Optimisation of the let-7a iLock invader junction position

PBCV-1 DNA ligase failed to differentiate between closely related miRNAs (figure 6B). To establish Lock assay in this context, we designed iLocks for four let-7 family isoforms (supplementary table 2). Using iLocks with symmetrical miRNA binding arms, let-7f and let-7d were specifically differentiated while let-7a miRNA was detected with 83 % specificity (supplementary figure S1), also generating 35 % background on let-7e miRNA. To see if the let-7a fidelity can be increased at higher temperatures, we incubated let-7 iLocks on let-7e miRNA in the 48 - 56 °C temperature range. According to our observations, there was no improvement in the specificity at higher temperatures; in fact, less signal was generated at 56 °C compared-to lower temperatures (supplementary figure S2). We speculate that relatively low specificity of the let-7a probe on *let-7e* is probably due to two consecutive Gs', downstream of the -3 nucleotide mismatch. As a result, A/G mismatch (3 nucleotides upstream from a let-7 central base) does not effectively hinder the formation of the invader structure that permits probe activation and misligation. To study how repositioning of the invader junction can influence the let-7a/e recognition, we designed new let-7a iLocks with the invader junction located at -3, -2, and -1 nucleotides upstream of the central base (called -3/-2/-1 respectively, supplementary figure S3). Considering the highest background for let-7e miRNA, we assessed fidelity of new let-7a iLock probes electrophoretically on the let-7e miRNA (supplementary figure S3). Misligation products were observed for the standard let-7a and let-7a -1 iLock, possibly due to the fact that let-7e mismatch did not hamper the invader structure formation. In let-7a -3 iLock, the invader junction was shifted 3 nucleotides upstream and positioned precisely over a -3 nucleotide mismatch in the let-7e miRNA. No background signal was seen on let-7e miRNA.

benchm_templ_C*		UCUCGCUGUCAUcCCUAUAUCCUCG
benchm_templ_A*		UCUCGCUGUCAUaCCUAUAUCCUCG
benchm_templ_G*		UCUCGCUGUCAUgCCUAUAUCCUCG
benchm_templ_U*		UCUCGCUGUCAUuCCUAUAUCCUCG
3'T_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGT
3'G_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGG
3'A_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGA
3'C_PLP	Phos	ATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGGC
5'T_PLP	Phos	TATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'G_PLP	Phos	GATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'A_PLP	Phos	AATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
5'C_PLP	Phos	CATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG
3'T_ <i>i</i> Lock		TATATCCCTATAT <u>T</u> ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG <u>T</u>
3'G_ <i>i</i> Lock		TATATCCCTATAT <u>G</u> ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG <u>G</u>
3'A_ <i>i</i> Lock		TATATCCCTATAT A ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG A
3'C_ <i>i</i> Lock		TATATCCCTATAT <u>C</u> ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG <u>C</u>
5'T_ <i>i</i> Lock		TATATCCCTATATG <u>T</u> ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG
5'G_ <i>i</i> Lock		TATATCCCTATATG G ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG
5'A_ <i>i</i> Lock		TATATCCCTATATG A ATGACAGCGAGA(10A) <i>AGTAGCCGTGACTATCGACT</i> (10A)CGAGGATATAGG
5'C <i>i</i> l ock		TATATCCCTATATGCATGACAGCGAGA(10A)AGTAGCCGTGACTATCGACT(10A)CGAGGATATAGG

Supplementary table 1. Oligonucleotide sequences used in PBCV-1 DNA ligase genotyping fidelity

5' modification Sequence (5'- 3')

Name

Decorator probe Cy3 AGTAGCCGTGACTATCGACT^e

*: RNA oligonucleotides; lowercase: centrally located polymorphic site; (10A): linker; bolded, underlined: nucleotides participating in Invader structure formation; ^a: last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.

Name	5' modification	Sequence (5'- 3')
hsa_let-7a*		UGAGGUAGUAGGUUGUAUAGUU
hsa_let-7f*		UGAGGUAGUAGAUUGUAUAGUU
hsa_let-7e*		UGAGGUAGgAGGUUGUAUAGUU
hsa_let-7d*		aGAGGUAGUAGGUUGcAUAGUU
let-7a_PLP	Phos	CTACTACCTCA(7A)CCTCAATGCACATGTTTGGCTCC(7A)AACTATACAAC
let-7f_PLP	Phos	CTACTACCTCA(7A)CCTCAATGCACATGTTTGGCTCC(7A)AACTATACAAt
let-7e_PLP	Phos	CTcCTACCTCA (7A)CCTCAATGCACATGTTTGGCTCC(7A)AACTATACAAC
let-7d_PLP	Phos	CTACTACCTCt (7A)CCTCAATGCACATGTTTGGCTCC(7A)AACTATgCAAC
let-7a_iLock		$CGCGTGTCGTTGC\underline{\mathbf{c}}CTACTACCTCA(10A)CCTCAATGCACATGGCTCC(10A)AACTATACAA\underline{\mathbf{c}}$
let-7a-3iLock		CGCGATGCGATACACTACCTCA(10A)CCTCAATGCACATGTTTGGCTCC(10A)AACTATACAACCTA
let-7f_iLock		$CGCGTGTCGTTGC \underline{T} \mathtt{CTACTACCTCA} (10A) C C T C A A G C A C A T G G C T C C (10A) A A C T A C A A \underline{T} A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A C A A A A A A C A A A A A A A A$
let-7e_iLock		$CGCGTGTCGTTGC \underbrace{C} CTCCTACCTCA (10A) C C C A A G C A C A T G G C T C C (10A) A A C T A C A A \underbrace{C} C A C C C C C C C C$
let-7d_iLock		CGCGTGTCGTTGC <u>C</u> CTACTACCTCT(10A)CCTCAATGCACATGTTTGGCTCC(10A)AACTATGCAA <u>C</u>
Decorator	Cy3	CCTCAATGCACATGTTTGGCTCC [®]

Supplementary table 2. Oligonucleotide sequences used in miRNA detection

*: RNA oligonucleotides; lowercase: base substitutions in reference to the let-7a sequence; bolded, underlined: nucleotides participating in invader structure formation; ^a: last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.

Supplementary table 3. Oligonucleotide sequences used in KRAS genotyping

Name 5' modification Sequence (5'- 3')					
hsa_KRASwt*		AACUUGUGGUAGUUGGAGCU <mark>gGU</mark> GGCGUAGGCAAGAGUGCC			
KRASwt_PLP	Phos	AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCACC			
KRAS_aGT_PLP	Phos	AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCACT			
KRAS_tGT_PLP	Phos	AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCACA			
KRAS_cGT_PLP	Phos	AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCACG			
KRASwt_iLock		$TATATCCCTATAT\underline{\mathbf{C}}AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCAC\underline{\mathbf{C}}$			
KRAS_aGT_iLock		TATATCCCTATAT <u>T</u> AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCAC <u>T</u>			
KRAS_tGT_iLock		TATATCCCTATAT <u>A</u> AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCAC <u>A</u>			
KRAS_cGT_iLock		$TATATCCCTATAT\underline{\mathbf{G}}AGCTCCAACTACCAC(10A)AGTAGCCGTGACTATCGACT(10A)CTTGCCTACGCCAC\underline{\mathbf{G}}$			
Decorator probe	СуЗ	CCTCAATGCACATGTTTGGCTCC ^a			

*: RNA oligonucleotides; highlighted: codon 12; lowercase: position 34, genotyped in KRAS mRNA; bolded, underlined: nucleotides participating i invader structure formation; ^a: last four bases of the decorator probe were 2' O-methylRNA to prevent oligo hydrolysis by Phi29 polymerase.

Supplementary figure S1. Detection of *let-7* miRNA family members using iLocks with symmetrical arms. For each iLock group, average number of RCPs was added and each iLock fidelity is presented as a percentage. Average number of RCPs in negative controls was subtracted from the total RCP counts.

Supplementary figure S2. iLock miRNA detection assay optimisation. *let-7a* miRNA detection using all four iLocks in a 48 – 56 °C range; specificity (**A**) and assay efficiency (**B**). The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars ± s.d.; n=2.

Supplementary figure S3. Analysis of the various let-7a iLocks and let-7e iLock on *let-7e* **miRNA by PAGE.** iLocks were activated in a 48 – 56 °C range and ligated using PBCV-1 DNA ligase. 0: traditional let-7a iLock with symmetrical miRNA binding arms; - n: positioning of the invader junction was shifted upstream by "n" nucleotides; C: control let-7e iLock.

Supplementary figure S4. **PBCV-1 DNA ligase end joining fidelity with 3' and 5' mismatches**. PBCV-1 DNA ligase specificity profiles using PLPs (**A**, figure 2) and iLocks (**A**, figure 5B) were created by adding the average number of RCPs for each PLP/iLock on one of four RNA templates and presenting the respective probe as a percentage within a group. The y-axis shows the number of RCPs and the x-axis, the polymorphic base in RNA target. The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars ± s.d.; n=2.

Supplementary figure S5. *let-7a* detection using PLP/iLock assays. *let-7* miRNA detection using PLPs (**A**, figure 6B) and iLock assay (**B**). The y-axis shows the number of RCPs and the x-axis, the miRNA template. The average RCP number from negative samples (no miRNA control) was subtracted from probe average RCP count values. Error bars ± s.d.; n=2.

Supplementary figure S6. *KRAS* codon 12 genotyping using PLP and iLock assays. The y-axis shows the number of RCPs. Four SNPs (depicted as lowercase nucleotides in the key) were detected in *KRAS* wild type GGT codon 12 with PLPs (left part) and iLocks (right). The average RCP number from negative samples (no template control) was subtracted from probe values. Error bars \pm s.d.; n=2.

Supplementary table 4. Oligonucleotide sequences used in Invader-PCR experiment

Name	Sequence (5'- 3')
benchm_templ_A*	UCUCGCUGUCAUACCUCG
INV_PCR_3'	TGCGGACACGAATACCAGACCGAGGATATAGGT
INV_PCR_5'	tatatccctatat <u>T</u> ATGACAGCGAGA <u>TATGGGATACGACGCCCGAT</u>
PCR_R	CGGGCGTCGTATCCCATA
PCR_L	GCGGACACGAATACCAGAC

*: RNA oligonucleotides; lowercase: flap; bolded, underlined: nucleotides participating in invader structure formation; underlined: PCR primer binding sites

Supplementary figure S7. Combination of Invader cleavage, RNA templated DNA ligation and exponential PCR. A: Amplification curves of the dilution series, including negative controls where Taq DNA polymerase was omitted during the probeactivation step (plots labelled in red). Ct of 30 is indicated with a blue, vertical line. Each dilution was assayed in duplicates. B: Melting curve of the dilution series. C: A standard curve was generated using a 10-fold dilution of a template Ct is plotted against the starting quantity of template for each dilution. Blue points: dilution series; red point: *Taq-* negative control. The equation for the regression line and the R-value are shown in the graph. Ct of 30 is indicated with a blue, horizontal line. D: Schematics of RNA templated probe activation, followed by ligation and PCR. Blue: RNA template; Underlined: primer hybridisation sides. Cleavage position is indicated with a spark. Template negative and ligase negative controls could not record any Ct value. The calculated amplification efficiency for dilution series was 104.4%.