Dim2	S.c. C.t. A.n. H.s. A.t.	MVAPTALKKATVTPVSGQDGGSSRIIGINNTESID-EDDDDDVLLDDSDNNTAKEEVEGEEGSRKTHE MPAPTALKQPPPAPEQQA-APAITNENEDELLIDIQQA-AATLTDPNAAEPPEETME MPAPTALRQTAEVAMAETPV-APTM-SEQDEEILIDAQTS-ADQVSAGLA-PEIEPTQD TEEARPA	67 55 55 7 14
Krr1	S.c. C.t. A.n. H.s. A.t.	MV STHNRD	12 12 12 27 31
Dim2	S.c. C.t. A.n. H.s. A.t. S.c.	SKTVV VDDQGKPRFTSASKTQG - NKIKFESRKIMVPPHRMTPLRNSWTKIYPPLVEHLKLQVRM - NEMA VDEEGRPRFAPGKNID PIRRIETRKIPIPPHRMSALKANWTKIYPPLVDHCKLQVRM - SDMR IDEEGRPLFTPAKDTS RVYRVESRKVPVPPHRMTPLKASWARIYPPLVEHLKLQVRM 	130 116 116 61 74 73
Krr1	C.t. A.n. H.s. A.t.	- T D - D I D KWK I EPFL PEHSS - G - PFLEESSFMTLFPKYRERYLKDCWPL VTKALEK - HGIAATL - T D - D I D KWK VEPFQAEDNVAG - SFAEESSFATLFPKYREVYLKEAWPVVTRALEK - FGIACTL - Q D - ESELLTVPDGWKEPAFSKEDNP - R - GLLEESSFATLFPKYREAYLKECWPLVQKALNE - HHVNATL - D DPN I D RWTIEKFDPAWNP - T - GMTETSTFSTLFPQYREKYLQECWPRVESALKE - YGVACKL KH1	71 72 92 91
Dim2	S.c. C.t. A.n. H.s. A.t. S.c.	NLKTKSVELRTNPKFTT DPGALQKGADFIKAFTLGFDLDDSIALLRLDDLYIETFEVKDVK-TLTGDHLS NIKEKRVELRSS-KYTVSNEALQMGADFVSAFAMGFDIDDAIALLRLDSLYIQSFDIKDVRQTLGPDALS NIKNRAVELRTS-RFTTDTEALQKGEDFVKAFTLGFDVDDAIALLRLDDLYIRSFEIRDIK-ALNGEHLS NLKSRNVEIRTC-KETKDVSALTKAADFVKAFILGFQVEDALALIRLDDLFLESFEITDVK-PLKGDHLS NLKARKVELKTR-ADTPDISNLQKSADFVHAFMLGFDIPDAISLLRMDELYVESFEIKDVK-TLKGEHLS DLVEGSMTVKTT-FKTYDPAIILKARDLIKLLARSVPFPQAVKILQ-DDMACDVIKIGNFV-T-NKERFV	199 185 184 129 142 139
Krr1	0.1. A.n. H.s. A.t.	DIVEGSMIVKII - RKIYDPAAILKARDLIKLLARSVPAPQALKILE - DGMACDIIKIRSMV - R - NKERFV DLVEGSMTVKIT - RKIFDPAAILKARDLIKLLSRSVPVQALKILE - DDVACDIIKIRSMV - R - NKERFV DLIEGSMTVCIT - RKIFDPYIIIRARDLIKLLARSVSFEQAVRILQ - DDVACDIIKIGSLV - R - NKERFV NLVEGSMTVSTI - RKIRDPYIIVKARDLIKLLSRSVPAPQAIKILE - DEVQCDIIKIGNLV - R - NKERFV	138 137 158 157
Dim2	S.c. C.t. A.n. H.s. A.t.	KΠ2 RAIGRIAGKDGKTKFAIENATRTRIVLADSKIHILGGFTHIGMARESVVSLILGS - PP GKVYGNLRTVAS RAIGRIAGKDGKTKFAIENATKTRIVLAGSKVHILGAFENIGMARESIVSLVLGA - QP GKVYNNLRIIAS RAIGRCAGKDGRTKFAIENATRTRIVIADQKIHLLGAVKNVDCAQQAIVSLILGS - PP GKVYGNLRKVAS RAIGRIAGKGGKTKFTIENVTRTRIVLADVKVHILGSFQNIKMARTAICNLILGN - PP SKVYGNIRAVAS RAIGRIAGKGGKTKFAIENSTKTRIVIADTRIHILGAFSNIKVARSSLCSLIMGS - PA GKVYSKLRSVSA	229 254 253 198 211
Krr1	S.c. C.t. A.n. H.s. A.t.	KRRQRLVGPNGNTLKALELLTKCYILVQGNTVSAMGPFKGLKEVRRVVEDCMKNI-HPIYHIKEL-MIKR KRRQRLLGQNGTTLKALELLTQTYILVHGNTVSVMGGYKGLKEVRRVVEDTMNNI-HPIYHIKEL-MIKR KRRQRILGPGGSTLKALELLTSTYILVQGNTVSAMGPYKGLKEVRRIINDCMANI-HPIYHIKEL-MIKR KRRQRLGPKGSTLKALELLTNCYIMVQGNTVSAIGPFSGLKEVRKVVLDTMKNI-HPIYHIKEL-MIKR KRRQRLVGPNSSTLKALEILTNCYIMVQGNTVSAIGPFSGLKEVRKVVLDTMKNI-HPIYNIKSL-MIKR KRRQRLVGPNSSTLKALEILTNCYIMVQGSTVAAMGPFKGLKQLRRIVEDCVQNIMHPVYHIKTL-MMKK	207 205 206 226 226
Dim2	S.c. C.t. A.n. H.s. A.t.	RLKERY RMKERY RMKERF RSADRF RLNE	274 260 259 204 215
Krr1	S.c. C.t. A.n. H.s. A.t.	ELAKRP ELANEDWSKFLPMFKKRNVA-RKKPKKIRNVEKKVYTPFPPAQLPRKVDLETESGEYFLSKREK ELAKDP ALAHEDWSRYLPQFKKRTLSKRRKPFKINDKSKKYYTPFPPAPEKSKIDLQTESGEYFLSKREK ELAKDP TLANESWDRFLPNFKKRTLSKRRVPFKVTDKTKKVYTPFPPAPEKSKVDLQTESGEYFLSKEAK ELAKDS ELRSQSWERFLPQFKHKNVNKRKEPKKK - TVKKEYTPFPPPQPGSQIDKELASGEYFLKANQK ELEKDP ALANESWDRFLPTFRKKNVK-QKKPKSKEKKPYTPFPPPQPPSKIDMQLESGEYFLKANQK	276 275 276 294 292
Dim2	S.c. C.t. A.n. H.s. A.t.		274 260 259 204 215
Krr1	S.c. C.t. A.n. H.s. A.t.	QMAKLINEQKEKQMERETERQEERAKDFTAPEEEAY QRAAEAERAEKARQKKEEKKEREKEFVPPEEDGGKK DRQKEEVMERQRLKREEKMKEREKAFVPPEELDAEEKKKE-KKEKKEK	311 312 330 352 363
Dim2	S.c. C.t. A.n. H.s. A.t.	274 260 259 204 215	
Krr1	S.c. C.t. A.n. H.s. A.t.	KRDSEAADVD <mark>G</mark> DDGAEK-KEKKKKKSKSKEDASDGEA 367 AKNKKLGALTAEEIALKMEADEKKKKKKK 318 ERVNAEEYIAGPSSSAD-KSSKKSKKIRD 391	

Supplementary Figure 1. Multiple-sequence alignment of KH domain proteins Dim2 and Krr1 from different species. For the alignment, orthologs from the following species were used: Saccharomyces cerevisiae (S.c.), Chaetomium thermophilum (C.t.), Aspergillus niger (A.n.), Homo sapiens (H.s.) and Arabidopsis thaliana (A.t.). The default color scheme of ClustalX/Jalview¹ was used with e.g. hydrophobic residues in blue, acidic residues in violet and basic residues in red. Both proteins contain two tandem KH domains (KH1, KH2) in row. In both Dim2 and Krr1, KH1 (KH-like) lacks the conserved GXXG motif, predicted to be required for RNA/DNA binding, which however is present in KH2 of Dim2 and Krr1. Krr1 contains a conserved C-terminal extension absent in Dim2.

Supplementary Figure 2. Dim2 depletion leads to arrest of 90S biogenesis visualized by sucrose gradient analysis of Enp1-FTpA derived particles. (a) Mock control revealing the specificity of split-tag tandem-affinity purification. Wild-type yeast W303 lysate, devoid of tagged bait proteins, was passed first over IgG-sepharose, followed by TEV elution and a second affinity-purification step via α -FLAG beads. The final FLAG eluate was TCA precipitated and analyzed by SDS-PAGE and Coomassie staining. Loading: 10% of TEV eluate (lane 1), 10% of the unbound fraction (lane 2), 85% of TCA-precipitated Flag eluate (lane 3). S, molecular weight

3

protein standard. (b) Eluates derived from *sc*Enp1-FTpA tandem affinitypurification under conditions of Dim2 expression (GAL) and depletion (GLU, 8h), respectively, were analyzed by sucrose gradient (15-40%) centrifugation. Gradient fractions (1-13) were TCA-precipitated and analyzed by SDS-PAGE (4-12%) and Coomassie staining. (c) Shown are selected fractions 6 and 10 from the sucrose gradient analysis, for which the labeled bands were identified by mass spectrometry. (d) Western blots analysis of sucrose gradient fractions 6 under Dim2 expression (GAL) and Dim2 repression (GLU) conditions with the indicated antibodies.

Supplementary Figure 3. Biochemical and *in vivo* analyses of the conserved Dim2-Nob1 interaction. (a) *In vitro* binding assay using yeast *Saccharomyces cerevisiae* GST-*sc*Dim2 and indicated HIS₆-*sc*Nob1 constructs (lanes 1-2). BL21 extract was used as mock control (lane 3). After the binding reaction, final SDS eluates (lanes 4-9) were analyzed by SDS-PAGE and Coomassie staining. Note that full-length Nob1, but not Nob1 Δ MID

(Δ 208-264) binds to Dim2. S, molecular weight protein standard. (b) Complex formation between distinct Nob1 domains and Dim2. Recombinant ctDim2, ctNob1 PIN (1-169) and HIS₆-ctNob1 Mid-ZnF (250-354) were co-expressed in E. coli BI21 and affinity-purified utilizing SP-Sepharose and Ni-NTA. The final eluate was analyzed by SDS-PAGE (4-12%) and Coomassie staining. S, molecular weight protein standard; E, eluate. (c) Yeast Nob1 shuffle strain was transformed with single copy plasmids, either empty (pRS315), or containing the indicated NOB1 constructs, all under the authentic NOB1 promoter and terminator. Growth was analyzed after three days at the indicated temperatures on SDC-Leu and SDC + FOA plates. (d) Tandem affinity purification of integrated scLtv1-FTpA from the shuffled yeast Nob1 shuffle strain, carrying either plasmid based scNob1 WT or scNob1 Δ MID (Δ 208-264). The two consecutive purification steps involve the ProtA- in the first and the Flag-tag in the second step. Final Flag eluates were TCAprecipitated and analyzed by SDS-PAGE (4-12%) and Coomassie staining. The indicated protein bands were identified by mass spectrometry. S, molecular weight protein standard.

Supplementary Figure 4 Dim2 utilizes its KH-like domain for interaction with Utp1. Yeast 2-hybrid tests using Dim2 and Utp1 constructs. Three individual transformants, derived from the tester strain PJ69-4a and harboring the indicated bait (BD) and prey (AD) plasmids, were analyzed by growth on SDC-Leu-Trp (plating efficiency), SDC-Leu-Trp-His (weak interaction) and SDC-Leu-Trp-Ade plates (strong interaction). SV40 and p53 served as negative controls. The growth was analyzed after two days at 30°C.

BD	AD	Leu-Trp	-Leu-Trp-His	-Leu-Trp-Ade
Dim2	Utp14			
Dim2	SV40	$\bullet \bullet \bullet \bullet$		
Krr1	Utp14			0000
Krr1	SV40	$\bullet \bullet \bullet \bullet$		
Krr1	Faf1			

Supplementary Figure 5. Dim2 interacts via its KH-like domain with Utp14. (a, b) Yeast 2-hybrid tests using the indicated Dim2 and Utp14 constructs. Three individual transformants, derived from the tester strain PJ69-4a and harboring the indicated bait (BD) and prey (AD) plasmids, were analyzed by growth on SDC-Leu-Trp (plating efficiency), SDC-Leu-Trp-His (weak interaction) and SDC-Leu-Trp-Ade plates (strong interaction). SV40 and p53 served as negative controls. The growth was analyzed after two days at 30°C.

а

Dim2 Shuffle - Utp14 Shuffle pAJ1919 Utp14 (URA,CEN)

Supplementary Figure 6. Synthetic lethal interaction between mutant alleles, Dim2 W113D and Utp14 multi sup. The genetic analysis was carried out with a $dim2\Delta$ $utp14\Delta$ double shuffle strain, transformed with the indicated plasmids carrying *DIM2* wild-type or dim2 W113D mutant alleles, and *UTP14* wild-type utp14 multi sup mutant. Cells were grown on SDC-Trp or SDC + FOA plates. Growth was monitored at the indicated temperatures after 3 days. No growth on 5-FOA plates indicates synthetic lethality.

scDhr1-FTpA GAL::scDIM2

Supplementary Figure 7. Dhr1 co-purifies increased amounts of 90S factors upon Dim2 depletion. Semi-quantitative mass spectrometry of the Dhr1-FTpA eluates derived from experiment Fig. 3c. The iBAQ (Intensity Based Absolute Quantification) numbers derived from semi-quantitative mass

spectrometry analysis of the Dim2 expressing (GAL) and Dim2 depletion (GLU) conditions were normalized to the iBAQ value of the Dhr1 bait protein. The absolut iBAQ values of co-purified 90S factors derived from depleted versus expressing Dim2 cells are shown. The corresponding numerical data are shown in Supplementary Data 1.

0 20 40 60 90 120 min of depletion α-HA (scKrr1-HA₃-AID) α-scRpl5

а

Supplementary Figure 8. Krr1 depletion leads to a reduction of UTP-C complex members Utp22 and Rrp7. (a) Western blot analysis revealing Krr1 depletion in yeast cells. *sc*Krr1-HA₃-AID degron strain was grown in YPD medium, before degradation of Krr1 was induced by addition of indole-3-acetic acid (Auxin) to the medium. Cells were collected at indicated time

points (min of depletion). Whole cell lysates were analyzed by SDS-PAGE and Western blotting utilizing the indicated antibodies. (b) Semi-quantitative mass spectrometry of the Utp10-FTpA eluates derived from *sc*Krr1-HA₃-AID expressing (- Auxin) and *sc*Krr1-HA₃-AID depleted (+ Auxin) cells (see Fig. 4c, lane 1 and 2). The iBAQ (Intensity Based Absolute Quantification) numbers derived from semi-quantitative mass spectrometry analysis of the two different Utp10-FTpA eluates were normalized to the iBAQ value of the Utp10 bait protein. The relative iBAQ ratio of co-purified 90S factors derived from depleted versus expressing Krr1 cells are shown. The corresponding numerical data are shown in Supplementary Data 1.

Figure 1d

-

Figure 1e kDa 200-

100-

70-

50-

30-

20-

Figure 3d

Figure 5b

Supplementary Figure 9. Uncropped scans of Western blots and Coomassie-stained SDS-polyacrylamide gels included in main figures.

Supplementary Table 1: Plasmids used in this study

Name	Genotype	Reference
YCPlac111 HA-scDim2	CEN; LEU2, AmpR, P _{GAL} HA-DIM2	This study
petMBP- <i>ct</i> Dim2	KanR, P ₁₇ MBP-ctDIM2	This study
petDuet HIS ₆ - <i>ct</i> Nob1 1- 354	AmpR, P _{T7} HIS ₆ -ctNOB1 1-354	This study
pet24d ctDim2	KanR, P _{T7} ctDIM2	This study
petDuet HIS ₆ - <i>ct</i> Nob1 250-354 , <i>ct</i> Nob1 1-169	AmpR, P _{T7} HIS ₆ -ctNOB1 250-354, P _{T7} ctNOB1 1-169	This study
pMT- <i>LEU2</i> ProtA-TEV- <i>ct</i> Dim2	2μ, LEU2, AmpR, P _{GAL1-10} PROTA-TEV-ctDIM2	This study
pMT- <i>TRP1</i> Flag ₃ -ctUtp1	2µ, TRP1, AmpR, P _{GAL1-10} FLAG ₃ -ctUTP1	This study
pGBKT7 <i>ct</i> Dim2	2µ, TRP1, KanR, GAL4BD-cMyc-ctDIM2	Ref. ²
pGADT7 <i>ct</i> Utp14	2μ, LEU2, AmpR, GAL4AD-HA ₃ -ctDIM2	Ref. ²
pVA3-1	2µ, TRP1, AmpR, GAL4 DNA-BD-MURINE p53 (72- 390)	Clontech Laboratories, Inc
pTD1-1	2μ, LEU2, KanR, GAL4 AD-SV40 (84-708)	Clontech Laboratories, Inc
pMT- <i>TRP1</i> Flag ₃ -ctUtp14	2µ, TRP1, AmpR, P _{GAL1-10} FLAG ₃ ctUTP14	This study
pMT-URA3 ctUtp14	2μ, URA3, AmpR, P _{GAL1-10} ctUTP14	This study
pMT- <i>URA3</i> HA ₃ - <i>ct</i> Dhr1	2μ, URA3, AmpR, P _{GAL1-10} HA ₃ -ctDHR1	This study
pMT- <i>LEU2</i> ProtA-TEV- <i>ct</i> Krr1	2μ, LEU2, AmpR, P _{GAL1-10} PROTA-TEV-ctKRR1	This study
pMT- <i>TRP1</i> Flag ₃ -ctRps14	2µ, TRP1, AmpR, P _{GAL1-10} FLAG ₃ ctRPS14	This study
pMT- <i>URA3 ct</i> Rps1	2µ, URA3, AmpR, P _{GAL1-10} ctUtp22	This study
pMT- <i>TRP1</i> Flag _{3x} -ctFap7	2µ, TRP1, AmpR, P _{GAL1-10} FLAG ₃ ctFAP7	This study
pMT- <i>TRP1</i> Flag ₃ -ctRrp7	2µ, TRP1, AmpR, P _{GAL1-10} FLAG ₃ ctRRP7	This study
pMT-URA3 HA ₃ -ctUtp22	2µ, URA3, AmpR, P _{GAL1-10} HA ₃ -ctUTP22	This study
pGBKT7 <i>ct</i> Dim2 N-term	2μ, TRP1, KanR, GAL4BD-cMyc-ctDIM2 1-78 aa	This study
pGBKT7 <i>ct</i> Dim2 KHlike	2µ, TRP1, KanR, GAL4BD-cMyc-ctDIM2 79-163	This study

pGBKT7 ctDim2 Cterm	2µ, TRP1, KanR, GAL4BD-cMyc-ctDIM2 164-260	This study
pGBKT7 <i>ct</i> Dim2 N + KHlike	2μ, TRP1, KanR, GAL4BD-cMyc-ctDIM2 1-163	This study
pGBKT7 <i>ct</i> Dim2 KHlike + Cterm	2μ, TRP1, KanR, GAL4BD-cMyc-ctDIM2 79-260	This study
pGBKT7 <i>ct</i> Krr1	2µ, TRP1, KanR, GAL4BD-cMyc-ctKRR1	Ref. ²
pGADT7 ctFaf1	2μ, LEU2, AmpR, GAL4AD-HA ₃ -ctFAF1	Ref. ²
pRS315	CEN, LEU2, AmpR	Ref. ³
pRS316	CEN,URA3, AmpR	Ref. ^₄
pRS315 scDim2	CEN, LEU2, AmpR P _{DIM2} -DIM2	This study
pRS316 scDim2	CEN,URA3, AmpR P _{DIM2} -DIM2	This study
pAJ1919 scUTP14	CEN, UR3, AmpR, P _{UTP14} -UTP14	Ref.⁵
pRS314, scUtp14	CEN,TRP1, AmpR P _{UTP14} -UTP14	This study, derived from Ref. ⁵
pRS314, <i>sc</i> Utp14 multi sup	CEN,TRP1, AmpR P _{UTP14} -UTP14 multi sup	This study, derived from Ref. ⁵
pRS315 scDim2 W113D	CEN, LEU2, AmpR P _{DIM2} -DIM2	This study
pRS315 scNob1	CEN, LEU2, AmpR P _{NOB1} -NOB1	Ref. ⁶
pRS315 scNob1 ∆ 217- 229	CEN, LEU2, AmpR P _{NOB1} -NOB1 Δ 217-229	This study
pRS315 scNob1	CEN, LEU2, AmpR P _{NOB1} -NOB1 Δ 208-232	This study
pRS315 scNob1	CEN, LEU2, AmpR P _{NOB1} -NOB1 Δ 208-264	This study
pet24a HIS ₆ -c <i>t</i> Nob1 1- 476	KanR, P _{T7} ctNOB1 1-476	This study
pet24a HIS ₆ -c <i>t</i> Nob1 169- 476	KanR, P _{T7} ctNOB1 169-476	This study
pet24a HIS ₆ -c <i>t</i> Nob1 1- 355	KanR, P _{T7} ctNOB1 1-355	This study
pet24a HIS ₆ -c <i>t</i> Nob1 1- 294	KanR, P _{T7} ctNOB1 1-294	This study

pet24a HIS ₆ - <i>ct</i> Nob1 1- 250	KanR, P ₁₇ ctNOB1 1-250	This study
pet24a HIS ₆ -scNob1	KanR, P _{T7} scNOB1	This study
pet24a HIS ₆ -scNob1 Δ 208-264 (Δ MID)	KanR, P ₁₇ scNOB1 Δ 208-264	This study
petDuet HIS ₆₋ ctDim2, ctNob1	AmpR, P_{T7} HIS ₆ -ctDIM2, P_{T7} ctNOB1	This study
petDuet HIS ₆₋ ctDim2, ctNob1 W267G	AmpR, P _{T7} HIS ₆ -ctDIM2, P _{T7} ctNOB1 W267G	This study
pGADT7 ctUtp1	2μ, LEU2, AmpR, GAL4AD-HA ₃ -ctDIM2	Ref. ²
pGADT7 <i>ct</i> Dhr1	2μ, LEU2, AmpR, GAL4AD-HA ₃ -ctDIM2	Ref. ²
pet24d GST-TEV- <i>ct</i> Dim2	KanR, P _{T7} GST-TEV_ctDIM2	This study
pet24d GST-TEV-scDim2	KanR, P _{T7} GST-TEV.scDIM2	This study

Supplementary Table 2: Yeast strains used in this study

Name	Genotype	Reference
W303 α	Matα, ura3-1, trp1-1, his3-11,15, leu2-3,112, ade2-1, can1-100, GAL+	Ref. ⁴
PJ69-4a	trp1–901, leu2–3,112, ura3-52, his3-200, gal4D, gal80D, LYS2::GAL1–HIS3, GAL2– ADE2, met2::GAL7-lacZ	Ref. ⁷
Enp1-FTpA, dim2 Δ shuffle	W303, Matα, dim2::natNT2, enp1-FTpA::HIS3, YCPlac111 HA-scDim2	This study
<i>Rio2</i> -FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, rio2-FTpA::HIS3, YCPlac111 HA-scDim2	This study
<i>Krr1</i> -FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, krr1-FTpA::HIS3, YCPlac111 HA-scDim2	This study
<i>Utp1-</i> FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, utp1-FTpA::HIS3, YCPlac111 HA-scDim2	This study
<i>Dhr1-</i> FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, dhr1-FTpA::HIS3, YCPlac111 HA-scDim2	This study
<i>Utp14-</i> FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, utp14- FTpA::HIS3, YCPlac111 HA-scDim2	This study
Asc1-FTpA	W303, Mata, Asc1-FTpA::HIS3,	This study

<i>Utp10</i> -FTpA, <i>Krr1</i> -HA ₃ -AID,	W303, Matα, Utp10-FTpA::natNT2, , P _{ADH1} -	This study
Utp22-myc ₁₃	OSTIR1-9xmvc::TRP1. Krr1-HA ₃ -	
, , , , , , , , , , , , , , , , , , , ,	AID HIS3MX6 Litp22-13MYC-kanMX6	
	W303 Mata dim2::natNT2 krr1-ETnA::HIS3	This study
Krr1-FTpA. dim2 Δ shuffle.	Dbr1 12MVC konMV6 VCDloo111 HA	The olday
Dhr1-myc ₁₀		
	scDimz	
		-
$Utp1-FIPA, aim2 \Delta snuffle,$	vv303, Matα, dim2::nativ12, utp1-F1pA::HIS3,	i nis study
Dhr1-myc ₁₃	Dhr1-13MYC-kanMX6, YCPlac111 HA-	
	scDim2	
dim2 Δ utp14 Δ double	W303, <i>Matα, dim2::natNT2, utp14:: HIS3,</i>	This study
shuffle, pRS315 scDim2	pRS315 scDim2, pAJ1919 scUTP14	
$dim2 \Delta utp14 \Delta$ double	W303, Matα, dim2::natNT2, utp14:: HIS3,	This study
shuffle, pRS315 scDim2	pRS315 scDim2 W113D, pAJ1919 scUTP14	-
W113D		
<i>nob1</i> Δ shuffle	W303. Mata. nob1::kanMX4. pRS316 scNob1	Ref. ⁶
		-
<i>Ltv1</i> -FTpA, <i>nob1</i> Δ shuffle	W303, Mata, nob1::kanMX4, pRS316 scNob1,	This study
•	FTpA::HIS3	-
	,	
Utp1-FTpA, Krr1-HA ₃ -AID,	W303, Mata, Utp10-FTpA::natNT2, , P _{ADH1} -	This study
Utp22-mvc ₁₃	OSTIR1-9xmvc::TRP1. Krr1-HA ₂ -	-
	AID HIS3MX6 Utr22-13MYC-kanMX6	
Enp1-FTpA. dim2 Δ shuffle	W303. Matq. dim2::natNT2. enp1-FTpA::HIS3.	This study
	pRS316 scDim2	, ,
<i>Rio2</i> -FTpA, <i>dim2</i> Δ shuffle	W303, Matα, dim2::natNT2, rio2-FTpA::HIS3,	This study
	pRS316 scDim2	
	r	

Supplementary - References

- 1. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-91 (2009).
- 2. Bassler, J. et al. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. *Protein Sci* **26**, 327-342 (2017).
- 3. Sikorski, R.S. & Hieter, R. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics* **122**, 19-27 (1989).
- 4. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. *Cell* **56**, 619-30 (1989).
- 5. Zhu, J., Liu, X., Anjos, M., Correll, C.C. & Johnson, A.W. Utp14 Recruits and Activates the RNA Helicase Dhr1 To Undock U3 snoRNA from the Preribosome. *Mol Cell Biol* **36**, 965-78 (2016).
- 6. Pertschy, B. et al. RNA helicase Prp43 and its co-factor Pfa1 promote 20S to 18S rRNA processing catalyzed by the endonuclease Nob1. *J Biol Chem* (2009).
- James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. *Genetics* 144, 1425-36 (1996).