice sites. The splicing regulator SFRS1
is a proto-oncogene whose overexpression can be involved in various types of cancers [23]. Our
comparison showed that SFRS1 prefers binding to exons and the 5" UTRs. Probably this
phenomenon can be explained by the known fact that SFRS1 actively binds to exonic splicing
enhancers (ESEs) or exonic splicing silencers (ESSes) [24] and may also play a critical role in
translational regulation [25-27].

Although the major results of our comparative analysis were in agreement with previous
known functions of RBPs, there were a few places that our studies did not exactly match the
previous results derived from CLIP-seq experiments. For example, we observed an enrichment
of TIA1 binding near 3’ splice sites, while the previous iCLIP results [28] showed that a large
fraction of TTA1 targets were located around 5’ splice sites. This discrepancy was probably due
to the noise (e.g., false positives or false negatives) from experimental data. Nevertheless, the
preferred binding regions of individual RBPs identified by DeBooster were mostly consistent
with the previously known evidences or studies about the functions of these RBPs.

S1.8 Sequences of three TDP43 targets described in the main text

CLIP34nt: GAGAGAGCGCGUGCAGAGACUUGGUGGUGCAUAA
CLIP6: UUGUGGUGUGCUUUGCAGGAGGACU
CLIP34nt UG6: GAGAGAGCGCGUGUGUGUGUGUGGUGGUGCAUAA



S1.9 Sequences of both wild-type and mutant 3 UTRs of mRNA ERBB2
described in the main text

WT-URE/WT-331b: GGGCGAAUUGGAGCUCCACCGCGGUGGCGGCCGCUCUAGAA-
GUGCUUUUCUGUUUAGUUUUUACUUUUUUUGUUUUGUUUUUUUAAAGAUGAAAUAA-
AGACCCAGGGGGGGCCCGGUAC

MT-URE/WT-331b: GGGCGAAUUGGAGCUCCACCGCGGUGGCGGCCGCUCUAGAA-
GUGCUUUUCUGUUUAGUUUUUACUGUGUGUGUGGUGUGUGUGUAAAGAUGAAAUAA-
AGACCCAGGGGGGGCCCGGUAC

WT-URE/MT-331b: GGGCGAAUUGGAGCUCCACCGCGGUGGCGGCCGCUCUAGAA-
GUGCUUUUCUGUUUAGUUUUUACUUUUUUUGUUUUGUUUUUUUAAAGAUGAAAUAA-
AGAGCGACGCGGGGCCCGGUAC

MT-URE/MT-331b: GGGCGAAUUGGAGCUCCACCGCGGUGGCGGCCGCUCUAGAA-
GUGCUUUUCUGUUUAGUUUUUACUGUGUGUGUGGUGUGUGUGUAAAGAUGAAAUAA-
AGAGCGACGCGGGGCCCGGUAC



S2 Supplementary Figures
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Figure S1: The distributions of the binding scores predicted by DeBooster in different charac-
terized genomic regions for individual RBPs.
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Figure S2: The changes of RBP binding scores predicted by DeBooster for the pathogenic and
neutral mutations (10,000 each) that were randomly selected from the COSMIC records. *:

p<0.001, Student’s t test.
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Figure S3: Additional examples on the predicted effects on the potentially disease-causing muta-
tions near splice sites. (a, b) The exonic mutations of the HNRNPC binding targets near splice
sites for genes NF1 and BRAF, respectively. (c) The intronic mutation of the TDP43 binding
targets near a splice site for gene TET2. (d) The exonic mutation of the PTB binding site
near a splice site for gene SMAD4. Abbreviation: WT, wild-type; MT, mutant; URE, U-rich

element.



(4]
(5]
(6]
(7]
(8]
(8]
(8]
(9]
(9]
9]
(10]
(1]
(1]

e o<
=1 = 2
<> — X B
=) ey i = =
—> " =T W - 5¢
-—_> = = — e B W
2| = == S — == -
— = =1 X %=
P — et B = =
= —_— P — e —a_ D U¢) g =
- —_— P —> UM — W UA_CAW <3 -
-_=o =XO == = 4 ¢ 5 ) )

:
i
9
:
U
:
U
)
U
U
U
U
U

mGAUA“vUULAc"c,cAGC_UUU

-
|
:
|
;
U

"
U
U
|
|
U

2 O <) O O < <O Do¢ DI DK ,
FEEEEEEEEEEEE
o I i w = =29 wé <) O Am = wé (i
- FEEEEFEEEEEEE
2| O A @ O} ) <t <) < DN Dk DU WAA_
°| &< 0 L S 52 S R S S = = =0 =
o i O
P o Q N W ) x W -

ated by both De-

also shown for comparisons

al RBPs gener

motifs of sever

Booster and GraphProt. The known motifs from the literature are
10

quence

between the se

Figure S4: Comparisons



DeBooster motif ~ GraphProt motif

RBP

DeBooster motif ~ GraphProt motif

RBP

RERRRLG

ALKBH5 g

C170RF85

>t
==

C220RF28 ggésgg.écg

icr2ep1-3 ACACA

i LULLL 1]

ELAVLA

= =2
)| =LDO0
== =
=3 =3
== =23

<T) (& [

= <T

> 3

= o

T <t

<0 <

= Ll

S 2

> & & K
! j— ] 20 —
—_— — =3 =
— =3
—_— =3
w w =04 —
UG&M O K

i wk i

Ul = i

il X )

UK 4 A

K OX 0

Wi s [ )

2

pd Q -
z & < <
T [ [ [

AGA8RAC0

AGO1-4

Figure S5: Motifs generated by both DeBooster and GraphProt for all 24 training datasets.

11



a b GraphProt prediction

C 1o
10 GraphProt prediction 300 GraphProt prediction - g:gEE;
. % = Group 3
17 s 08 P
o 250 | = — Group 4
e 208 g : 3 p<0.001
52 @ o 200 7 06 p<0.001
25 06 E ! 3
22 Zasol 1 T 0
B e ! 2 04
cpo 04 ) o
2= ‘5 2100 I - - E]
® < £ ! ! E o2
0.0 0 — 0.0
N v > X N Vv > > -06 -04 -02 0.0 02 04 06 08 1.0
SN NSNS MO )
I I I I & o) & & Fold change of mMRNA half-life (log2)

Figure S6: Performance of GraphProt on predicting the binding effects of MOV10 on mRNA
degradation. (a) Fractions of 3’ UTRs with the MOV10 binding sites predicted by GraphProt
in the four groups, in which UTRs were evenly separated according to the fold changes of their
mRNA half-lives after MOV10 knock-down. Groups 1, 2, 3 and 4 corresponded to top 25%,
25%-50%, 50%-75% and bottom 25% fold changes, respectively. (b) The sum of the positive
GraphProt margins per UTR for the four groups, which were classified in the same manner as
in (a). *: p value < 0.001, Wilcoxon rank sum test. (c¢) The cumulative distribution on the
fold changes of mRNA half-lives for four groups of UTRs, classified and ranked according to the
GraphProt prediction margins in a descending order. That is, Groups 1, 2, 3 and 4 corresponded
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