Regulation of mitotic recombination between DNA repeats in centromeres

Faria Zafar, Akiko K. Okita, Atsushi T. Onaka, Jie Su, Yasuhiro Katahira, Jun-ichi Nakayama, Tatsuro S. Takahashi, Hisao Masukata and Takuro Nakagawa

Supplementary Data

Supplementary Figure S1. Physical detection of crossover and non-crossover recombinants in the cen1-Sn and ura4-Sn constructs in wild type strains. (A) Crossover and non-crossover recombinants produced in the cen1-Sn construct in wild type (TNF3347). Southern hybridization of restriction fragments was carried out as described in Figure 2. (B) Crossover and non-crossover recombinants produced in the ura4-Sn construct in wild type (TNF3631). Crossovers are shown in blue. Pa, parental; *, a band from cnt3. CO, crossover: NCO, non-crossovers.

Supplementary Figure S2. Physical detection of crossovers and non-crossovers in the ura4-Sn construct in the wild type strain (TNF3650).

Supplementary Figure S3. Physical detection of crossovers and non-crossovers in the cen1-Sn construct in *rad51* Δ , *rad54* Δ , and *rad52* Δ strains (TNF3446, 3452, and 3459, respectively).

<i>rad51</i> ∆ (33ºC) 16 COs in 46	
Ade ⁺ recombinants	
Pa 1 2 3 4 5 6 7 8 9 1011 12 13 14	15 Pa 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Pa
co	
ura4-Sn	
<i>rad54</i> ∆ (33ºC) 19 COs in 46	
Ade⁺ recombinants	
Pa 1 2 3 4 5 6 7 8 9 1011 12 13 14	Pa 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Pa 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Pa
co – – – – – – – – – – – – – – – – – – –	
*	
NCO	
ura4-Sn	
<i>rad52</i> ∆ (33°C) 11 COs in 46	
Ade ⁺ recombinants	
$P_2 = 1 2 3 4 6 7 8 9 11 12 13 14$	Pa15161718102021222324252627282030 5 10 Pa31323334353637383040414243444546Pa

ura4-Sn

Supplementary Figure S4. Physical detection of crossovers and non-crossovers in the ura4-Sn construct in $rad51\Delta$, $rad54\Delta$, and $rad52\Delta$ strains (TNF3635, 3645, and 3643, respectively). *, non-specific band.

Supplementary Figure S5. Physical detection of crossovers and non-crossovers in the cen1-Hp and ura4-Hp constructs in the *rad51* Δ strains (TNF3257 and 3664, respectively).

Supplementary Figure S6. Physical detection of crossovers and non-crossovers in the ura4-Sn(cen) construct in the wild type strain (TNF4684). (A) Illustrated is the ura4-Sn(cen) construct. Positions of centromere repeats, Afel restriction sites, probe3, and the length of Afel restriction fragments are indicated. *ade6B/X* were omitted in the bottom part of the illustration for simplicity. (B) Southern hybridization of Afel restriction fragments using probe3.

Supplementary Figure S7. Physical detection of crossovers and non-crossovers in the cen1-Sn and cen1-Hp constructs in the *clr4* mutants (TNF3734 and 3550, respectively).

Supplementary Figure S8. The effect of the *cnp1-76* mutation on the localization of Cnp1 and histone H3 in centromeres. (A) Illustrated is the cen1-Sn construct. Positions of centromere repeats, *ade6B/X*, and the regions amplified by real-time PCR are shown. The *adl1* gene is present on the arm of chr2. (B) ChIP experiments were carried out using wild type and *cnp1-76* mutant strains (TNF3347 and 3736, respectively) grown at a semipermissive temperature of 30°C. Mean \pm SEM from three independent experiments are shown. ***P* <0.01; ****P* <0.001. *P*-values were determined by the two-tailed student T-test.

Supplementary Figure S9 (continued)

Α

Supplementary Figure S9 (continued)

Supplementary Figure S9 (continued)

Supplementary Figure S9. The effect of mutations of the centromere protein on crossovers and noncrossovers in the cen1-Sn construct. (A) Recombination rates in wild type, *cnp1-76, mis16-53,* and *cnp20-M447T* strains (TNF3347, 3736, 4656, and 5534, respectively) at 30°C as well as those in wild type, *mis18-262, mis14-271, csm1* Δ , and *cnp3* Δ (TNF3347, 4657, 5376, 4139, and 4115, respectively) at 33°C. Lines indicate medians. Rates relative to the wild-type value are indicated at the top of each column. *P*-values were determined by the two-tailed Mann-Whitney test. *****P* <0.0001. (B) Physical detection of crossovers and non-crossovers in the cen1-Sn construct in wild type, *cnp1-76, mis16-53,* and *cnp20-M447T* strains at 30°C; *mis18-262, mis14-271, csm1* Δ , and *cnp3* Δ strains at 33°C; wild type, *mhf1* Δ , *mhf2* Δ , *fml1* Δ , and *mhf1* Δ *fml1* Δ (T1NF3347, 4779, 5082, 5353, and 5128, respectively) at 28°C.

Supplementary Figure S10. The effect of *cnp20-M447T* mutation on the localization of Cnp20, Mhf2, and histone H3 in centromeres. The *cnp20-M447T* mutation changes methionine at 447 of Cnp20/CENP-T to threonine. The *cnp20-M447T* temperature-sensitive mutant was created by the PCR-based mutagenesis of the histone-fold domain of Cnp20. (A) Illustrated are cen1 and cen3. Positions of centromere repeats and the regions that were amplified by real-time PCR are indicated. (B) ChIP experiments were carried out using wild type and *cnp20-MT* mutant strains (TNF35 and 5485, respectively) grown at a semipermissive temperature of 30° C. Mean \pm SEM from three independent experiments are shown. *P*-values were determined by the two-tailed student T-test.

Supplementary Figure S11. Yeast two-hybrid (Y2H) assays to examine Mhf1-Mhf2 dimer and (Mhf1-Mhf2)₂ tetramer formation. Interaction between a pair of fusion proteins that contain a DNA-binding domain or a transcription activation domain allows expression of HIS3 and ADE2 reporter genes. Budding yeast cells expressing a pair of fusion proteins were spotted on selective (-HA) and non-selective (n/s) plates. (A) Y2H interaction was observed between Mhf1-Mhf2 but not between the same two subunits (upper half). Consistent with (Mhf1-Mhf2)₂ tetramer formation, however, Mhf1-Mhf1 interaction was detected when Mhf2 was additionally expressed from the pBridge plasmid (lower half). Similarly, Mhf2-Mhf2 interaction was detected when Mhf1 was additionally expressed. Depicted is the interaction between Mhf1 and Mhf1 that is only detected in the presence of Mhf2. Additional non-fusion proteins expressed from pBridge are shown in parentheses. (B) Effects of mhf1-L78R mutation on the Y2H interaction among Mhf1 and Mhf2. mhf1-LR did not affect Mhf1-Mhf2 interaction (the upper half) but abolished Mhf1-Mhf1 and Mhf2-Mhf2 interaction in the presence of Mhf2 and Mhf1, respectively (lower half). These data suggest that mhf1-L78R specifically impairs (Mhf1-Mhf2)₂ tetramer but not Mhf1-Mhf2 dimer formation.

Α

Supplementary Figure S12 (contiued)

Supplementary Figure S12. Crossovers and non-crossovers in the *mhf1-L78R* and *fml1* Δ mutants. (A) Recombination rates in the cen1-Sn construct in wild type, *mhf1-LR*, and *fml1* Δ strains (TNF3347, 5444, and 5353, respectively) and in the ura4-Sn(cen) construct in wild type, *mhf1-LR*, and *fml1* Δ strains (TNF4684, 5455, and 4806, respectively). (B) Physical detection of crossovers and non-crossovers in the cen1-Sn construct in the *mhf1-LR* and *fml1* Δ mutants. (C) Physical detection of crossovers and non-crossovers in the ura4-Sn(cen) construct in the *mhf1-LR* and *fml1* Δ mutants.

Supplementary Figure S13. A *clr4* deletion increases the recombination rate in centromeres. Recombination rates were determined in the cen1-Sn construct in wild type and *clr4* Δ strains (TNF3347 and 3734, respectively) as well as in the cen1-Hp construct in wild type and *clr4* Δ strains (TNF3144 and 3550, respectively).

Supplementary Figure S14. Crossovers and non-crossovers in the ura4-Sn(cen) construct in the *clr*4 Δ and *fml*1 Δ *clr*4 Δ mutants. (A) Proportions of crossovers in *clr*4 Δ and *clr*4 Δ *fml*1 Δ mutants (TNF5281 and 5464, respectively) are indicated in pie charts. *P*-values were obtained by the two-tailed Fisher's exact test. *n*, sample number; ns, statistically non-significant. (B) Physical detection of crossovers and non-crossovers in the *clr*4 Δ and *clr*4 Δ *fml*1 Δ mutants.

Supplementary Figure S15. Creation of the cen1-Sn construct. *ade6B* and *ade6X* heteroalleles were introduced at each side of imr repeats by a series of transformation. The *uar4*⁺ gene was introduced at the Hi site in imr1L. Then, the *ura4*⁺ gene was replaced by the DNA fragment containing the *ade6B* gene at the Sn site. Similarly, the *uar4*⁺ gene was introduced at the Hi site in imr1R. The *ura4*⁺ gene was then replaced by the DNA fragment containing the *ade6B* gene at the Sn site. Similarly, the *uar4*⁺ gene was introduced at the Hi site in imr1R. The *ura4*⁺ gene was then replaced by the DNA fragment containing the *ade6X* gene at the Sn site. Hi, HindIII; Sn, SnaBI.

The ura4-Sn construct

Supplementary Figure S16. Generation of the ura4-Sn(cen) construct. To introduce the entire cen1 sequence into the ura4 locus, a series of transformations of the ura4-Sn strain (TNF3631) was carried out. The DNA fragments used in the yeast transformation are indicated as blue bars. The right side of cen1 and the $ura4^+$ gene were introduced at the ura4 locus. After removal of the $ura4^+$ gene, the left side of cen1 and the $ura4^+$ gene were introduced at the ura4 locus.

strain genotype	
TNF3347 $h+$, $ade6\Delta$ -D, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$	
TNF3446 $h+$, $ade6\Delta$ -D, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $rad51::kanMX6$	
TNF3452 $h+$, $ade6\Delta$ -D, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $rad54::kanMX6$	
TNF3459 $h+$, $ade6\Delta$ -D, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $rad52::kanMX6$	
TNF3631 $h+$, $ade6\Delta$ -D, $ura4::ade6B$ -cen1(Sn-Sn)-ade6X	
TNF3635 $h+$, $ade6\Delta$ -D, $ura4::ade6B$ -cen1(Sn-Sn)- $ade6X$, $rad51::kanMX6$	
TNF3645 $h+$, $ade6\Delta$ -D, $ura4::ade6B$ -cen1(Sn-Sn)-ade6X, $rad54::kanMX6$	
TNF3643 $h+$, $ade6\Delta$ -D, $ura4::ade6B$ -cen1(Sn-Sn)-ade6X, $rad52::kanMX6$	
TNF3144 $h+$, $ade6\Delta$ -D, $imr1L(Hp:ade6B)$, $imr1R(Hp:ade6X)$	
TNF3257 h+, ade6Δ-D, imr1L(Hp:ade6B), imr1R(Hp:ade6X), rad51::kanMX6	
TNF3286 h+, ade6Δ-D, imr1L(Hp:ade6B), imr1R(Hp:ade6X), rad54::kanMX6	
TNF3277 h+, ade6Δ-D, imr1L(Hp:ade6B), imr1R(Hp:ade6X), rad52::kanMX6	
TNF3650 h+, ade6Δ-D, ura4::ade6B-cen1(Hp-Hp)-ade6X	
TNF3664 h+, ade6Δ-D, ura4::ade6B-cen1(Hp-Hp)-ade6X, rad51::kanMX6	
TNF3670 h+, ade6Δ-D, ura4::ade6B-cen1(Hp-Hp)-ade6X, rad54::kanMX6	
TNF3667 h+, ade6Δ-D, ura4::ade6B-cen1(Hp-Hp)-ade6X, rad52::kanMX6	
TNF3734 h+, ade6Δ-D, imr1L(Sn:ade6B), imr1R(Sn:ade6X), clr4::kanMX6	
TNF3550 h+, ade6Δ-D, imr1L(Hp:ade6B), imr1R(Hp:ade6X), clr4::kanMX6	
TNF4684 h+, ade6Δ-D, ura4+: cen1(imr1L(Sn:ade6B), imr1R(Sn:ade6X))	
TNF5814 h+, ade6Δ-D, ura4+: cen1(imr1L(Sn:ade6B), imr1R(Sn:ade6X)), rad51::kanMX6	
TNF5826 h+, ade6Δ-D, ura4+: cen1(imr1L(Sn:ade6B), imr1R(Sn:ade6X)), rad54::kanMX6	
TNF5829 h+, ade6Δ-D, ura4+: cen1(imr1L(Sn:ade6B), imr1R(Sn:ade6X)), rad52::kanMX6	
TNF3736 $h+$, $ade6\Delta$ -D, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $cnp1-76$	
TNF4656 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $mis16-53$	
TNF5534 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $cnp20-M447T$:: $kanMX6$	
TNF4657 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $mis18-262$	
TNF5376 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $mis14-271$	
TNF4139 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $csm1::kanMX6$	
TNF4115 $h+$, $ade6\Delta-D$, $imr1L(Sn:ade6B)$, $imr1R(Sn:ade6X)$, $cnp3::kanMX6$	
TNF4779 h+, ade6Δ-D, imr1L(Sn:ade6B), imr1R(Sn:ade6X), mhf1::hphMX6	
TNF5082 h+. ade6Δ-D. imr1L(Sn:ade6B). imr1R(Sn:ade6X). mhf2::hphMX6	
TNF5353 h+, ade6Δ-D, imr1L(Sn:ade6B), imr1R(Sn:ade6X), fml1::hphMX6	
TNF5128 h+, ade6Δ-D, imr1L(Sn:ade6B), imr1R(Sn:ade6X), mhf1::hphMX6, fml1::kanMX6	
TNF5444 h-, ade6Δ-D, imr1L(Sn;ade6B), imr1R(Sn;ade6X), mhf1-L78R	
TNF5455 h+. ade6Δ-D. ura4+: cen1(imr1L(Sn:ade6B), imr1R(Sn:ade6X)), mhf1-L78R	
TNF4806 h +, $ade6\Delta$ -D, $ura4$ +; $cen1(imr1L(Sn;ade6B), imr1R(Sn;ade6X)), fml1::hphMX6$	
TNF3896 h- smt0. ade6Δ-D. ura4-D18. leu1-32. ChL (ubcp4::LEU2+::chk1. spcc1322::ura4. ade6+)	
TNE5477 h- smt0, ade6A-D, ura4-D18, leu1-32, Chl. (ubcp4::LEU2+::chk1, spcc1322::ura4, ade6+), mhf1-L	78R
TNE4813 h- smt0, ade6Λ-D, ura4-D18, leu1-32, Chl. (ubcp4::LEU2+::chk1, spcc1322::ura4, ade6+), fml1::hr	ohMX6
TNE5281 h +, $ade6\Lambda$ -D, $ura4+:$ $cen1(imr11 (Sn:ade6B), imr1R(Sn:ade6X)), clr4::hphMX6$	
TNE5464 h + ade6 Λ -D μ ra4+: cen1(imr1) (Sn:ade6B) imr1R(Sn:ade6X)) fml1::hphMX6 clr4::kanMX6	
TNF35 <i>h</i> +	
TNF5485 h+. cnp20-M447T::kanMX6	
TNF3562 $h+$ ade 6Λ -D ade $6B$: ura4+: ade $6X$	
TNE4186 h - ade6 Λ -D μ ra4+: cen1(Sn:ade6R imr1R(Sn:ade6X)) swi6::kanMX6	
TNE4226 h- ade6A-D. ura4: cen1(Sn:ade6B, imr1R(Sn:ade6X)) swi6:kanMX6	

Supplementary Table S2. PCR primers used in this study.			
Primer	Sequence	Real-time PCR target	
ade6-D-D-F	5' -GCTCGTACCGCAGCTTCAAG	ade6	
ade6-D-D-R	5' -GCAACCATACCAGGCAAATGA	ade6	
imr1-in-F	5' -ATTTCCGCTTACAAAATGCCA	imr-in	
imr1-in-R	5' -TTTCTCAACAGCAAAGCCTGAA	imr-in	
imr1-out-F	5' -GATGATATCGAGGCTTTCGGTTT	imr-out	
imr1-out-R	5' -TGTCCCTTCTGTTAAATTCTCGTGTA	imr-out	
cnt1/3-F	5' -CAACCACTGAAAGCGAATCTGTA	cnt1	
cnt1/3-R	5' -ATTCTGTAAGTTTGCTGTGCTTTATATCA	cnt1	
adl1-F	5' -AAATATGGCGATCCAGGAGATG	adl1	
adl1-R	5' -GCTTAACGTGCGCACAGACA	adl1	
cnt2-F	5' -TGCCTCTCCCTTGCCAGTAA	cnt2	
cnt2-R	5' -TCGTTGCGGTGTTTTGAAAA	cnt2	
dg-F	5' -TTGCACTCGGTTTCAGCTAT	dg	
dg-R	5' -TGCTCTGACTTGGCTTGTCT	dg	
imr3-in2	5' -AAGTTTTGATGCTCAACAAATGGC	n.a.	
cnt3R	5' -CGGAATTAGAAAGATTGATGATTTG	n.a.	
cnt3L	5' -AACCGCAACAAACGATTAGC	n.a.	
irc3F-long	5' -CATTAAAAATCAACAAGTCTTGTCCGTC	n.a.	
irc3R-long	5' -ATAGAAACATTTTTGAGTGTTGTTCAGG	n.a.	
cm-ade6	5' -TTGCTCCTCGGCCTCACAATTCAGG	n.a.	
Notl-Nhel-otr1R	5' -GGCGGCCGCTTCCAGCTTTTACATGCTAGCC	n.a.	
irc1R-Blpl	5' -GGGCTAAGCCAGATTAGATTTCGGTGCGGTGC	n.a.	
per1-Spe	5' -CCGTCTTCGTAACTAGTTCGCACTCACTG	n.a.	
otr-Bam	5' -GCAATTGGATCCGTAAATAGGCGAGATC	n.a.	
n.a., not applicable			