Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA

Yingjun Li^{1,2#}, Yan Zhang^{1#}, Jinzhong Lin², Saifu Pan¹, Wenyuan Han², Nan Peng¹, Yun Xiang Liang¹ and Qunxin She^{1,2*}

1 State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China

2 Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark

* To whom correspondence should be addressed. Tel. +45 3532 2013, Fax +45 3532 2128, email: qunxin@bio.ku.dk

These authors contributed equally to this work.

Supplementary data:

The file contains 4 tables and 6 figures.

Strains	Genotype and features	Reference
S. islandicus E233	∆pyrEF	(<u>1</u>)
S. islandicus $\triangle cmr-\beta(\triangle\beta)$	Derived from E233, carrying deletion of IIIB Cmr- β locus including 7 <i>cmr</i> - β genes	(<u>2</u>)
S. islandicus $\Delta Cmr1\alpha(\Delta\beta\Delta1\alpha)$	Derived from $\Delta\beta$ E233, carrying deletion of <i>cmr1</i> α gene	This work
<i>S. islandicus</i> Cmr1α-M1(∆β1α-M1)	Derived from $\Delta\beta$ E233, carrying a double mutation (W58A, F59A) donor DNA of <i>cmr1</i> α	This work
S. islandicus Cmr1 α -M2($\Delta\beta$ 1 α -M2)	Derived from $\Delta\beta$ E233, carrying a quadruple mutation (I52A, G54A, R57A, R61A) donor DNA of <i>cmr1a</i>	This work

Table S1. Sulfolobus strains used in this work

Table S2. F	Plasmids	used in	this	work
-------------	----------	---------	------	------

Plasmids	Genotype and features	Reference
pSeSD1	A Sulfolobus-E. coli shuttle vector with an expression cassette controlled under ParaS-SD promoter	(<u>3</u>)
pSe-Rp	A Sulfolobus artificial mini-CRISPR cloning vector	(<u>4</u>)
pAC-SS1	An artifcial mini-CRISPR locus plasmid derived from pSe-Rp, carrying one spacer matching the protospacer 1 (SS1) of the <i>S. islandicus lacS</i> gene	(<u>4</u>)
pAC10-SS1	An artifcial mini-CRISPR locus plasmid derived from pSe-Rp, carrying an artifcial CRISPR locus with 10 S1 spacer of the <i>S. islandicus lacS</i> gene	(<u>4</u>)
pS10i	An invader plasmid carrying a target sequence of spacer 10 in CRISPR locus 2 in <i>S. islandicus</i>	(5)
pAC-cmr6α- 10His	Derived from pAC, carrying His-tagged Cmr6 and mini-CRISPR locus with 10 S1 spacer	This work
pGE-∆Cmr1α	A genome editing plasmid for deletion of the <i>cmr1a</i> gene in <i>S.islandicus</i>	This work
pGE-1α-M1	A genome editing plasmid for double mutation(W58A, F59A) of the cmr1a gene in S.islandicus	This work
pGE-1α-M2	A genome editing plasmid for quadruple mutation(I52A, G54A, R57A, R61A) of the cmr1 α gene in S.islandicus	This work

Table S3	. Oligonucleo	tides used	in this	work
----------	---------------	------------	---------	------

Oligonucleotide	Sequence (5'-3')
10His-replace-F	GGCCGCACATCATCATCACCACCATCATCATCACCATTAAGCAAATCTTTTTTCCC
10His-replace-R	GGGAAAAAAAAGATTTGCTTAATGGTGATGATGATGGTGGTGATGATGATGTGC
MCS-fwd	ATGCCCCGGGATGTTAAACAAGTTAGG
MCS-rev	GGCACTCGAGAAAAAAAAGATTTTGCTTAATGGTG
∆1α-SpF	AAAGGTAGATTAAGATGGTTCTTAAGGACTGTATATAATAGATT
∆1α-SpR	TAGCAATCTATTATATACAGTCCTTAAGAACCATCTTAATCTAC
∆1α-SOEF	TTGCACTGTTTACTGATAGAAGTAAATCCGTTATAATCCC
∆1α-SOER	GATTATAACGGATTTACTTCTATCAGTAAACAGTGCAAAG
∆1α-SallF	ACGCGTCGACCTCAAGCAAGCCTGGATTAG
∆1α-NotIR	AAGGAAAAAAGCGGCCGCCTTTTCCTACTCCATTGG
∆1α-PCR-F	AACTGCAAATTGCCAAAT
∆1α-PCR-R	GAGGGTCGTGGAAATAGGCT
Q _{Tar} -F	GTACTCGACAATGAACGAAC
Q _{Tar} -R	GAAACGCTCTTTATTCCATC
Q _{Ref} -F	AGCAGGATTACCAACAAGTG
Q _{Ref} -R	CATCCGCAATACCGTTTTC
lacS-RT-R	AGGTCTTTGATAATCTGCATC
1α-M1-SpF	AAAGGTAGATTAAGATGGTTCTTAAGGACTGTATATAATAGATT
1α-M1-SpR	TAGCAATCTATTATATACAGTCCTTAAGAACCATCTTAATCTAC
1α-M1-SOEF	AAGACGCTCTTAATCTACCCACTATTTCTTCTTCGTCAAC
1α-M1-SOER	AGTGGGTAGATTAAGAGCGGCTTTAAGGACTGTATATAAT
1α-M2-SpF	AAAGGTAGATTAAGATGGTTCTTAAGGACTGTATATAATAGATT
1α-M2-SpR	TAGCAATCTATTATATACAGTCCTTAAGAACCATCTTAATCTAC
1α-M2-SOEF	AGCTAAGAACCATGCTAATCTAGCCACTGCTTCTTCTTCGTCAAC
1α-M2-SOER	GCAGTGGCTAGATTAGCATGGTTCTTAGCTACTGTATATAAT
1α-M-SallF	ACGCGTCGACCTCAAGCAAGCCTGGATTAG
1α-M-NotIR	AAGGAAAAAAGCGGCCGCTATAGAGTCTTCAGAAGTTT

Table S4. Nucleic acid substrates used in this work

Name	Sequence (5'-3')	Size (mer)
RNA		
SS1-46	UGUUAAGUCUGGUUUCCCUCCAGGGUAUCUAAGCUUUGAAAAAAAA	46
DNA		
S10	ACTATAGGGAGAATAGAATGCCCCCATTATACAATATCTACGTTTTAGATGACCCCCC CC	60

Supplementary figures

Figure S1

- (A) Strategy for copurification of native Cmr-α complex using pAC-cmr6α-10His plasmid, a 10×His tag has substituted the 6×His tag that used in our previous study(<u>6</u>).
- (B) SDS-PAGE of purified Cmr- α complex with 10×His-cmr6 α (a) and 6×His-cmr6 α (b).
- (C) PCR verification of Cmr1α deletion mutant.

Figure S2 . qPCR standardization – determination of amplification efficiency for Q_{Tar} and Q_{Ref} primer sets.

Standard curves were generated with five-fold series diluted template (plasmid DNA containing *lacS*). Slope was determined as linear regression of Ct (y-axis) versus -log₅ DNA dilution (x-axis). Efficiency of amplification for priner sets were calculated using the following equation: efficiency $E = 5^{1/slope}$, being $E (Q_{Tar}) = 2.03$ and $E (Q_{Ref}) = 2.04$.

Figure S3. Sequence alignment of Cmr1 homologs.

Twelve homologues(Af1868, PF1130, PFC_04870, SiRe_0892, SiL_0789, SiH_0555, SSo1512, SSo1989, SiRe_0600, NEIMUCOT_04015, HMPREF7215_1898 and TERTU_4367) were selected and aligned using ESPript 3.x(<u>http://espript.ibcp.fr</u>) (7). Six highly conserved residues at N-termini were chosen to produce two Cmr1α mutants which were defined as follows: Cmr1α-M1(W58A, F59A), Cmr1α-M2(I52A, G54A, R57A, R61A).

Figure S4. Structure model of S. islandicus Cmr1a

- (A) Structural model of *S.islandicus* Cmr1α generated by SWISS-MODEL(8-11).
- (B) The structures of *Sis* Cmr1 α and *Pf* Cmr1(4W8X) are superimposed. A adenine ribonucleotide binds in the conserved groove.
- (C) A zoom shows the ribonucleotide binding groove. Conserved residues mutated in this study are indicated in red(W58, F59) and yellow(I52, G54, R57, R61).
- (D) Surface representation of Cmr1 α and stereoview of the interaction between Cmr1 α and bound ribonucleotide.

Figure S5. Sequencing results of S. islandicus cmr1a mutant genes

Chromatographs of the sequencing data generated from Sanger DNA sequencing. Mutated bases as well as the mutated amino acids are highlighted in red.

Figure S6

- (A) Gel filtration profiles of Cmr-α1M1 (green) and Cmr-α1M2 (purple). A₂₈₀: UV absorbance at 280 nm.
- (B) SDS-PAGE of purified Cmr- α 1M1 and Cmr- α 1M2 complexes.
- (C) Denaturing gel electrophoresis analysis of crRNAs present in Cmr- α , Cmr- $\alpha\Delta$ 1, Cmr- α 1M1 and Cmr- α 1M2 complexes.

REFERENCES

- 1. Deng, L., Zhu, H., Chen, Z., Liang, Y.X. and **She, Q.** (2009) Unmarked gene deletion and hostvector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. *Extremophiles : life under extreme conditions*, **13**, 735-746.
- Li, Y., Pan, S., Zhang, Y., Ren, M., Feng, M., Peng, N., Chen, L., Liang, Y.X. and She, Q. (2016) Harnessing Type I and Type III CRISPR-Cas systems for genome editing. *Nucleic acids research*, 44, e34.
- 3. Peng, N., Deng, L., Mei, Y., Jiang, D., Hu, Y., Awayez, M., Liang, Y. and **She, Q.** (2012) A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. *Applied and environmental microbiology*, **78**, 5630-5637.
- 4. Peng, W., Feng, M., Feng, X., Liang, Y.X. and **She, Q.** (2015) An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. *Nucleic acids research*, **43**, 406-417.
- 5. Deng, L., Garrett, R.A., Shah, S.A., Peng, X. and She, Q. (2013) A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. *Mol Microbiol*, **87**, 1088-1099.
- Han, W., Li, Y., Deng, L., Feng, M., Peng, W., Hallstrom, S., Zhang, J., Peng, N., Liang, Y.X., White, M.F. et al. (2017) A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res, 45, 1983-1993.
- 7. Robert, X. and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res*, **42**, W320-324.
- 8. Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The SWISS-MODEL workspace: a webbased environment for protein structure homology modelling. *Bioinformatics*, **22**, 195-201.
- Guex, N., Peitsch, M.C. and Schwede, T. (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. *Electrophoresis*, **30** Suppl 1, S162-173.
- 10. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. and Schwede, T. (2009) The SWISS-MODEL Repository and associated resources. *Nucleic Acids Res*, **37**, D387-392.
- 11. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L. *et al.* (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Res*, **42**, W252-258.