Optimisation of the let-7a iLock invader junction position

PBCV-1 DNA ligase failed to differentiate between closely related miRNAs (figure 6B). To establish Lock assay in this context, we designed iLocks for four *let-7* family isoforms (supplementary table 2). Using iLocks with symmetrical miRNA binding arms, *let-7f* and *let-7d* were specifically differentiated while *let-7a* miRNA was detected with 83 % specificity (supplementary figure S1), also generating 35 % background on *let-7e* miRNA. To see if the *let-7a* fidelity can be increased at higher temperatures, we incubated let-7 iLocks on *let-7e* miRNA in the 48 – 56 °C temperature range. According to our observations, there was no improvement in the specificity at higher temperatures; in fact, less signal was generated at 56 °C compared-to lower temperatures (supplementary figure S2). We speculate that relatively low specificity of the let-7a probe on *let-7e* is probably due to two consecutive Gs', downstream of the -3 nucleotide mismatch. As a result, A/G mismatch (3 nucleotides upstream from a *let-7* central base) does not effectively hinder the formation of the invader structure that permits probe activation and misligation. To study how repositioning of the invader junction can influence the *let-7a/e* recognition, we designed new let-7a iLocks with the invader junction located at -3, -2, and -1 nucleotides upstream of the central base (called -3/-2/-1 respectively, supplementary figure S3). Considering the highest background for *let-7e* miRNA, we assessed fidelity of new let-7a iLock probes electrophoretically on the *let-7e* miRNA (supplementary figure S3). Misligation products were observed for the standard let-7a and let-7a -1 iLock, possibly due to the fact that *let-7e* mismatch did not hamper the invader structure formation. In let-7a -3 iLock, the invader junction was shifted 3 nucleotides upstream and positioned precisely over a -3 nucleotide mismatch in the *let-7e* miRNA. No background signal was seen on *let-7e* miRNA.

benchm_templ_C*		UCUCGCUGUCAUcCCUAUAUCCUCG
benchm_templ_A*		UCUCGCUGUCAUaCCUAUAUCCUCG
benchm templ G*		UCUCGCUGUCAUgCCUAUAUCCUCG
benchm templ U*		UCUCGCUGUCAUuCCUAUAUCCUCG
3'T_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGT
3'G_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGG
3'A PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGA
3'C_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGC
5'T PLP	Phos	TATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'G_PLP	Phos	GATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'A_PLP	Phos	AATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'C_PLP	Phos	CATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
3'T_ <i>i</i> Lock		TATATCCCTATATTATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGT
3'G_ <i>i</i> Lock		TATATCCCTATAT G ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG G
3'A_ <i>i</i> Lock		TATATCCCTATAT <u>A</u> ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG <u>A</u>
3'C_iLock		TATATCCCTATAT C ATGACAGCGAGA(10A)A <i>GTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG C
5'T <i>i</i> Lock		TATATCCCTATATG T ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG
5'G_ <i>i</i> Lock		TATATCCCTATATG G ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG
5'A <i>i</i> Lock		TATATCCCTATATGAATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'C <i>i</i> Lock		TATATCCCTATATGCATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG

Supplementary table 1. Oligonucleotide sequences used in PBCV-1 DNA ligase genotyping fidelity

Name 5' modification Sequence (5'- 3')

Decorator probe Cy3 *AGTAGCCGTGACTATCGACT^a*

**: RNA oligonucleotides; lowercase: centrally located polymorphic site; (10A): linker; bolded, underlined: nucleotides participating in Invader structure formation; ^a : last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.*

**: RNA oligonucleotides; lowercase: base substitutions in reference to the let-7a sequence; bolded, underlined: nucleotides participating in invader structure formation; ^a : last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.*

Supplementary table 3. Oligonucleotide sequences used in *KRAS* genotyping

**: RNA oligonucleotides; highlighted: codon 12; lowercase: position 34, genotyped in KRAS mRNA; bolded, underlined: nucleotides participating in invader structure formation; ^a : last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.*

Supplementary figure S1. Detection of *let-7* **miRNA family members using iLocks with symmetrical arms.** For each iLock group, average number of RCPs was added and each iLock fidelity is presented as a percentage. Average number of RCPs in negative controls was subtracted from the total RCP counts.

Supplementary figure S2. iLock miRNA detection assay optimisation. *let-7a* miRNA detection using all four iLocks in a 48 – 56 °C range; specificity (**A**) and assay efficiency (**B**). The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars ± s.d.; n=2.

Supplementary figure S3. **Analysis of the various let-7a iLocks and let-7e iLock on** *let-7e* **miRNA by PAGE***.* iLocks were activated in a 48 – 56 °C range and ligated using PBCV-1 DNA ligase. 0: traditional let-7a iLock with symmetrical miRNA binding arms; - n: positioning of the invader junction was shifted upstream by "n" nucleotides; C: control let-7e iLock.

Supplementary figure S4. **PBCV-1 DNA ligase end joining fidelity with 3' and 5' mismatches***.* PBCV-1 DNA ligase specificity profiles using PLPs (**A,** figure 2) and iLocks (**A**, figure 5B) were created by adding the average number of RCPs for each PLP/iLock on one of four RNA templates and presenting the respective probe as a percentage within a group. The y-axis shows the number of RCPs and the x-axis, the polymorphic base in RNA target. The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars ± s.d.; n=2.

Supplementary figure S5. *let-7a* **detection using PLP/iLock assays***. let-7* miRNA detection using PLPs (**A,** figure 6B) and iLock assay (**B**). The y-axis shows the number of RCPs and the x-axis, the miRNA template. The average RCP number from negative samples (no miRNA control) was subtracted from probe average RCP count values. Error bars ± s.d.; n=2.

Supplementary figure S6. *KRAS* **codon 12 genotyping using PLP and iLock assays***.* The y-axis shows the number of RCPs. Four SNPs (depicted as lowercase nucleotides in the key) were detected in *KRAS* wild type GGT codon 12 with PLPs (left part) and iLocks (right). The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars ± s.d.; n=2.

Supplementary table 4. Oligonucleotide sequences used in Invader-PCR experiment

Name	Sequence (5'-3')
benchm templ A*	UCUCGCUGUCAUACCUAUAUCCUCG
INV PCR 3'	TGCGGACACGAATACCAGACCGAGGATATAGGT
INV PCR 5'	tatatccctatatTATGACAGCGAGATATGGGATACGACGCCCGAT
PCR R	CGGGCGTCGTATCCCATA
PCR L	GCGGACACGAATACCAGAC

**: RNA oligonucleotides; lowercase: flap; bolded, underlined: nucleotides participating in invader structure formation; underlined: PCR primer binding sites*

Supplementary figure S7. Combination of Invader cleavage, RNA templated DNA ligation and exponential PCR. A: Amplification curves of the dilution series, including negative controls where Taq DNA polymerase was omitted during the probeactivation step (plots labelled in red). Ct of 30 is indicated with a blue, vertical line. Each dilution was assayed in duplicates. B: Melting curve of the dilution series. C: A standard curve was generated using a 10-fold dilution of a template Ct is plotted against the starting quantity of template for each dilution. Blue points: dilution series; red point: *Taq*- negative control. The equation for the regression line and the R-value are shown in the graph. Ct of 30 is indicated with a blue, horizontal line. D: Schematics of RNA templated probe activation, followed by ligation and PCR. Blue: RNA template; Underlined: primer hybridisation sides. Cleavage position is indicated with a spark. Template negative and ligase negative controls could not record any Ct value. The calculated amplification efficiency for dilution series was 104.4%.