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In response to injuries to the CNS, astrocytes enter a reactive
state known as astrogliosis, which is believed to be deleterious
in some contexts. Activated astrocytes overexpress intermedi-
ate filaments including glial fibrillary acidic protein (GFAP)
and vimentin (Vim), resulting in entangled cells that inhibit
neurite growth and functional recovery. Reactive astrocytes
also secrete inflammatory molecules such as Lipocalin 2
(Lcn2), which perpetuate reactivity and adversely affect other
cells of the CNS. Herein, we report proof-of-concept use of
the packaging RNA (pRNA)-derived three-way junction
(3WJ) motif as a platform for the delivery of siRNAs to down-
regulate such reactivity-associated genes. In vitro, siRNA-3WJs
induced a significant knockdown of Gfap, Vim, and Lcn2 in a
model of astroglial activation, with a concomitant reduction
in protein expression. Knockdown of Lcn2 also led to reduced
protein secretion from reactive astroglial cells, significantly
impeding the perpetuation of inflammation in otherwise quies-
cent astrocytes. Intralesional injection of anti-Lcn2-3WJs in
mice with contusion spinal cord injury led to knockdown of
Lcn2 at mRNA and protein levels in vivo. Our results provide
evidence for siRNA-3WJs as a promising platform for amelio-
rating astroglial reactivity, with significant potential for
further functionalization and adaptation for therapeutic appli-
cations in the CNS.

INTRODUCTION
Astrocytes are abundant and highly heterogeneous cells that provide
a variety of essential support and regulatory functions within the
CNS.1,2 In response to CNS pathologies such as spinal cord injury
(SCI), stroke, multiple sclerosis (MS), and Alzheimer’s disease, astro-
cytes show changes in gene expression, cellular structure, and func-
tion. Such responses are commonly referred to as astrogliosis.3–6

Astrocyte reactivity is a ubiquitous response to CNS damage medi-
ated by a complex and insult-specific mixture of cytokines, factors,
and cellular debris, released by CNS resident damaged cells, inflam-
matory infiltrates, and even reactive astrocytes themselves, at and
around the site of the insult.7 The pathological role of astrogliosis is
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controversial,8 but is generally considered to be a double-edged
sword, mitigating the acute stresses that develop immediately
following a pathogenic event, but ultimately serving as an impedi-
ment to neural plasticity as the phenomenon persists.9 For example,
the archetypical hallmark of astrogliosis is the overexpression of cyto-
skeletal intermediate filament (IF) proteins, notably glial fibrillary
acidic protein (GFAP) and vimentin (Vim), contributing to the hy-
pertrophy and entanglement of reactive astrocytes that contribute
to produce a dense barrier serving as the primary basis of the glial
scar.6 This physicochemical barrier provides a protective fortification
against the infiltration of inflammatory agents during the early stages
of a CNS insult, but becomes an obstacle to remyelination, neuronal
regeneration, and overall neural plasticity as the scar persists beyond
the initial effects of the injury. Furthermore, reactive astrocytes play
an important and complex role in modulating neuroinflammation,
eliciting a context-dependent array of pro-inflammatory or anti-in-
flammatory effects in the CNS via secreted mediators and interactions
with resident immune cells.10 One particularly notable vector is the
secretion of the iron-trafficking protein Lipocalin 2 (Lcn2), which
is canonically associated with innate immune responses but also
described to act as a neuroinflammatogen in many CNS pathologies,
including SCI and MS.11,12 Astrocyte-secreted Lcn2 is known
to exacerbate neuroinflammation by inducing pro-inflammatory
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polarization in recipient astrocytes and microglia, even promoting
cell death in neurons.13

Thus, modulation of astrocyte reactivity, or specific aspects thereof, is
a particularly attractive therapeutic strategy in the treatment of a
diversity of CNS disorders.

One approach that has demonstrated some promising results has
involved interfering with the astrogliotic overexpression of the IF pro-
teins GFAP and Vim, particularly prominent targets in reactive astro-
cytes. In vitro, decreased IF expression has been shown to yield a
concomitant decrease in astrocyte reactivity and hypertrophy, with
co-cultured neurons exhibiting enhanced survivability and increased
neurite growth.14–17 In vivo, IF depletion has been found to result in
decreased scar density, increased axonal plasticity, and improved
functional recovery in mouse models of SCI and other CNS in-
sults.15,16,18–20 These in vivo results have typically been obtained using
constitutive knockout animal models devoid of Gfap and/or Vim.
Such animals have an impaired ability to undergo astrogliosis and
are thus denied the early protective aspects of reactive astrocytes,
making them more susceptible to exacerbating mechanical injury
despite longer-term improvements in axonal outgrowth. Indeed,
the therapeutic utility of the wholesale ablation of astrogliosis is
controversial.8 Perhaps a more promising therapeutic option is the
modulation of injury-aggravating inflammation through depletion
of secreted factors, such as Lcn2. Knockout of Lcn2 has been found
to largely negate the pro-inflammatory polarization of activated
astrocytes in vitro and in vivo,21,22 yielding better histopathological
outcomes in mouse models of stroke, demyelinating diseases, or
SCI.11,23–25 Lcn2-deficient (Lcn2�/�) mice display remarkable
neuronal survival and myelin sparing after contusion SCI.11 Impor-
tantly, these changes are accompanied by significant reduction of
inflammatory responses and improved locomotor recovery.11

Nevertheless, gene knockout is not a clinically viable option, nor is it
necessarily desirable because most genes also serve important physi-
ological functions and their constitutive deletion can have adverse
effects. An ideal therapy would consist of a temporally and dose-
controlled means by which to modulate astroglial reactivities, such
as that afforded by RNAi. Lentiviral delivery of short hairpin RNAs
has been successfully used to reduce astrocyte reactivity
in vitro;14,18 yet there are safety concerns with the therapeutic trans-
lation of viral vectors. As an alternative, small interfering RNA
(siRNA) therapeutics possess great potential for the transient knock-
down of gene expression. In vivo functional recovery in SCI rodents
has been observed using Gfap- and Vim-targeting siRNAs;15,16 how-
ever, the clinical translation of siRNA therapeutics has been
hampered by their relative fragility and inefficiency in their delivery.
Nevertheless, the burgeoning field of nanotechnology offers hope for
the development of effective, targeted RNA-based therapeutics.
Nanotechnological RNA delivery vehicles encompass a myriad of
chemistries including complexation with carrier polymers, encapsu-
lation within lipid vesicles, or coating onto organic or inorganic nano-
particles. Moreover, due to its flexibility and intrinsic potential for
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target recognition and enzymatic activity, RNA itself has been em-
ployed as a scaffold from which to develop multifunctional nano-
structures.26–28 Building upon the principles of DNA origami29 and
tecto-RNA,30 a variety of RNA-based nanotriangles,31 cubes,32

rings,33 and lattices34 have been designed as putative therapeutic plat-
forms. Self-assembly of siRNA polymers generated via rolling circle
transcription has even allowed for the generation of RNAi micro-
sponges35 and nanosheets.36

Herein, we describe proof-of-concept evidence of the packaging RNA
(pRNA) three-way junction (3WJ) as a platform for the delivery of
anti-IF or anti-Lcn2 siRNAs to reactive astrocytes in vitro and in vivo.
The pRNA-3WJ, itself a basic unit for the construction of more elab-
orate RNA nanostructures,37 has demonstrated remarkable versatility
as a targeting and therapeutic delivery agent, excelling in the targeted
delivery of anti-miRNAs and siRNAs.38–41 The pRNA platform is
highly stable, non-toxic, biocompatible, and ideally sized for nano-
therapeutic applications,42 with the multi-armed nature of the 3WJ
core allowing for the design of multifunctional, modular con-
structs.43,44 This technology has seen extensive use in anti-cancer or
anti-viral roles, but here we report the first progress toward applica-
tions in the CNS niche.

RESULTS
Astrocytes Cultured in Low-FBS Medium Enter a Reactive State

When Exposed to Lipopolysaccharide + Interferon-g

Differentiation of neural stem cells (NSCs) into astrocytes was
induced by the presence of fetal bovine serum (FBS), a well-estab-
lished technique,45–47 with 15 days in vitro (DIV) chosen as a time
point at which cultured astroglial cells had achieved a desirable level
of maturity.47 Immunofluorescence imaging revealed uniform
expression of GFAP and Vim, and high expression of the astroglial
markers S100 calcium-binding protein B (S100B)48 and 10-formylte-
trahydrofolate dehydrogenase (Aldh1l1)49 (Figure S1). We employed
a two-phase differentiation protocol, switching from high-FBS (10%)
to low-FBS (1%) N2-supplemented medium at 7 DIV to minimize the
intrinsic astroglial reactivity attributable to the described stimulatory
effect of serum.35,36 Differentiation medium was supplemented with
FGF2 to further promote a mature, resting-like phenotype.50 By
contrast to the hypertrophic, polygonal astrocyte clusters derived
via the high-FBS technique, low-FBS astrocytes were confluent and
ramified with long processes (Figure S1). These morphological differ-
ences, coupled with the significantly less intense GFAP and Vim
expression observed in low-FBS astrocytes, suggested a strong basal
reactivity in high-FBS astrocytes.

In order to have a simple and reproducible in vitromodel of astroglio-
sis, we activated astrocytes through exposure to lipopolysaccharide
(LPS) and interferon-g (IFN-g).51 Our refined activation protocol
involved exposure to LPS+IFN-g for 48 hr at 15–17 DIV, with
RNA analyses at 17 DIV and protein analyses at 20 DIV.

Low-FBS astrocytes treated with LPS+IFN-g for 48 hr exhibited
an upregulation of Toll-like receptor 4 (Tlr4) and IFN-g receptors



Figure 1. Response of Low-FBS/+FGF2 Cultured Astrocytes to LPS+IFN-g Stimulation at the mRNA Level

qRT-PCR quantification of relative mRNA expression levels of Ifngr1, Ifngr2, Ciita, Tlr4, Gfap, Vim, Lcn2, Nos2, Tnf, Il1b, and Il6. Expression relative to resting controls

(2�DDCt method),Gapdh reference gene. Data expressed as the mean of nR 3 biological replicates ± SD; *p% 0.05, **p% 0.01, ***p% 0.001; or ****p% 0.0001, relative to

non-activated control samples (one-way ANOVA with Dunnett’s multiple comparison test).
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1 and 2 (Ifngr1/Ifngr2). After a subsequent 48 hr in LPS+IFN-g-free
medium, expression of the above mRNAs reverted to basal levels.
Likewise, major histocompatibility complex class II transactivator
(Ciita) was induced in the 48 hr following activation and persisted
elevated at 96 hr (Figure 1). We also observed an increased expression
of both Gfap and Vim at 48 hr post-treatment. However, the induc-
tion of Gfap failed to achieve statistical significance. Instead,
Lcn2 expression underwent a 15,000-fold induction upon 48-hr
LPS+IFN-g treatment, dropping off significantly after a further
48 hr in LPS+IFN-g-free medium. Other accepted pro-inflammatory
genes were upregulated after LPS+IFN-g, including interleukin-6
(Il6), tumor necrosis factor (Tnf), and nitric oxide synthase 2
(Nos2). The expression of these activation genes also reverted toward
resting levels upon withdrawal of the LPS+IFN-g medium.
Conversely, the expression of the pro-inflammatory cytokine Il1b
was significantly downregulated by LPS+IFN-g (Figure 1).
We also examined the effects of the activation of low-FBS astrocytes
at protein level, most fundamentally by an increase in pSTAT3 (Fig-
ure 2A). The kinetics of this induction were quite rapid, with pSTAT3
showing a peak in expression at 1 hr and subsequent decrease by
48 hr. At a more general level, activated astrocytes also exhibited
increased early expression of Lcn2 (Figure 2B), as well as the IF pro-
teins GFAP and Vim (Figure 2C), most evident at 3 days post-activa-
tion. In immunofluorescence assays, Lcn2 exhibited a remarkable
upregulation, from no obvious expression in resting-like conditions
up to an intense expression in most cells upon activation (Figure 2D).
This activation response was further reflected by an approximately
50-fold increase in IL-6 secretion at 48 hr after LPS+IFN-g
(Figure 2E).

On the other hand, high-FBS astrocytes showed a constitutive high
reactivity, evident from significantly higher basal expression of
Molecular Therapy: Nucleic Acids Vol. 10 March 2018 105
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Figure 2. Response of Low-FBS/+FGF2 Cultured

Astrocytes to LPS+IFN-g Stimulation at the Protein

Level

(A) Representative western blot illustrating temporal in-

duction of pSTAT3 upon 1 and 48 hr of treatment with

LPS+IFN-g. (B and C) Representative western blots of

activation markers in resting versus LPS+IFN-g-stimu-

lated low-FBS astrocytes: (B) Lcn2 expression in resting

and 24-hr-stimulated astrocytes; and (C) GFAP and Vim

levels under resting conditions and following 48 hr of

activation followed by 3 or 5 days of rest. b-Actin was used

as a loading control. (D) Representative immunofluores-

cence micrographs of GFAP, Vim, and Lcn2 immunore-

activity in resting and activated conditions (GFAP/Vim:

green; Lcn2: red; DAPI nuclear stain: blue). Scale bars,

100 mm. (E) Secreted IL-6 as measured by ELISA, resting

versus activated conditions, at 48 and 120 hr post-stim-

ulation. Data are expressed as the mean of n R 3

biological replicates ± SD. *p % 0.05, relative to non-

activated control samples (multiple t tests with statistical

significance determined using the Holm-Sidak method,

a = 0.05).
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Vim, GFAP, and Lcn2, as compared with resting-like low-FBS as-
trocytes. Moreover, ostensibly resting-like high-FBS astrocytes were
seen to have a strong pSTAT3 expression. High-FBS astrocytes
treated with LPS+IFN-g for 48 hr exhibited significant inductions
in Nos2 and Il6, as well as increased secretion of IL-6. However,
Tnf expression showed no change, nor did Gfap and Vim. An
induction of Lcn2 was evident upon LPS+IFN-g treatment. Il1b
also remained unchanged upon activation; however, levels in the
high-FBS astrocytes were significantly lower than low-FBS analogs
(Figure S2).

These findings supported the use of low-FBS astrocytes for the exper-
iments described hereafter.

siRNA-3WJ Nanostructures Have Negligible Toxic Effects upon

Transfection into Astrocytes

siRNA-3WJs of the general scheme depicted in Figure 3A were pre-
pared based on the methods described previously.43 The siRNA-
3WJs used herein were named according to their target mRNA and
106 Molecular Therapy: Nucleic Acids Vol. 10 March 2018
the identification number of each given
SMARTpool siRNA analog (Table S1), thus
giving rise to G10-3WJ (anti-GFAP), V10-3WJ
(anti-Vim), L12-3WJ (anti-Lcn2), and the non-
targeted N03-3WJ (as negative control). The
three component strands of each siRNA-3WJ
were mixed in stoichiometric ratio and annealed
to generate the 3WJ nanoparticle. Successful as-
sembly of the siRNA-3WJs was confirmed by
the decreased gel mobility of the multistranded
structures in electrophoretic assays relative to
single- and double-component constructs (Fig-
ure 3B), with dynamic light scattering measure-
ments sizing the siRNA-functionalized L12- and N03-3WJs at 5.12 ±
1.13 and 4.83 ± 1.38 nm, respectively (Figure 3C).

Once assembled, siRNA-3WJs were delivered to astrocytes in vitro by
means of lipofection. Unless otherwise noted, transfections occurred
at 15 DIV with subsequent evaluation of mRNA levels via qPCR at 17
DIV and proteins via western blot or fluorescence microscopy at 20
DIV. Transfections were performed in three different activation con-
texts: a resting profile in which astrocytes were not treated with LPS+
IFN-g, and two different activation profiles wherein LPS+IFN-g treat-
ment occurs either in the 48 hr prior to transfection (i.e., 13–15DIV) or
the 48 hr commencing with transfection (i.e., 15–17 DIV) (Figure 3D).
The former activation profile, henceforth referred to as a therapeutic
intervention, simulates the treatment of an established CNS insult,
whereas the latter profile, a preventative intervention, explores the utility
of these putative nanotherapeutics in inhibiting a reactive response.

Transfection efficiency of siRNA-3WJs under these various activation
conditions was assessed using Cy3-labeled N03-3WJ (Cy3_N03-3WJ)



Figure 3. Synthesis, Delivery, and Safety of siRNA-3WJ Nanostructures

(A) Generic 3WJ scheme depicting the three constituent RNA strands, variable siRNA (N) and 3WJ core moieties (black circles indicate a wobble base pair). (B) Agarose gel

(2%, TBM buffer) illustrating the characterization of 3WJ assembly by gel mobility. The assembled 3WJs show retarded mobility relative to a double-stranded (A+C strands)

construct or single A orB strands alone. An Ultra-Low Rage dsDNA ladder is used as reference. (C) Dynamic light scattering (DLS) size characterization of representative L12-

and N03-3WJs. Results are expressed asmean hydrodynamic size (nm)±SD. (D) Differentiation/treatment scheme: NSCs are differentiated in amedium containing high FBS

(legend continued on next page)
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at a 20 nM concentration. As early as 24 hr post-transfection cells
were fixed and processed for immunofluorescence, with the fraction
of transfected astrocytes estimated by co-localization of punctuate
Cy3 staining with GFAP-immunoreactive cells (over total nuclei).
Transfection efficiencies, ascertained as the fraction of Cy3+ cells,
were always found to be >70% under resting, therapeutic, and preven-
tative conditions (Figure 3E). No uptake was evident without lipo-
fection. Effective internalization of siRNA-3WJs was confirmed
by confocal microscopy, with cross-sectional z stack images of
Cy3_N03-3WJ transfected low-FBS astrocytes showing the presence
of Cy3+ aggregates within the cell bodies (Figures 3F and 3G).

Transfection of astrocytes with these siRNA-3WJ constructs proved
to be non-toxic over the range of concentrations tested. Using color-
imetric LDH cytotoxicity assays, we found that the viability of cells
remained >95% for all siRNA-3WJs (N03-, G10-, V10-, and L12-)
and concentrations tested, thus demonstrating no significant cytotox-
icity relative to untreated controls or cells treated with vehicle only.
No toxicity was observed at 24 hr post-transfection, when astrocytes
remained in serum-free transfection media, or as late as 120 hr after
transfection (Figure S3). Furthermore, we checked the stability of
several common reference genes, including glyceraldehyde-3-phos-
phate dehydrogenase (Gapdh), 18S ribosomal RNA (Rna18s5), and
beta-actin (Actb), via TaqMan gene expression assays to establish
their suitability in subsequent qPCR assays. The expression of each
of these putative reference genes at 48 hr post-transfection showed
no variation across treatment or condition (Figure S4).

The potential immunogenicity of the siRNA-3WJs was tested with
respect to their ability to induce the expression of pro-inflammatory
cytokine genes in astrocytes. Preliminary assays utilized 3WJs assem-
bled from in vitro transcribed A and C strand single-stranded RNAs
(ssRNAs) that had not been subjected to de-phosphorylation and thus
still possessed 50-triphosphate transcription artifacts. Transfections
with 50-triphosphate N03-, G10-, and V10-3WJs (5 nM) were found
to cause significant inductions in Il6 (�50-fold), Tnf (�400-fold), and
IFN beta 1 (Ifnb1, �100-fold) relative to non-transfected controls
(Figure 3H). Because neither mock-transfected samples nor those
treated with commercial siRNA pools (chemically synthesized and
with proprietary modification) had such an effect, we hypothesized
this unwanted exacerbation of the pro-inflammatory response to be
the result of retinoic acid-induced gene 1 (RIG-I)-mediated antiviral
immunity,52 triggered by the 50-triphosphate transcription artifacts.
for 7 days (red) before being swapped to a low-FBSmedium supplemented with N2 (gre

with 3WJs at day 15 (D15), with RNA and protein expressions were assayed at days 1

through the addition of LPS+IFN-g to the medium for 48 hr: from D13 through D15 for

(E) Immunofluorescence quantification of percentage of astrocytes transfected with 20

mean ± SD; n = 3 biological replicates, 3 coverslips per condition for each experimen

between conditions. (F) z stack confocal micrograph of astrocytes transfected with 20 n

(green), with nuclei co-stained with DAPI (blue). (G) Volocity-based 3D reconstruction (

z stack in (F). (H) Expression of pro-inflammatory cytokines (Ifnb1, Tnf, and Il6) in high-FB

or without [�PPP] 50-triphosphate in vitro transcription artifacts) or analogous comme

respectively). Results expressed as the mean mRNA expression (qPCR) relative to non-

reference gene. *p % 0.05; **p % 0.01; ***p % 0.001; or ****p % 0.0001, relative to co
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Indeed, introduction of an RNA dephosphorylation step into the
3WJ synthesis completely abolished the induction of IL-6 and
TNF-a, at both mRNA (Figure 3H) and protein levels (Figure S3).

Thus, appropriately modified 3WJs were found to be non-
immunogenic.

siRNA-3WJ Nanostructures Efficiently Downregulate the

Expression of Reactive Astrocyte-Associated Genes In Vitro

Preliminary assays in high-FBS astrocytes revealed a dose-dependent
silencing response by G10- or V10-3WJs. By qPCR assays, knock-
down of target genes was found to be >50% at 5 nM relative to con-
trols, with no appreciable off-target silencing effects (Figure S5).
Commercial siRNA pools containing multiple chemically modified
siRNAs against the target gene yielded results comparable with the
analogous unmodified siRNA-3WJs bearing a single siRNA against
the same target (Figure S5). Higher concentrations (i.e., 50 nM) re-
vealed no further increase in efficacy (data not shown).

Having established 5 nM of either IF-targeted siRNA-3WJ as being
sufficient to induce a significant reduction in each respective
mRNA, this concentration was used in subsequent experiments to
further examine the utility of the treatments under activation condi-
tions, as well as to investigate siRNA-3WJ-mediated Lcn2 knockdown.

In low-FBS astrocytes, we achieved significant reductions of Gfap and
Vim levels by G10- and V10-3WJs, both in resting and LPS+IFN-g-
activated cells, under therapeutic and preventative settings. In both
resting and activation conditions, G10-3WJ decreased Gfap expres-
sion by >60% (Figure 4A). V10-3WJs yielded similar results, with
Vim expression knocked down by >65% (Figure 4A). No appreciable
synergistic effects were evident in combinatorial treatments
comprising both G10 and V10 simultaneously (Figure 4A).

Knockdown of Lcn2 by L12-3WJs was consistent with the absolute
expression levels of Lcn2 in resting versus activated astrocytes, with
the most significant knockdown (87.1% ± 3.7%) being observed in
the resting condition (Figure 4A). L12-3WJ treatments in therapeutic
and preventative conditions exhibited somewhat lower knockdowns
relative to their non-treated controls (81.1% ± 5.4% and 59.2% ±

9.8%, respectively) (Figure 4A). 20-Fluoro-modified L12-3WJ,
intended for in vivo use due to the higher nuclease resistance of the
20F modification,53 demonstrated a comparable knockdown efficacy
en) to obtain cells with a mature, resting astrocyte phenotype. Cells were transfected

7 and 20, respectively, unless otherwise noted. Activation of astrocytes is achieved

the therapeutic treatment profile, and from D15 to D17 for the preventative profile.

nM Cy3_N03-3WJ under resting and activated conditions. Data are expressed as

t, and 10 images per coverslip. No statistically significant difference was observed

M Cy3_N03-3WJ (red), fixed 24 hr after transfection, and immunostained for GFAP

from a total of n = 22 z stacks of optical slices in 0.25-mm intervals) of the confocal

S/FGF2-free cultured “resting” astrocytes when transfected with 3WJs (with [+PPP]

rcial siRNA pools (NsiR, GsiR, or VsiR, being non-targeted, anti-Gfap, or anti-Vim,

transfected controls (2�DDCt method) with n R 3 biological replicates ± SD; Gapdh

ntrol samples (one-way ANOVA with Dunnett’s multiple comparison test).



Figure 4. siRNA-3WJ Nanotherapeutics Specifically

and Significantly Knock Down Expression of Target

Genes

(A) qPCR assays showing the knockdown of Gfap, Vim,

and Lcn2 target mRNA by 5 nM doses of their respective

siRNA-3WJ nanostructures. Downregulation measured

48 hr after transfection, under resting conditions. Mock

(Lipofectamine-only) or non-targeted negative control

3WJs were used as negative controls. Gapdh was the

reference gene. (B) Densitometric quantification of Vim

(54 kDa) and GFAP (50 kDa) western blots showing

siRNA-3WJ-induced protein knockdown in preventative

activation conditions (20 DIV) and a representative

image. Quantification is expressed relative to b-actin

and normalized to non-transfected control samples.

(C) Representative immunofluorescence micrographs

depicting the decrease in GFAP and Vim immunoreactivity

upon G10- or V10-3WJ treatment, respectively, in pre-

ventative activation conditions, compared with non-

treated and N03-3WJ-treated controls (GFAP and Vim:

green, DAPI-stained nuclei: blue). (D) Quantification and

representative image of Lcn2 (23 kDa) western blot under

resting, therapeutic, and preventative activation condi-

tions upon L12-3WJ treatment (16 DIV), compared with

non-treated controls. Quantification as per (B). (E) Lcn2

immunofluorescence, as per (C), with quantification of

intensity density (n = 3 biological replicates, 2 coverslips

per replicate, 10 fields of view per coverslip) of L12- and

N03-3WJ-treated samples versus non-treated controls

(Lcn2: red; DAPI-stained nuclei: blue). Scale bars,

100 mm. (F) Schematic of the LGV1-3WJ, a single 3WJ

core functionalized with the siRNA moieties of each of the

L12-, G10-, and V10-3WJs. In vitro transcribed RNA

strands LGVa, LGVb, and LGVc are annealed together;

black circles indicate a wobble base pair. (G) Agarose gel

(3%, TBM buffer) illustrating the stepwise assembly and

retarded mobility of the extended LGV1-3WJ construct

relative to single- and double-stranded intermediates.

Ultra-low dsDNA ladder is for reference. (H) qPCR assays

showing the knockdown of Gfap, Vim, and Lcn2 target

mRNA by a 5 nM dose of the LGV1-3WJ nanostructure,

as per the single-siRNA 3WJs in (A). Quantitative results

expressed as the mean of n R 3 biological replicates ±

SD. *p % 0.05; **p % 0.01; ***p % 0.001; or

****p % 0.0001, relative to control samples of the same

activation condition (two-way ANOVA [qPCR] or one-way

ANOVA [western blot] with Dunnett’s multiple comparison

test).

www.moleculartherapy.org
versus the 20-OH form (63.7% ± 4.9%) (Figure S6). LGV1-3WJ,
bearing all three of the siRNA moieties possessed by the L12-,
G10-, and V10-3WJs, produced significant downregulation of each
of the three target mRNAs simultaneously at a 5 nM dose under
preventative conditions (Figures 4F–4H).

No significant off-target effects were ever observed for targeted 3WJs,
nor did the non-targeted N03-3WJ induce any significant change in
the expression of Gfap, Vim, or Lcn2 (Figure 4A). Gfap-, Vim-, or
Lcn2-targeted 3WJs failed to affect the expression of pro-inflamma-
tory cytokine genes that included Il6, Nos2, Tnf, and Il1b (Figure S7).

In activated astrocytes, both G10- and V10-3WJs induced significant
reductions in GFAP and Vim protein expression, respectively (Fig-
ures 4B and 4C). GFAP levels were decreased 70.3% ± 7.0% by
G10-3WJ treatment, whereas Vim was down 95.0% ± 1.7% upon
Molecular Therapy: Nucleic Acids Vol. 10 March 2018 109
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Figure 5. L12-3WJ Treatment Ameliorates the

Propagation of Classical Activation by Reactive

Astrocytes

(A) Schematic of the conditioned media transfer experi-

ment. (B) ELISA quantification of Lcn2 in the supernatant

media of resting or LPS+IFN-g-stimulated astrocytes, as

well as activated astrocytes treated with mock, N03, or

L12 transfections, 48 hr after treatment. Asterisk (*) de-

notes statistical significance relative to the supernatant of

non-transfected, activated astrocytes; number sign (#)

is relative to non-transfected, resting astrocytes.

##p % 0.01, ###p % 0.001 relative to resting medium,

***p % 0.001 relative to activated medium. (C–F) qPCR

quantification of activation-associated genes in recipient

cells 24 hr after transfer of media from treated astrocytes:

(C) Gfap, (D) Vim, (E) Nos2, and (F) Lcn2; results are

expressed as themeanmRNA expression relative to those

cells receiving conditioned media from activated controls

(2�DDCt method) (Gapdh reference gene). Data represent

the mean of n R 3 biological replicates ± SD. *p % 0.05;

**p % 0.01; ***p % 0.001; or ****p % 0.0001, relative to

control samples in the same activation condition (two-way

ANOVA with Dunnett’s multiple comparison test).
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V10-3WJ treatment, both in the preventative setting. Combined treat-
ments invoked comparable downregulation in protein expression for
both IFs, ruling out synergistic effects. A further qualitative assess-
ment of GFAP or Vim expression by immunofluorescence confirmed
the results of the western blots (Figure 4C).

Lcn2 was detected in activated astrocytes by western blot at both 16
DIV (therapeutic and preventative) and 17 DIV (preventative only)
(Figure 4D). Treatment with L12-3WJ yielded a significant reduction
of Lcn2 in each condition (Figure 4D): 83.6% ± 5.1% reduction for the
therapeutic setting and 61.2% ± 2.4% for the preventative. This strik-
ing reduction in Lcn2 expression was also evident by immunofluores-
cence, with therapeutic and preventative samples exhibiting Lcn2
immunofluorescence reductions of 67.4% ± 7.0% and 57.8% ±

5.0%, respectively (Figure 4E).

Thus, siRNA-3WJs nanostructures can efficiently downregulate the
expression of reactive astrocyte-associated mRNAs and proteins.

siRNA-3WJ Nanostructures Downregulate Lcn2 in Reactive

Astrocytes In Vitro to Inhibit the Propagation of Astroglial

Responses

Secretion of Lcn2 significantly increased in activated astrocytes. Re-
placing cell media with fresh DMEM 24 hr after activation and sub-
sequently conditioning that DMEM for an additional 24 hr yielded
secreted Lcn2 concentrations of 0.2 ± 0.1 ng/mL in resting astrocytes
and 21.0 ± 3.2 ng/mL in activated astrocytes (Figure 5B). Concurrent
treatment of activated astrocytes with L12-3WJ reduced the mean
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secreted Lcn2 concentration to 6.8 ± 1.3 ng/mL, whereas mock or
N03-3WJ treatments had no effect.

To investigate the capacity of siRNA-3WJ nanostructures to inhibit
the propagation of astroglial responses, we assessed the effects of
activated astrocyte-conditioned media (aACM) on resting (sec-
ond-generation) astrocytes (as per the scheme in Figure 5A). Gfap
(Figure 5C) and Vim (Figure 5D) expression levels were unchanged
by aACM, with no appreciable induction between astrocytes treated
with aACM and control ACM. Conversely, we observed a signifi-
cant increase in the expression of Nos2 (Figure 5E) and Lcn2
(Figure 5F) in astrocytes receiving aACM (2.1-fold and 5.9-fold,
respectively). Interestingly, treatment of first-generation astrocytes
with L12-3WJ significantly reduced the induction of both Nos2
and Lcn2 in aACM-treated second-generation astrocytes (Figures
5E and 5F). Lcn2 also appeared downregulated, albeit much less
significantly, by treatment with the ACM from those astrocytes
mock-transfected or transfected with the non-targeted control
N03-3WJ (Figure 5F).

siRNA-3WJ Nanostructures Downregulate Lcn2 In Vivo in an

Experimental Model of Moderate Contusive SCI

To determine the efficacy of L12-3WJ administration in vivo, we em-
ployed an experimental model of moderate contusive SCI. It has been
observed, both in our own studies (data not shown) and in the liter-
ature,11 that Lcn2 expression is significantly upregulated at the
mRNA and protein levels starting 1 day postinjury, mainly in
activated astrocytes and infiltrating leukocytes. After performing



Figure 6. 20F-L12-3WJ Injection in an Experimental Model of Moderate Contusive Spinal Cord Injury Reduces Lcn2 mRNA and Protein Levels

(A) Schematic representation of 20F-L12-3WJ injection in an experimental model of moderate contusive spinal cord injury. (B) qPCR quantification showing the knockdown of

Lcn2 in mice treated with 10 mg of 20F-L12-3WJ, compared with injury-only control mice (sham), Lipofectamine-only treated mice, 10 mg of 20F-N03-3WJ, and 1 mg of

20F-L12-3WJ-treated mice (n = 3–4 mice per group). **p % 0.01, relative to sham control mice (one-way ANOVA with Dunnett’s multiple comparison test). Data represent

mean ± SD. (C) Quantification of Lcn2-postive volumes in injury-only control mice (sham) versus 10 mg of 20F-L12-3WJ-treated mice. Data are expressed as % of Lcn2+

volume ± SD over the total volume (n = 4 mice per group). *p% 0.05 (Student’s t test). Representative Lcn2 immunohistochemistry images in injury-only control (sham) and

10 mg of 20F-L12-3WJ-treated mice, counterstained with hematoxylin. Original magnification �4; scale bar, 500 mm. Corresponding representative 3D reconstructions

depict the lesion volume in red, with blue contours representing Lcn2+ volumes and light gray contour representing the spinal cord.
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moderate injury, 20F-L12-3WJs or control 3WJs were injected into the
lesion epicenter and mice were sacrificed after 2 days (Figure 6A).
These preliminary in vivo data showed a significant reduction
(55.7% ± 9.8%) of Lcn2 mRNA in SCI mice treated with a 10 mg
dose of 20F-L12-3WJ, compared with SCI mice injected with control
treatments, whereas SCImice treated with a 1 mg dose of 20F-L12-3WJ
showed little reduction in mRNA expression (Figure 6B). Significant
Lcn2 reduction in 20F-L12-3WJ-treated mice was observed at the pro-
tein level via immunohistochemical staining, with quantification of
Lcn2+ volumes in these treated mice showing an approximately
55% reduction in Lcn2 expression compared with sham-treated con-
trol SCI mice (Figure 6C).
These preliminary in vivo data indicate that the local delivery of
L12-3WJ can efficiently downregulate the expression of our gene of
interest at both mRNA and protein levels.

DISCUSSION
Astrocytes are a heterogeneous population of cells, which play signif-
icant roles in a multitude of functions integral to the maintenance of
CNS homeostasis. In response to a diversity of diseases or injuries,
astrocytes enter a reactive state marked by changes in gene expres-
sion, function, andmorphology.3,4,54 This phenomenon, known as as-
trogliosis, is a complex and heterogeneous response to molecular
stimuli that falls on a continuum of severity depending on the context,
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magnitude, or proximity of the insult.10,55 Indeed, healthy resting as-
trocytes exhibit varying degrees of reactivity in the normal physiolog-
ical function of the CNS, evincing the non-binary nature of activation.
A canonical manifestation of astrogliosis is the overexpression of IF
proteins such as GFAP and Vim, with subsequent hypertrophy
and entanglement of reactive astrocytes. In severe cases, astrocytes
become proliferative and, in a complex interplay between multiple
cell types and the extracellular matrix, form a dense glial scar.

Several in vitro and in vivo studies of reactive astrocytes show modu-
lation of a plethora of different structural and functional molecules in
an insult-specific and temporally dependent manner. This diversity is
reflected in the profile of effector molecules secreted by reactive astro-
cytes, pro-inflammatory and anti-inflammatory cytokines, growth
factors, and inhibitory agents, and thus the influence of such astro-
cytes on their environment. Consequently, astrogliosis is seen as a
double-edged sword in the context of CNS afflictions such as SCI,
where reactive astrocytes can play both beneficial and detrimental
roles. Thus, from a therapeutic perspective, gene knockout ap-
proaches toward ablating astrogliosis are undesirable because they
also inhibit the beneficial aspects of acute astrocyte reactivity and
other likely physiological roles for the gene of interest, in addition
to being clinically infeasible. A more translational approach could
be a controlled temporal regulation of astrogliosis, focusing on chron-
ically or excessively reactive astrocytes and/or specific deleterious
aspects of astrogliosis, rather than complete suppression of the
response.

Lcn2 is emerging as one such promising therapeutic target because of
its significant role in astrogliosis and neuroinflammation.13 Osten-
sibly involved in iron regulation and the innate immune response,
Lcn2 is upregulated/secreted by reactive astrocytes21,22,56–59 and has
been implicated in the modulation of inflammation in a number of
CNS disorders, including SCI,11 MS,25,60–62 and Parkinson’s disease.63

Autocrine/paracrine exposure to Lcn2 has been found to induce po-
larization toward a classically pro-inflammatory reactive phenotype
in both astrocytes and macrophages, with typical GFAP upregulation
and morphological changes in the former case, as well as sensitizing
astrocytes and neurons to cytotoxicity.22,57–59,64 Knockout of astro-
cytic Lcn2 has been shown to ameliorate reactivity under in vitro
and in vivo conditions in mouse neuroinflammation models,
with Lcn2 deficiency found to attenuate the neurotoxic effects of
LPS+IFN-g treatment, inhibiting the overexpression of GFAP and
pro-inflammatory markers.11,21,24 Moreover, Lcn2 knockout mice
have exhibited improved neuronal and tissue survival, greater sparing
of myelin, and significantly better locomotor recovery than wild-type
mice following contusion SCI.11

Nevertheless, as with the IF proteins, knockout of the gene is not yet a
clinically viable approach due to practical limitations and potential
unintended effects (e.g., Lcn2 is believed to play roles in cognitive
behavior and neurogenesis,12,65 whereas, more broadly, inflammatory
processes can convey some degree of neuroprotection under the right
circumstances66).
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Viral vectors are powerful tools for use in gene therapy applications
and are regularly exploited for transient gene regulation via the deliv-
ery of RNAi agents. However, clinical translation of such systems is
often hindered by several significant limitations, including the poten-
tial for immunogenicity or mutagenesis, or difficulties in production
and scalability.67 An easily synthesized, modular, dosable, and non-
toxic/non-immunogenic RNAi delivery platform, more reminiscent
of a conventional pharmaceutical drug, has potentially lower hurdles
to surmount on the path to clinical translation. Toward such a goal,
we undertook proof-of-concept experiments to investigate the utility
of pRNA-derived siRNA-3WJ nanotherapeutics in the CNS niche via
downregulation of reactive astrocyte-associated genes (Gfap, Vim,
and Lcn2) in an in vitro model of astrogliosis.

In establishing this model, we employed a convenient system by
which to readily obtain activation-inducible astrocytes through the
differentiation of NSCs45 in low-FBS, FGF2-supplemented media.
The self-renewability of NSCs coupled with the ease of differentiation
made this a more efficient option than harvesting primary astrocytes
and provided a more homogeneous culture. Low FBS proved integral
to obtaining confluent, basally resting astrocytes. We found the high-
FBS (FGF2-free) cultured astrocytes to have a high basal expression of
pro-inflammatory markers, IFs, and the activation marker pSTAT3.
Such astrocytes were largely immune to subsequent canonical activa-
tion. Serum is known to invoke a reactive state in astrocytes,68–70 and
FGF signaling has been found to suppress astrocyte activation71,72

and generate a mature, quiescent phenotype with low GFAP expres-
sion in the astroglial differentiation of stem cells.50 Serum restriction
and FGF2 supplementation resulted in more confluent cultures with a
less-reactive morphology and phenotype, and a susceptibility to an
inducible activation response.

Upon LPS+IFN-g exposure, low-FBS cultured astrocytes showed ev-
idence of both a classical pro-inflammatory response and canonical
astrocyte reactivity. Increases in the mRNA expression levels of
Tlr4 and Ifngr1/2 in the 48 hr following stimulation demonstrate
the reactivity of these astrocytes to this activation protocol, with
inductions in receptor expression in response to activation being
previously reported in astrocytes for both Tlr473–75 and Ifngr.76

Responsiveness to LPS+IFN-g treatment was further evidenced by
an increase in Ciita, a transcriptional co-activator of the major histo-
compatibility complex (MHC) class II, indicative of the acquisition of
a non-professional antigen-presenting cell functionality in response
to adaptive immune stimuli.77–80 Furthermore, there was a significant
induction in Nos2 upon stimulation, an important indicator of
activation and a precursor to the upregulation of IFs.78,81,82 This
pro-inflammatory activation response was further evident here as a
significant induction in the expression of Il6 in LPS+IFN-g-treated
astrocytes. Absolute mRNA quantities of Il6 and other examined
cytokines were low (and thus inherently noisy) at 48 hr, possibly
due to peak induction having occurred within 24 hr of activation83

and potentially masking relative changes in expression. Nevertheless,
ELISA measurements performed on the supernatant of astrocytes
activated for 48 hr did show a significant increase in the concentration
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of secreted IL-6. A transient LPS+IFN-g-induced activation
was observed by pSTAT3 western blots, peaking after just 1 hr of
LPS+IFN-g exposure. Lcn2, also regulated via STAT3 activation,
was very significantly upregulated relatively quickly in LPS+IFN-g-
treated astrocytes. Intriguingly, Il1b mRNA levels were observed to
decrease substantially upon LPS+IFN-g stimulation despite IL-1b up-
regulation being commonly associated with reactive astrocytes. This
might be attributable to an inhibitory effect of IFN-g on IL-1b pro-
duction that has previously been reported in mouse (but not human)
astrocytes.84 This is supported by in vivo evidence that shows no
IL-1 (a or b) induction in rat astrocytes upon intra-hippocampal
LPS+IFN-g injection.85 Similarly, the very low levels of IL-1b in
high-FBS culture astrocytes might be because of their high basal
expression of IL-6, which can also reportedly inhibit IL-1b
expression.86

Low-FBS astrocytes also responded to LPS+IFN-g-mediated activa-
tion by upregulating the expression of GFAP and Vim at both
mRNA and protein levels. Gfap and Vim were notably higher than
resting controls in the 48 hr post-activation, whereas at 96 hr post-
activation the expression of both IF genes had reduced back to a level
intermediate between their resting and 48 hr activated state. Protein
levels quantified from western blots performed 5 days post-activation
were likewise elevated, and increased immunoreactivity was also
evident in fluorescence micrographs. This response, reminiscent of
canonical astrogliosis, was ideally suited to subsequent characteriza-
tion of siRNA-3WJ efficacy.

Our basic siRNA-3WJ designs were based on the pRNA-derived 3WJ
architecture, well established as a novel and efficacious RNAi delivery
platform.43 Themulti-armed nature of the systemmakes it well suited
to modular and/or multifunctional applications, with room for
expansion beyond these current proof-of-concept experiments.
Furthermore, the size of such siRNA-3WJs has previously been estab-
lished to be approximately 5–30 nm (functionality dependent),27

optimally sized to be taken up into cells without significant loss to
renal filtration or stimulation of the innate immune response. More-
over, this size is well suited to diffusion within the brain, being at the
lower end of the range estimated for the size of the extracellular
space.87 The pRNA system has demonstrated considerable promise
in the targeted delivery of RNAi or small-molecule drugs for anti-can-
cer and anti-viral applications in vitro and in vivo,26,88,89 but these
current studies represent the first applications in a CNS-specific envi-
ronment. The present designs incorporate a single siRNA sequence
per structure, each of which were selected to match the target
sequences employed in commercially validated anti-Gfap, -Vim,
-Lcn2, and non-targeting siRNA pools. Upon reaching an intracel-
lular environment, the siRNA moiety is cleaved from the 3WJ by
the endonuclease Dicer before entering the RNA-induced silencing
complex (RISC) and guiding the cleavage of mRNA strands comple-
mentary to the target sequence.90

The two longer RNA strands of each 3WJ (A and C strands) were
prepared via in vitro transcription and dephosphorylated to remove
50-triphosphate groups, an artifact of transcription using nucleotide
triphosphates. In mammalian cells, the presence of uncapped
50-triphosphate (or diphosphate) groups on nucleic acids is a known
PAMP, recognized in the cytosol by the RIG-I helicase as a probable
viral infection and triggering a type I IFN inflammatory response.91,92

Indeed, siRNA-3WJs retaining their 50-triphosphate groups provoked
a significant pro-inflammatory response in transfected astrocytes,
evident as increased levels of Ifnb1, Il6, and Tnf. This effect was
mirrored by significant increases in the quantity of secreted IL-6
and TNF-a upon transfection with phosphorylated siRNA-3WJs.
No such induction, neither at the mRNA nor protein levels, was
evident upon transfection with the dephosphorylated constructs,
which bypass the RIG-I-mediated antiviral response.93 An avoidance
of RIG-I-mediated IFN responses is an important consideration for
nucleic acid nanotherapeutics94 and particularly pertinent in this
context because the activation of RIG-like receptor signaling has
been directly implicated in the onset of astrogliosis.95 The dephos-
phorylated transcripts were subsequently annealed together with a
third, synthetic B strand to yield the assembled construct.

Moreover, 3WJ transfection was found to have no off-target effect on
the expression of putative reference genes in qPCR experiments, an
important validation for experiments utilizing the 2�DDCt method
of assaying relative gene expression.96 Our reference gene of choice,
Gapdh, was unaffected by activation or transfection, with or without
a 3WJ payload. 3WJs were found to be non-toxic, with doses as high
as 50 nM showing negligible impact on the viability of astrocytes for at
least 120 hr post-transfection.

Thus, these preliminary assessments speak to the safety of the 3WJ
therapeutic platform in a CNS context; however, more extensive
profiling, especially pertaining to potential off-target effects,97 would
be required before any translational push.

Upon transfection, the siRNA-3WJs were successfully able to knock
down the expression of their target genes in a specific and dose-
dependent manner. Preliminary studies pointed toward an optimal
dose of 5 nM as the basis for further investigation; higher doses
yielded no appreciable increase in silencing efficacy, possibly because
of saturation of the RNAi machinery.98 At this dose, the G10- and
V10-3WJs induced >60% knockdown of their respective target genes
relative to non-transfected controls. The extent of downregulation
was similar under resting conditions and two different activation pro-
files: preventative and therapeutic. The preventative approach is in-
tended to forestall the onset of activation, whereas the therapeutic
method is perhaps the more clinically relevant scenario as it seeks
to ameliorate already present astrogliosis. Combinatorial approaches
employing both G10- and V10-3WJ did not reveal any synergistic,
antagonistic, or compensatory effects, and neither anti-IF 3WJ had
a significant effect on the expression of the other IF, at least at the
mRNA level, despite the interfunctionality of these two IFs.99 Alterna-
tively, treatment with LGV1-3WJ, targeting all three mRNAs, signif-
icantly downregulated each gene simultaneously, demonstrating the
potential for multifunctionality and adaptability in the 3WJ platform.
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Mock and non-targeted N03-3WJ control transfections also had no
effect on Gfap or Vim levels, ruling out any obvious side effects of lip-
ofection, at least with regard to IF expression. L12-3WJ was found to
nearly completely ablate the expression of Lcn2 in resting astrocytes,
again with no obvious effect on the other target genes, but was also
highly efficient in activated astrocytes wherein Lcn2 expression is
many orders of magnitude higher. Such results are promising given
the relatively low concentration of the siRNA-3WJs employed
compared with other studies15 and the aim of causing a reduction
in IF expression, rather than complete silencing.

Silencing observed at the mRNA level was reflected at the protein
level. Strong reductions in GFAP and Vim expression were evident
in astrocytes under all resting and activation conditions. Substantial
Lcn2 knockdown was also observed. Thus, low doses of siRNA-
3WJs are capable of downregulating astrogliosis-associated molecular
markers at both mRNA and protein levels in astrocytes. However, the
broader ramifications of such an intervention require further study.

Toward this end, we also examined the effect of 3WJ treatments
on the expression of several pro-inflammatory cytokines and
markers. Il6 and Nos2 expression levels, each found to be elevated
in LPS+IFN-g-treated low-FBS astrocytes, were unaffected by the
substantial reductions in Gfap, Vim, or Lcn2 afforded by our
siRNA-3WJs. This may be because of the noise inherent in qPCR
quantification of these low-abundance (high-threshold cycle [Ct])
transcripts masking change, or incongruities between the kinetics
of protein knockdown versus subsequent secondary effects on cyto-
kine/chemokine mRNA expression, and the time point at which
these are assayed. However, an effect on the expression of these
signaling mediators is not necessarily a certainty following the
knockdown of our selected targets, particularly the IFs. IL-6 and
nitric oxide (NO) synthesis play roles upstream of the induction
of IFs,81,100 so downregulation of GFAP/Vim is likely to be too
late an intervention in the astrogliosis response to modulate the
pro-inflammatory polarization of astrocytes. Lcn2, however, is
known to be a secreted autocrine/paracrine mediator of astrogliosis,
induced via activation of signaling pathways such as STAT3 or
NF-kB, but also able to activate those same pathways upon secretion
and subsequent binding to the 24p3R receptor on astrocytes.13,59,101

Despite this causal relationship between Lcn2 induction and astro-
cyte reactivity,64 our studies revealed no obvious consequence to
Lcn2 ablation with respect to changes in cytokine (or Nos2) or IF
expression, by qRT-PCR, western blot, immunofluorescence, or
ELISA, in direct knockdown experiments. Again, this might be a
question of induction/knockdown kinetics with induction of reac-
tivity via stimulation with a large LPS+IFNg dose potentially being
sufficiently overwhelming to mask or inhibit therapeutic actions
resulting from siRNA-3WJ treatment.

As a means to further investigate this hypothesis, we sought to inves-
tigate the paracrine mediation of reactivity in resting astrocytes
by reactive astrocytes, ostensibly via secreted Lcn2 (among other
actors). This was accomplished by transferring media conditioned
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by activated astrocytes to non-reactive astrocytes and characterizing
the extent of the induced secondary reactivity. ACM obtained from
LPS+IFN-g-stimulated astrocytes (aACM) was found to induce a sig-
nificant induction in Lcn2 and Nos2 expression in recipient resting
astrocytes. These genes are significant in Lcn2-mediated reactivity
because Lcn2 is known to upregulate NO production, which in turn
leads to astrogliosis-associated GFAP overexpression.59,81 Moreover,
this apparent induced reactivity was completely inhibited by treating
the conditioning (stimulated) cells with L12-3WJ, with the mRNA
levels of Lcn2 and Nos2 in the aACM-treated astrocytes found to be
reduced to controls. ELISA measurements performed on the condi-
tioned media of reactive astrocytes confirmed that they do signifi-
cantly upregulate the secretion of pro-inflammatory Lcn2 upon
activation, and that this secretion is ameliorated by treatment with
L12-3WJ. The levels of secreted Lcn2 correlate well with the subse-
quent induction of Lcn2 and Nos2 expression in recipient astrocytes.
These data support the hypothesis that Lcn2, as secreted by reactive
astrocytes, can act as a significant contributor to the propagation of
inflammation and astrogliosis, and that a therapeutic intervention
employing anti-Lcn2 3WJs can ameliorate this response. Neverthe-
less, other secreted factors are likely to play unique or synergistic roles
in this phenomenon. It is noteworthy that ACM from bothmock- and
N03-treated astrocytes can decrease the Lcn2 mRNA induction in
recipient cells despite little effect on Lcn2 secretion from the donor
cells. Clearly other mechanisms of activation/deactivation remain to
be elucidated, and optimization of the timing of the ACM transfer
is required to better observe the activating effects of transferred
secreted Lcn2.

To investigate the efficacy of L12-3WJ in vivo, we employed an exper-
imental model of moderate contusive SCI. Local delivery of a rela-
tively low dose (10 mg) of nuclease-resistant 20F-L12-3WJ to the
injury immediately after injury significantly reduced Lcn2 expression
compared with control mice. This downregulation was evident at
both mRNA and protein levels. Notably, the use of a comparable
dose of 20F-N03-3WJ as a negative control did not induce any signif-
icant non-specific effects in Lcn2 expression, nor did lipofectamine
injection only.

In summary, our data prove that the basic siRNA-3WJ construct is a
potent, non-toxic, and non-immunogenic platform by which to
deliver RNAi-based therapeutics in the CNS niche. Specifically, we
have demonstrated the efficacious knockdown of several astroglio-
sis-associated genes, with significant reductions in mRNA and pro-
tein expression using relatively small doses of siRNA-3WJ. Moreover,
knockdown was highly target-specific with obvious off-target
silencing negligible compared with equivalent doses of commercial
siRNA pools. Knockdown of Lcn2 resulted in a concomitant decrease
in the secretion of this neuroinflammatogen, thus impeding the abil-
ity of reactive astrocytes to spread inflammation and astrogliosis. The
silencing efficacy of the platform was mirrored in preliminary in vivo
experiments, with a significant mitigation of the early Lcn2 peak
observed in contusion SCI. Although these preliminary studies
utilized very basic siRNA-3WJ constructs, the multifunctional and
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modular nature of the platform lends itself to future optimization for
more specific in vivo applications in the CNS by incorporating further
therapeutic or targeting moieties.

MATERIALS AND METHODS
Materials

Oligonucleotides (desalted) were obtained from either Invitrogen or
Sigma, whereas siRNAs (mouse anti-Gfap, anti-Vim, and anti-Lcn2
ON-TARGETplus SMARTpools, and the ON-TARGETplus Non-
Targeting pool) were obtained from Thermo Scientific. All RNA
solutions and buffers were prepared in RNase-free water.

Cell Culture

NSCs to be differentiated into astrocytes were isolated from the sub-
ventricular zone of adult C57BL/6 mice as previously described.102

NSCs were cultured as neurospheres in NeuroCult basal medium
(mouse; STEMCELL Technologies) containing 10% NeuroCult pro-
liferation supplement (mouse; STEMCELL Technologies), 2 mg/mL
heparin (STEMCELL Technologies), 20 ng/mL recombinant human
EGF (PeproTech), 10 ng/mL recombinant human FGF-basic
(FGF2; PeproTech), and 100 U/mL penicillin-streptomycin
(GIBCO), and passaged every 3–5 days.103 High-FBS/FGF2-free
astrocyte differentiation was performed in media prepared using
low-glucose DMEM (1 g/L glucose; GIBCO) with 10% FBS (GIBCO),
1 mM glutamine, and 100 U/mL penicillin-streptomycin. Low-
FBS/+FGF2-cultured astrocytes were grown in high-FBS medium
supplemented with 50 ng/mL FGF2 for the first 7 days before switch-
ing to a low-FBS version (1% FBS) supplemented with N-2 Supple-
ment (1� final concentration; Life Technologies) and 50 ng/mL
FGF2. “Activation” versions of each media were also prepared, each
containing 2 mg/mL LPS (Sigma-Aldrich) and 3 ng/mL murine
IFN-g (PeproTech). All proliferating cell lines were routinely checked
for Mycoplasma contamination. NSC neurospheres were enzymati-
cally dissociated into single cells using Accumax (Sigma-Aldrich)
and plated on poly-D-lysine (PDL)-coated plastic plates or glass cov-
erslips at 80,000 cells/cm2 prior to differentiation in astrocyte media,
yielding approximately 70%–90% astrocyte confluency at the later
time of analysis (FGF2-free media yielding lower confluences). All
cells were cultured at 37�C in a humidified atmosphere of 5% CO2.

Immunofluorescence and Confocal Microscopy

Cells grown on PDL-coated glass coverslips were fixed in 4% parafor-
maldehyde for 10 min at room temperature at the appropriate time
point post-differentiation or post-transfection, following 1 hr
of serum deprivation. The coverslips were washed three times with
1� PBS before being incubated in blocking solution (1� PBS contain-
ing 0.1% Triton X-100 and 5% normal goat serum [NGS; Sigma]) for
60 min at room temperature. Fixed cells were subsequently incubated
in the same blocking solution containing the desired primary anti-
bodies (Table S2) overnight at 4�C. The following day, the cells
were washed in PBS and incubated in blocking solution containing
the appropriate fluorochrome-conjugated secondary antibodies
(1:1,000 dilution) for 60 minutes at room temperature. Coverslips
were subsequently washed again with PBS before cell nuclei were
counterstained with a 1 mg/mL solution of DAPI (Roche) in PBS.
After a final wash, coverslips were mounted onto slides with fluores-
cent mounting medium (Dako). Immunofluorescence images were
acquired at �20 and �40 magnification using a Leica DM6000 epi-
fluorescent microscope, whereas confocal images were acquired
on a Leica TCS SP5 Microscope. Images were processed using the
Fiji software package,104 and three-dimensional (3D) reconstructions
generated using Volocity (PerkinElmer).

ELISA

Levels of secreted murine IL-6, TNF-a, and Lcn2 were quantified us-
ing sandwich ELISA development kits (IL-6 and TNF-a [PeproTech],
Lcn2 [R&D Systems]). 2 � 106 NSCs were seeded in 10 mL of astro-
cyte medium on PDL-coated T25 plates. Medium was refreshed every
3 days, for which 3 mL was used for the assay. At 15 DIV, cells were
exposed to the activation medium. Before activation, medium was
collected (i.e., 0 hr activation). Medium was collected at 6, 12, 24,
and 48 hr post-activation. Collected medium was spun for 15 minutes
at 2,000 � g at 4�C, and supernatant was collected and stored
at�80�C. To quantify IL-6, TNF-a, and Lcn2, we used 96-well micro-
plates (Nunc-Thermo Scientific) to run the experiments. Eight-point
standard curves were generated by using serial dilutions of standard
solutions of each protein, diluted with either the diluent or the astro-
cyte medium used to differentiate NSCs into astrocytes. This has been
performed to check whether the medium can interfere in the detec-
tion of the cytokines of interest. Data analysis was performed by inter-
polating unknown concentrations with the recombinant mouse IL-6,
TNF-a, or Lcn2 standard curves after nonlinear regression fit, using
the sigmoidal dose-response variable slope curve on log-transformed
data (four-parameter logistic regression).

qRT-PCR

Total RNA was extracted from cells using TRI Reagent (Sigma) and
the protocol provided by the supplier. RNA was quantified using a
NanoDrop 2000 spectrophotometer (Thermo), with purity assessed
by means of A260/A280 and A260/A230 ratios. From 500 ng of total
RNA, cDNA was generated using a High-Capacity cDNA Reverse
Transcription kit (Life Technologies) using random hexamer
primers. qRT-PCR was subsequently performed using TaqMan re-
agents (TaqMan Fast Universal PCR Master Mix [2�] and FAM-
labeled TaqMan Gene Expression Assays) (Table S3) and an Applied
Biosystems 7500 Fast real-time PCR system. Where possible, exon-
spanning TaqMan probes were used to control for possible genomic
DNA contamination. Unless otherwise noted, mouse Gapdh (VIC-
labeled; Life Technologies) was used as a housekeeping reference
gene for determining relative gene expression using the 2�DDCt

method.105 Each biological sample was measured in triplicate.

Western Blots

Cells were collected from six-well plates at appropriate time points
post-transfection (refer to text). Proteins were extracted from the
pellets by solubilization in radioimmunoprecipitation assay (RIPA)
buffer (Abcam) with the addition of Complete Protease Inhibitor
Cocktail (Roche) and Halt Phosphatase Inhibitor Cocktail (Thermo
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Scientific), as well as 1 mM phenylmethanesulfonyl fluoride (Sigma),
to inhibit serine proteases. Protein quantification was performed us-
ing a Pierce BCA Protein Assay kit (Thermo Scientific).

Sample volumes equivalent to 20 mg of total protein were mixed with
NuPAGE LDS Sample Buffer (Life Technologies), NuPAGE Sample
Reducing Agent (Life Technologies), and distilled water prior to being
heated at 95�C for 5 min. Proteins were separated by SDS-PAGE in a
10% gel using a Novex Bolt Mini Gel system and running buffer
(Tris 25 mM, glycine 192 mM, SDS 10%) before being transferred
onto Immobilon-P polyvinylidene fluoride membranes (0.45-mm
pore size, methanol equilibrated; Millipore) in transfer buffer
(Tris 25 mM, glycine 192 mM, methanol 20%) for 1 hr 45 min at
4� using a Novex Bolt Mini Blot Module. A SeeBlue Plus2 standard
(Life Technologies) was used to estimate protein sizes, and transfer
was confirmed by Ponceau S (Sigma) staining. For immunoblot anal-
ysis, membranes were blocked 1 hr at room temperature with 0.1%
Tween 20 and 5% dried skimmed milk powder (Marvel) in PBS
(pH 7.4) and then incubated with primary antibodies overnight at
4�C (Table S4) diluted in antibody solution (0.1% Tween 20, 5% dried
skimmed milk powder in PBS) to the appropriate concentration. Af-
ter washing with PBS/0.1% Tween 20, the membranes were incubated
with the species-appropriate horseradish peroxidase-conjugated sec-
ondary antibodies (Thermo Scientific) for 1 hr at room temperature at
a 1:10,000 dilution in antibody solution. Immunoreactivity was re-
vealed using Western Lightning Plus-ECL (PerkinElmer) and imaged
using a Bio-Rad ChemiDoc XRS+ system with Image Lab 5.1 software
(Bio-Rad). Densitometry measurements were performed using Fiji,
with each protein band being normalized to the b-actin loading
controls.

3WJ Design and Construction

pRNA-based siRNA-3WJs were designed as per the schematic illus-
trated in Figure 3A, with an siRNA sequence of interest appended
to one of the arms of the pRNA 3WJ core as previously established.43

The siRNA sequences employed in the 3WJs described herein were
adapted from those used in the commercially obtained anti-Gfap,
anti-Vim, anti-Lcn2, and non-targeting siRNA pools used as
positive/negative controls in these experiments (Table S1). Strands
A and C of the 3WJ were designed to contain the sense and antisense
siRNA sequences, respectively.

Assembly of the siRNA-3WJs was performed according to previously
reported techniques.106 The shorter, 20-nt B RNA strand is common
to each of the 3WJ structures and so was purchased from a commer-
cial vendor as an oligonucleotide stock. The longer, approximately
41-nt A and C RNA strands of each 3WJ were obtained as double-
stranded DNA (dsDNA) templates from which the appropriate
RNA strands could be prepared by in vitro transcription. The DNA
templates were purchased as single, complementary strands, made
up as stock solutions of approximately 100 mM per strand in tris/
EDTA (TE) buffer, and equimolar amounts of each strand annealed
together in 1� tris/magnesium/saline (TMS) buffer using a thermal
cycler (5 min at 80�C before cooling by 1�C every 30 s until reaching
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a minimum of 4�C). Each dsDNA template was designed with a 50 T7
RNA polymerase promoter sequence (TAA TAC GAC TCA CTA
TTG G) to facilitate efficient transcription. Template concentrations
were quantified using a NanoDrop spectrophotometer.

Transcription of the A and C RNA strands was performed using a
TranscriptAid T7 High Yield Transcription Kit (Thermo Scientific)
using the accompanying protocol. RNA products were isolated and
purified by DNase treatment and subsequent denaturing polyacryl-
amide gel electrophoresis (10% polyacrylamide (w/v) gel with 8 M
urea in tris/borate/EDTA [TBE] buffer). RNA bands of the appro-
priate length were identified by UV shadowing, cut from the gel,
and diced into small pieces that were transferred to 1.5-mL Eppendorf
tubes. The pieces were submerged in an elution buffer (0.5 M ammo-
nium acetate, 0.1 mM EDTA, 0.1% SDS) and heated to 37�C water
bath for 2 hr. The eluate was subsequently transferred to new tubes
and stored on ice while the gel pieces were subjected to a further
hour of elution using a fresh aliquot of elution buffer. All fractions
of each eluate were then combined into the same tube, and the eluted
RNA precipitated by the addition of 1/10 equivalent volumes of 3 M
sodium acetate (pH 5.2) and 2.5 equivalent volumes of 100% ethanol.
The solutions were mixed well and stored at�20�C overnight prior to
centrifugation (16,500 � g for 30 min at 4�C), removal of the super-
natant, and washing of the pellet in 500 mL of cold 75% ethanol with a
further centrifugation (16,500 � g for 15 min at 4�C). The superna-
tant was again discarded and the pellet briefly dried in a vacuum
concentrator prior to storage at �20�C until ready for siRNA-3WJ
assembly.

Before assembly, the A and C transcribed RNA strands and the B
strand oligonucleotides were re-dissolved in RNase-free water, and
the concentration of each solution quantified using a NanoDrop.
Where desired, RNA strands were labeled with a fluorophore (i.e.,
Cy3) using a Label IT Nucleic Acid Labeling Kit (Mirus BioScience)
according to the supplier’s protocol with subsequent ethanol precip-
itation, re-dissolution, and re-quantification. Transcription and label-
ing success was assayed using an additional PAGE gel, running
approximately 200 ng of each RNA strand in lanes alongside an Ultra
Low Range dsDNA ladder (Thermo Scientific) by which to ensure
each RNA strand was pure and of the correct length. Fluorescently
labeled bands were identified using a ChemiDoc XRS+ system with
the appropriate excitation wavelength, whereas non-labeled bands
were identified by UV transillumination following staining with
ethidium bromide or GelRed.

Assembly of each 3WJ was achieved by combining equimolar
amounts of the appropriate strands A and C with strand B in 1�
TMS buffer, typically on a 50-mL scale in a 200-mL PCR tube. The so-
lutions were then subjected to an annealing temperature profile in a
thermal cycler: heated to 80�C and held for 5 min before cooling
1�C every 30 s until reaching a minimum temperature of 4�C. Assem-
bled 3WJs were purified of excess single RNA strands or misas-
sembled by-products using native PAGE (10% polyacrylamide in
TBM buffer, run at 4�C to inhibit thermal denaturation). The 3WJ
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bands are identified using UV shadowing cut from the gel and eluted
as per the single-strand transcription products, albeit with a non-
denaturing elution buffer (0.5 M ammonium acetate, 10 mM
MgCl2). The assembled 3WJs were ethanol precipitated from the
collected eluate, re-dissolved in RNase-free water, and quantified us-
ing a NanoDrop. Success of assembly was assayed by running 100 ng
of each 3WJ in an additional non-denaturing polyacrylamide or
agarose gel alongside the Ultra Low Range DNA Ladder, as well as
samples of single A, B, and C strands and annealed two-strand con-
structs. Correctly assembled 3WJs showed lower gel mobility than
did double- or single-stranded RNAs (see Figure 3B) and were diluted
to a stock concentration of 5 mM in 1� TMS buffer solution for sub-
sequent use. Further size characterization was undertaken using dy-
namic light scattering: 1 mM solutions of the 3WJs in 1� TMS were
measured using a Zetasizer Nano ZS (Malvern Instruments).

A triple-siRNA functionalized version of the 3WJ, LGV1-3WJ, was
similarly prepared from three in vitro-transcribed RNA strands,
such that each arm possessed an siRNA moiety corresponding to
the L12-, G10-, and V10-3WJs (Figure S3A). Assembly was likewise
monitored electrophoretically (Figure S3B).

Whereas 3WJs intended for in vitro use were constructed from un-
modified RNA, those made for in vivo use were assembled from
RNA strands incorporating 20-fluoro modified pyrimidines to afford
greater nuclease resistance. Appropriately modified A, B, and C
strands were prepared from DNA templates via in vitro transcription
using a mutant polymerase (Durascribe T7 transcription kit;
Epicenter) and further processed as per the unmodified analogs.

In Vitro Transfection of NSC-Derived Astrocytes with siRNA/

siRNA-3WJs

Cellular delivery of RNAs was accomplished via transfection using
the liposomal transfection agent Lipofectamine RNAiMAX (Life
Technologies). Silencing experiments under resting conditions were
performed on astrocytes after 15 days differentiation in vitro using
siRNA or siRNA-3WJ concentrations of 5, 0.5, and 0.05 nM (prelim-
inary tests using primary astrocytes indicated that an optimal trade-
off between silencing and off-target effects might exist in this range;
data not shown). Immediately prior to transfection the astrocyte dif-
ferentiation medium was replaced with low-glucose (1 g/L) DMEM
serum-free medium per well. Transfections were performed accord-
ing to the protocol accompanying the Lipofectamine agent. In brief,
5 mM stock solutions of the siRNAs or siRNA-3WJ of interest were
diluted in DMEM and combined with an equivalent volume of
DMEM containing Lipofectamine RNAiMAX (5 mL of Lipofectamine
per well of a six-well plate). The solution was mixed well and allowed
to incubate for 10 min before being added to cells such that the final
concentration of siRNA/siRNA-3WJ was 5, 0.5, or 0.05 nM, as
desired, in a 3 mL final volume of serum-free medium. Each experi-
ment included mock transfections (Lipofectamine only, no RNA) and
untreated control wells (DMEM only, no RNA or Lipofectamine).
The transfection medium in each well was replaced with FBS-con-
taining astrocyte differentiation medium 6 hours post-transfection.
RNA samples were collected 48 hours post-transfection and proteins
collected at various time points post-transfection, according to previ-
ously described methods. In order to investigate the effect of the
RNAs on reactive astrocytes, we repeated the experiments (at 5 nM
siRNA concentrations only) under activation conditions. Astrocytes
were stimulated with LPS+IFN-g-containing media for 48 hours
prior to (therapeutic) or concurrent with and following (preventative)
transfection at 15 DIV, with total RNA/protein collection performed
as per the unstimulated samples.

Cytotoxicity Assay

The toxicity of siRNA-3WJ treatment was ascertained using a LDH-
Cytotoxicity Assay Kit II (Abcam), following the instructions pro-
vided. Toxicity/viability was normalized to non-transfected controls
(100% viability) and samples lysed with a 10% solution of Triton
X-100 (0% viability). Assays were performed on the supernatant of
low-FBS/+FGF2 astrocytes grown in six-well plates, at time points
of 24, 48, and 120 hr post-transfection. The 48- and 120-hr time
points included a medium change at 6 hr post-transfection.

Conditioned Medium Experiments

Conditioning astrocytes, activated with or without a concomitant
transfection with 5 nM L12-3WJ, were washed twice with PBS
and had their medium exchanged for DMEM (low glucose,
100 U/mL penicillin-streptomycin) at 24 hr post-transfection/
activation. At 48 hr post-transfection/activation this ACM was
spun at 600 � g for 10 min to remove debris; some of this medium
was collected for ELISA measurements, whereas the remainder was
transferred to recipient resting astrocytes. After a further 24 hr, the
RNA of these target astrocytes was collected for qPCR analysis.

Contusion Model of SCI in Mice and siRNA-3WJ Injections

All experimental procedures were performed in accordance with the
Animals (Scientific Procedures) Act 1986 Amendment Regulations
2012 following ethical review by the University of Cambridge Animal
Welfare and Ethical Review Body (AWERB). Animal work was
covered by the PPL 700/8840 (S.P.). A total of n = 20 adult 4- to
6-week-old male C57BL/6 mice (Charles River) were deeply anesthe-
tized with 2% Isoflurane in oxygen (1.5 L/min), and a single-vertebra
laminectomy was performed in order to expose the spinal cord at the
T12 level. A moderate injury was performed using a 70 kdyne force
from an Infinite Horizon Impactor (Precision Systems and Instru-
mentation), as previously described by Cusimano et al.107 Following
the injury, two different quantities (1 and 10 mg) of 20F-modified
L12-3WJ were delivered via transfection using the liposomal transfec-
tion agent Lipofectamine RNAiMAX (Life Technologies) into the
parenchymal lesion center using a 5-mL syringe with a short 33G
needle (Hamilton), in a total injection volume of 500 nL. Control
animals received equivalent volume injections of either 10 mg of the
negative control 20F-N03-3WJ or diluted Lipofectamine RNAiMAX
vehicle alone, or were part of an injury-only (sham) group. Ex vivo
analyses were subsequently performed on three to four mice of
each of the five treatment groups. Buprenorphine (Temgesic) was
provided pre- and post-operatively; enrofloxacin (Baytril; Bayer)
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was provided pre-operatively and once daily to prevent infections.
Bladders were manually expressed twice daily.

Tissue Processing, Ex Vivo Analysis, and Tissue Pathology

2 days after injury/injections, mice were anesthetized with an intra-
peritoneal injection of ketamine 10 mg/mL (Boehringer Ingelheim)
and xylazine 1.17 mg/mL (Bayer), and transcardially perfused with
saline (sodium chloride 0.9%) plus 0.5 M EDTA (Sigma), followed
by cold 4% para-formaldehyde (PFA) in PBS (pH 7.4). The isolated
spinal cords were post-fixed in the same solution for 12 hr at 4�C.
Tissues were then washed with PBS and cryoprotected for at least
24 hr in 30% sucrose (Sigma) in PBS at 4�C. Finally, samples were
embedded in Optimal Cutting Temperature (OCT) compound
(VWR Chemicals) and frozen using dry ice. Frozen cord blocks
were placed in a cryostat (CM1850; Leica), and 25-mm-thick axial sec-
tions were cut and collected onto SuperFrostPlus slides (Thermo
Scientific). A total of 10.5 mm of each cord segment, centered onto
the lesion site, was cut and collected onto slides. Sections were then
stored at �80�C until needed.

RNA was extracted from four tissue slides. Spinal cord segments were
gently detached from the coverslips using a blade and placed into a
1.5-mL tube. Total RNA was extracted by resuspending tissues in
500 mL of TRI Reagent (Sigma) and incubating at room temperature
for 10 min. Proteinase K from Tritirachium album (Sigma) was acti-
vated at 37�C for 10 min prior to addition to the TRI/RNA solutions
at a 1:100 dilution and incubated at 55�C for 2 hr, followed by 80�C
for 15 min. RNA was then isolated, reverse transcribed, and subjected
to qPCR as described above.

For quantification of Lcn2+ volumes, tissue sections were pre-
treated with peroxidase 3% for 15 min and then incubated for
1 hr at room temperature in the blocking solution (PBS, 10%
NGS [Sigma-Aldrich], 0.3% Triton X-100 [Sigma]). Anti-Lcn2 pri-
mary antibody (MAB1857; R&D Systems) was diluted (1:200) in a
solution of PBS + 1% NGS ± 0.3% Triton X-100 and incubated at
4�C overnight. The following day, after washing the sections with
PBS 1�, the appropriate biotinylated secondary antibody was
diluted in a solution of PBS + 1% NGS, 0.3% Triton X-100 and
incubated for 1 hr at room temperature. “A” and “B” components
of a Vectastain Elite ABC kit (Vector Laboratories) were then incu-
bated for 1 hr at room temperature, and finally the reaction
was developed using 3,30-diaminobenzidine (DAB) following the
supplier’s instructions. The reaction was blocked by washing the
sections with distilled water, and sections were counterstained
with hematoxylin. The sections were then dehydrated with
increasing % alcohol solutions, washed in xylene (Merck), and
mounted with a synthetic Eukitt mounting medium (Sigma).

Lcn2+ areas were outlined from a total of n = 7 equally spaced axial
spinal cord sections using an Olympus BX53 microscope with motor-
ized stage andNeurolucida software (v11.07 64-bit; Microbrightfield),
and descriptive 3D spinal cord reconstructions were obtained. Lesion
margins were determined by using hematoxylin staining, and data
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were expressed as the percentage (%) of Lcn2+ volumes per
section (±SD).

Statistical Methods

Statistical analyses were performed using the GraphPad Prism 6 soft-
ware package. One-way ANOVA followed by Dunnett’s multiple
comparison test was used for comparison of three or more experi-
mental groups (qRT-PCR data), whereas two-way ANOVA with
Bonferroni post-tests was used for multi-group comparisons under
multiple conditions. For comparison of two experimental groups,
Student’s t test was applied withWelch’s correction. Graphical results
are expressed as the mean ± SD and textual descriptions as the
mean ± SEM, typically derived from the means of n = 3 technical
replicates from N R 3 biological replicates. Statistical analysis was
conducted at 95% confidence level. A p value less than 0.05 was
considered as statistically significant (*p % 0.05; **p % 0.01;
***p % 0.001; or ****p % 0.0001 relative to controls). Specifics of
the statistical analyses of each experiment are detailed in the corre-
sponding figure captions.
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Supplemental Information 

 

Figure S1. Immunofluorescence characterisation of high-FBS/FGF2-free versus low-
FBS/+FGF2 cultured astrocytes. From top-to-bottom, comparative morphology and 
expression of astroglial markers GFAP, Vimentin, S100B, and Aldh1l1 in high-FBS/FGF2-free 
(left column) and low-FBS/+FGF2 (right column) cultured astrocytes. Nuclei counterstained 
with DAPI (blue). Scale bar = 100 µm. 
  



 

 

 
 

Figure S2. Response of high-FBS/FGF2-free cultured astrocytes to LPS+IFN-γ  
stimulation. (A) Representative Western blots showing GFAP and Vim protein expression 
levels 3 and 5 days after a 48h activation period, as compared to comparative conditions in 
low-FBS astrocytes. Densitometric quantification of GFAP and Vim Western blot expression 
relative to β-actin, normalised to resting conditions, is depicted alongside. (B) 
Immunofluorescence micrographs of resting and activated high-FBS/FGF2-free astrocytes 
showing expression of GFAP, Vim and Lcn2. Activated astrocytes imaged 3 and 5 days after 
a 48h activation period (GFAP/Vim: green, DAPI-stained nuclei: blue). (C) Representative 
Western blot showing expression of Lcn2 (23 kDa) upon 24h of LPS+IFN-γ exposure, in low- 
and high-FBS conditions. (D) pSTAT3 (Tyr705) in resting and activated (1h LPS+IFN-γ 
stimulation) high-FBS/FGF2-free astrocytes. (E, F and H-K): qPCR quantification of (E) Nos2, 
(F) Il6, and (H) Tnf, (H) Il6, (I) Gfap, (J) Vim, (K) Lcn2, and (L) Il1b levels in resting and 
LPS+IFN-γ-treated high-FBS astrocytes (48 and 96 hours after activation). Expression 
relative to resting low-FBS/+FGF2 controls (2-ΔΔCt method), Gapdh reference gene. (G) 
Secreted IL-6 as measured by ELISA, resting vs. activated conditions, at 48h and 120h post-
stimulation. All data expressed as the mean of n≥ 3 biological replicates ± SD; * p≤ 0.05, ** p≤ 
0.01, *** p≤ 0.001, or **** p≤ 0.0001 relative to non-activated control samples (qPCR and 
Western blot: one-way ANOVA with Dunnett’s multiple comparison test; ELISA: multiple t-
tests with statistical significance determined using the Holm-Sidak method, α= 0.05). 

  



 

 

 
 

Figure S3. Dephosphorylated siRNA-3WJ nanostructures do not induce pro-
inflammatory secretions and are non-toxic. (A) LDH cytotoxicity assay comparing the 
effect of 0.5, 5, and 50 nM doses of the siRNA-3WJ nanostructures employed in this study in 
low-FBS astrocytes. Supernatant LDH levels were determined colorimetrically at 24h, 48h 
and 120h after transfection, with a calibration establishing non-treated cells as 100% viable, 
lysed cells as 0% viable. N = 3 biological replicates, ± SD, with no statistically significant 
differences between treatments. (B) Quantification of IL-6 and TNF-α concentrations (pg/ml) 
in the supernatant of astrocytes treated with 3WJs with (+PPP) or without 5′-triphosphate 
groups. Results expressed as the mean cytokine concentration measured from n≥ 2 
biological replicates ± SD; * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, or **** p≤ 0.0001 relative to 
untreated control samples (one-way ANOVA with Dunnett’s multiple comparison test); ND = 
Not Determined.  

 



 

 

 

Figure S4. Reference gene expression remains stable across treatment and activation 
conditions. The stability of the putative genes of reference Gapdh, Actb, and RNa18s5 were 
assayed across control, mock and N03-3WJ transfected treatments, under resting and both 
Therapeutic and Preventative activation profiles. Data are expressed as 2-ΔCt, where ΔCt is 
the mean difference in qPCR cycle threshold numbers of the reference gene between the 
resting control and treated sample. Results expressed as a box-and-whiskers plot of n≥ 3 
biological replicates, with the box spanning the 25th to 75th percentiles and the whiskers 
spanning the min and max values. No statistical significance observed between reference 
genes. 

 

 



 

 

 
 

Figure S5. 3WJs knock down the expression of intermediate filament genes in a dose-
responsive manner with efficiencies similar to commercial siRNA pools. (A) Gfap and 
(B) Vim mRNA knockdown measured in high-FBS/FGF-free matured astrocytes under resting 
conditions upon Lipofectamine RNAiMAX-mediated transfection. Non-targeted, anti-Gfap and 
anti-Vim 3WJs (N03, G10 and V10, respectively) are compared to analogous siRNA pools 
(NsiR, GsiR and VsiR, respectively). Results are expressed as the mean mRNA expression 
(qPCR) of n≥ 6 biological replicates ± SD; Gapdh reference gene; * p≤ 0.05, ** p≤ 0.01, *** p≤ 
0.001, or **** p≤ 0.0001 relative to control samples (one-way ANOVA with Dunnett’s multiple 
comparison test). 

 



 

 

 

 

Figure S6. In vitro knockdown of Lcn2 mRNA by 2ʹ-fluoro modified L12-3WJ. qPCR data 
showing significant downregulation of Lcn2 mRNA by a lipofected 5 nM dose of 2ʹF-L12-3WJ 
as compared to non-treated astrocytes. Astrocytes activated with LPS+IFN-γ treatment 
(Preventative conditions), mRNA expression measure 48h after transfection. Gapdh 
reference gene. Data expressed as the mean RQ of n= 3 biological replicates ± SD; ** p≤ 
0.01 relative to non-treated samples (unpaired t-test with Welch’s correction). 

  



 

 

 
 

Figure S7. Neither 3WJ transfection nor knockdown of Gfap, Vim or Lcn2 affects the 
expression of pro-inflammatory markers under resting or activated conditions. mRNA 
levels of several pro-inflammatory markers known to be upregulated in reactive low-FBS 
astrocytes: Nos2, Tnf, Il1b and Il6. Results are expressed as the mean mRNA expression 
(qPCR) of n≥ 2 biological replicates ± SD; Gapdh reference gene; * p≤ 0.05, ** p≤ 0.01, *** p≤ 
0.001, or **** p≤ 0.0001 relative to control samples of the same activation state (two-way 
ANOVA with Dunnett’s multiple comparison test). 

  



 

 

Table S1. siRNA moieties of pRNA 3WJ nanostructures used in this work. 

3WJ Target Analogous ON-

TARGET siRNAa 

Target (Sense) Sequence 

G10 Gfap (mouse) J-043455-10 AGC ACG AAG CUA ACG ACU A  

V10 Vim (mouse) J-061596-10 AGG AAG AGA UGG CUC GUC A 

L12 Lcn2 (mouse) J-042638-12 GCG CAG AGA CCC AAU GGU U 

N03 Non-Targeting D-001810-03 UGG UUU ACA UGU UUU CUG A 

aIndividual siRNA components of the L-043455-01 anti-GFAP, L-061596-01 anti-Vim, L-
042638-01 or D-001810-10 non-targeting ON-TARGET SMARTpools, as appropriate.  

  



 

 

Table S2. Primary and secondary antibodies used in in this work.  

Antibody Supplier Dilution 

Chicken anti-GFAP Abcam (ab4674) 1:500 

Rabbit anti-GFAP Dako (Z0334) 1:500 

Chicken anti-Vimentin Abcam (ab73159) 1:500 

Rat anti-Lipocalin2 R&D Systems (MAB1857) 1:250 

Mouse anti-S100B BD Bioscience (BD612376) 1:500 

Rabbit anti-Aldh1l1 Abcam (AB87117) 1:250 

Rabbit anti-pSTAT3 Cell Signaling (9145) 1:100 

   

AlexaFluor488 anti-chicken Invitrogen 1:1,000 

AlexaFluor488 anti-rabbit Invitrogen 1:1,000 

AlexaFluor546 anti-mouse Invitrogen 1:1,000 

AlexaFluor546 anti-rabbit Invitrogen 1:1,000 

AlexaFluor647 anti-rabbit Invitrogen 1:1,000 

 

  



 

 

Table S3. TaqMan Gene Expression Assay reagents used in this work. 

Target Gene TaqMan Assay 

Gfap Mm01253033_m1 

Vim Mm01333430_m1 

Lcn2 Mm01324470_m1 

Nes Mm00450205_m1 

Il6 Mm00446190_m1 

Tnf Mm00443258_m1 

Ifnb1 Mm00439552_s1 

Nos2 Mm00440502_m1 

Ciita Mm00482914_m1 

Il1b Mm00434228_m1   

Tlr4 Mm00445273_m1 

Ifngr1 Mm00599890_m1 

Ifngr2 Mm00492626_m1 

Gapd 4352339E 

Actb 4319413E 

18s 4352341E 

 

  



 

 

Table S4. Primary antibodies used in this work. 

Antibody Supplier Dilution 

Rabbit anti-GFAP Dako (Z0334) 1:10,000 

Mouse anti-Vimentin Abcam (ab8978) 1:500 

Rat anti-Lipocalin 2 R&D Systems (MAB1857) 1:1,000 

Rabbit anti-pSTAT3 

(Tyr705) 

Cell Signaling (9145) 1:1,000 

Mouse anti-β-actin Sigma (A1978) 1:10,000 
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