# Supplementary information: BatchMap: A parallel implementation of the OneMap R package for fast computation of linkage maps in outcrossing species

#### 1 The scaling of BatchMap is nearly linear

In order to evaluate how well map.overlapping.batches() scales with the number of markers, five subsets of LG1 (sim20k) were generated in sizes increasing by a factor of two: 50, 100, 200, 400, 800. The maps were then generated using a batch size of 40 and an overlap of 25 (4 parallel phase cores). The total time it took from calling map.overlapping.batches() was aggregated and the scaling ratio determined. With each duplication of marker number, the time increased by a factor of 2.38, 2.13, 1.82 and 2.29 respectively. While this is not a comprehensive algorithm analysis, this indicates near linear scaling as N increases. Specifically, the number of times the EM algorithm has to be called in OneMap scales triangular with marker number N as the triangular number of N (equation 1, Supplementary Figure A), while the scaling of BatchMap depends on the number of batches B, the overlap of markers between batches o and the number of markers in a given batch b (equation 2, Supplementary Figure A).

$$\frac{N \cdot (N+1)}{2} \tag{1}$$

$$\frac{b_1 \cdot (b_1 + 1)}{2} + \sum_{i=2}^{B} \frac{(b_i - o) \cdot (b_i - o + 1)}{2} + o$$
(2)

#### 2 Calculation of error rates

The error rate is calculated as the sum of misplaced markers e over the length N of the sequence (equation 3). The weighted error rate is calculated as the absolute distance b of a marker to its true position over the maximally possible disorder given by the triangular number for the length N of the sequence (equation 4).

$$\frac{\sum e_i}{N} \tag{3}$$



Figure A: Naïve calculation of scaling rates for a quadratic algorithm, a triangular algorithm (such as the phase estimation in OneMap), a linear algorithm and the BatchMap algorithm.

$$\frac{1}{\sum |d_i|} \cdot \frac{N \cdot (N+1)}{2} \tag{4}$$

## 3 The number of RECORD iterations has little return after the first few

RECORD was executed nine times for two pseudo-testcrosses of five linkage groups (N=10) from the sim20k dataset, each time setting the number of iterations to the next power of two ([1, 2, 4, 8...256]). Each time, the following statistics were calculated: Kendall's tau (compared to true order), error rate (equation 3), weighted error rate (equation 4), mean distance of each marker to its true position, median distance of each marker to its true position. We found that even at two iterations, the results rarely improve much (Supplementary Figure B) and recommend the use of ten iterations as a safe choice.



Figure B: Order accuracy statistics for varying values of RECORD iterations (five LGs, two pseudo-testcrosses each, N = 10).

### 4 Additional accuracy statistics for evaluation runs

Additional basic statistics besides likelihood, size and order were collected for all evaluation runs. These are: Kendall's tau (compared to true order), error rate (equation 3) and weighted error rate (equation 4).

Table A: Ordering accuracy for 40 LGs using 33 iterations of RECORD. LG: Name of the pseudo testcross LG; Markers: Number of markers on the LG; Bins: Number of unique bins on the LG; Corr: Correlation between true and estimated marker order calculated with Kendall's tau: Wrongly positioned markers: Number of markers that have been wrongly positioned; Total distance: The distance away from true position summed over all markers; Max distance: The maximum distance away from true position encountered on the LG; Average distance: Total distance over the number of bins on the LG; Average distance (weighted): Total distance over the number of wrongly positioned markers; Size inflation (cM): The difference in size in centiMorgan between estimated and true order LGs. Two horizontal lines indicate the border between datasets sim7.5k, sim10k, sim15k and sim 20k, respectively.

| LG    | Markers | Bins | Corr  | Wrongly | Total    | Max      | Average  | Average    | Size in- |
|-------|---------|------|-------|---------|----------|----------|----------|------------|----------|
|       |         |      |       | posi-   | distance | distance | distance | distance   | flation  |
|       |         |      |       | tioned  |          |          |          | (weighted) | (cM)     |
|       |         |      |       | markers |          |          |          |            | 1        |
| LG4.1 | 274     | 266  | 0.991 | 134     | 260      | 14       | 0.977    | 1.94       | 8.61     |
| LG2.1 | 285     | 279  | 0.991 | 161     | 274      | 6        | 0.982    | 1.702      | 8.52     |
| LG4.2 | 303     | 295  | 0.993 | 162     | 252      | 5        | 0.854    | 1.556      | 8.82     |
| LG2.2 | 302     | 296  | 0.991 | 159     | 298      | 8        | 1.007    | 1.874      | 10.31    |
| LG5.2 | 298     | 296  | 0.991 | 158     | 308      | 7        | 1.041    | 1.949      | 9.31     |
| LG3.2 | 304     | 298  | 0.992 | 164     | 290      | 18       | 0.973    | 1.768      | 11.61    |
| LG5.1 | 302     | 300  | 0.99  | 178     | 374      | 9        | 1.247    | 2.101      | 10.72    |
| LG3.1 | 300     | 300  | 0.992 | 145     | 284      | 9        | 0.947    | 1.959      | 10.08    |
| LG1.2 | 318     | 312  | 0.991 | 177     | 332      | 8        | 1.064    | 1.876      | 13.09    |
| LG1.1 | 321     | 315  | 0.988 | 173     | 432      | 14       | 1.371    | 2.497      | 10.61    |
| LG3.2 | 350     | 341  | 0.988 | 223     | 536      | 16       | 1.572    | 2.404      | 14.19    |
| LG5.1 | 346     | 342  | 0.989 | 235     | 528      | 12       | 1.544    | 2.247      | 18.13    |
| LG1.1 | 361     | 354  | 0.99  | 222     | 476      | 10       | 1.345    | 2.144      | 11.62    |
| LG5.2 | 371     | 367  | 0.992 | 202     | 412      | 9        | 1.123    | 2.04       | 8.36     |
| LG2.2 | 371     | 369  | 0.993 | 235     | 398      | 7        | 1.079    | 1.694      | 12.29    |
| LG4.2 | 376     | 370  | 0.993 | 210     | 374      | 5        | 1.011    | 1.781      | 7.98     |
| LG4.1 | 379     | 373  | 0.992 | 224     | 448      | 7        | 1.201    | 2          | 6.97     |
| LG3.1 | 393     | 384  | 0.989 | 261     | 622      | 14       | 1.62     | 2.383      | 14.26    |
| LG2.1 | 392     | 390  | 0.991 | 245     | 544      | 9        | 1.395    | 2.220      | 12.03    |
| LG1.2 | 418     | 411  | 0.991 | 264     | 596      | 14       | 1.45     | 2.258      | 10.34    |
| LG3.1 | 497     | 485  | 0.99  | 353     | 952      | 14       | 1.963    | 2.697      | 17.83    |
| LG4.2 | 571     | 553  | 0.99  | 410     | 1182     | 15       | 2.137    | 2.883      | 28.10    |
| LG1.1 | 572     | 560  | 0.991 | 401     | 1046     | 12       | 1.868    | 2.608      | 19.13    |
| LG5.1 | 591     | 570  | 0.986 | 417     | 1580     | 23       | 2.772    | 3.789      | 28.72    |
| LG1.2 | 592     | 580  | 0.992 | 424     | 1034     | 11       | 1.783    | 2.439      | 20.32    |
| LG2.2 | 597     | 580  | 0.989 | 423     | 1482     | 24       | 2.555    | 3.504      | 29.61    |
| LG4.1 | 600     | 582  | 0.993 | 391     | 1000     | 14       | 1.718    | 2.558      | 18.08    |
| LG5.2 | 636     | 615  | 0.991 | 425     | 1196     | 17       | 1.945    | 2.814      | 21.50    |
| LG2.1 | 641     | 624  | 0.99  | 460     | 1434     | 25       | 2.298    | 3.117      | 24.28    |
| LG3.2 | 655     | 643  | 0.992 | 458     | 1198     | 16       | 1.863    | 2.616      | 60.39    |
| LG3.1 | 725     | 706  | 0.993 | 504     | 1378     | 14       | 1.952    | 2.734      | 21.86    |
| LG1.2 | 732     | 708  | 0.989 | 542     | 2086     | 21       | 2.946    | 3.849      | 28.12    |
| LG1.1 | 740     | 716  | 0.989 | 543     | 1986     | 19       | 2.774    | 3.657      | 27.05    |
| LG4.2 | 777     | 755  | 0.99  | 574     | 2074     | 24       | 2.747    | 3.613      | 20.13    |
| LG2.1 | 782     | 765  | 0.991 | 585     | 1952     | 22       | 2.552    | 3.337      | 23.98    |
| LG5.1 | 782     | 768  | 0.992 | 578     | 1858     | 22       | 2.419    | 3.215      | 22.38    |
| LG4.1 | 794     | 772  | 0.992 | 579     | 1808     | 16       | 2.342    | 3.123      | 24.83    |
| LG5.2 | 787     | 773  | 0.989 | 566     | 2310     | 23       | 2.989    | 4.081      | 29.54    |
| LG3.2 | 794     | 775  | 0.992 | 574     | 1918     | 20       | 2.475    | 3.341      | 24.15    |
| LG2.2 | 794     | 777  | 0.991 | 608     | 2048     | 19       | 2.636    | 3.368      | 27.25    |



Figure C: Error rates (see equation 3) of all evaluation runs. One Map (CRAN and GitHub versions) and BatchMap (regular and ripple versions) were run of each of the pseudo-test crosses obtained from three linkage groups of the sim20k dataset (see Supplementary File Dataset\_simulated\_20k.txt). N = 6



Figure D: Weighted error rates (see equation 4) of all evaluation runs. One Map (CRAN and GitHub versions) and BatchMap (regular and ripple versions) were run of each of the pseudo-test crosses obtained from three linkage groups of the sim20k dataset (see Supplementary File Dataset\_simulated\_20k.txt). N = 6



Figure E: Kendall's tau of all evaluation runs. One Map (CRAN and GitHub versions) and BatchMap (regular and ripple versions) were run of each of the pseudo-test crosses obtained from three linkage groups of the sim20k dataset (see Supplementary File Dataset\_simulated\_20k.txt). N = 6