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Supplementary Figure 1. NRF2 pathway activation identified with IPA using protein ratios determined
using shotgun analysis of SH-SY5Y cells grown in SILAC media and treated with hydralazine. (a) NRF2
pathway activation in the cytoplasm. (b) NRF2 pathway activation in the nucleus. For shape and color codes
follow this link. (http://ingenuity.force.com/ipa/articles/Feature Description/Legend).
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Supplementary Figure 2. Validating NRF2 activation and exploring its mechanism of action

(a) Hydrazine used as negative control for hydralazine did not increase NRF2 protein measured by Western
blot analysis. Both hydralazine and hydrazine were used at 5 pyM concentration. (b) Confirming the specificity
of the antibody used for NRF2 Western blot analysis using NRF2 knockdown SH-SY5Y cells. (¢) The ARE-
driven luciferase activity was decreased in SH-SY5Y cells treated with antioxidant compounds N-acetyl
cysteine (NAC, 2 mM) and Tempol (TMP, 10 yM) and increased when cells were treated with the antioxidant
compounds and hydralazine (10 pM) indicating that hydralazine-mediated NRF2 activation was ROS
independent, *p<0.05 and **p<0.01, student t-test, n=3, mean £ SD. (d) KEAP1-NRF2 Inhibitor Screening
Assay showed that hydralazine dose not directly interrupt the interaction between NRF2 and KEAP1. **p<0.01
student t-test, n=3, mean + SD. Sulforaphane (5 pM) was used as a positive control (inhibitor), **p<0.01,
student t-test, n=3, mean + SD.
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Supplementary Figure 3. Testing a downstream target of SKN-1 in a mutant strain lacking functional
SKN-1C. Hydralazine treatment did not induce gst-4p::GFP expression in transgenic worms (dv/s19) lacking a
functional SKN-1 isoform C in their intestine in a mutant background skn-1(zu67). p>0.05 student t-test, n=50

two independent trials, mean £ SD.
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Supplementary Figure 4. SKN-1/NRF2 pathway activation identified with IPA using protein ratios
determined using label free analysis of wild type C. elegans treated with hydralazine or vehicle. (a)
SKN-1/NRF2 pathway activation in the cytoplasm. (b) SKN-1/NRF2 pathway activation in the nucleus. For

shape and color codes follow this link (http://ingenuity.force.com/ipa/articles/Feature Description/Legend).
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Supplementary Figure 5. Hydralazine extends lifespan in C. elegans. For all lifespan statistics, see
Supplementary Table 3. (a) Hydralazine treatment increased C. elegans lifespan in a dose-dependent
manner. (b) HB101 bacteria in liquid LB treated with different concentrations of hydralazine did not show
growth retardation, two-tailed student t-test, n=6. (c) Expression of skn-1 isoforms b by transgene gels9
partially restores longevity benefits of hydralazine (100 uM) while expression of isoform ¢ in transgenic gels10
did not, signifying the role of skn-1 isoforms b in hydralazine-mediated lifespan extension. (d) Pharyngeal
pumping rate of wild type young ( day 4) C. elegans treated with 100 uM hydralazine was not significantly
altered, rulings out the possibility of hydralazine interfering with food uptake mimicking calorie restriction, two-
tailed student t-test, n=32, mean + SD. (e) Hydralazine mediated lifespan extension was not significantly
attenuated in mutant daf-16 C. elegans ruling out the possibility of daf-2 insulin/IGF-1 signaling pathway
involvement in prolongevity effects of hydralazine. (f) Fluorescence microscopic images tracing hsp-

4p::GFP protein, a reporter of UPR® activation, indicated that hydralazine does not induce ER stress. (g) Two
other important regulators of aging paradigm, HIF1A and HSF1, did not change in SH-SY5Y cells treated with
10 uM hydralazine. Two tailed student t-test, n=3, mean + SD.
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Supplementary Figure 6. Hydralazine protects tauopathy model cells from exogenous and endogenous
stressors presenting a therapeutic potential for the treatments of neurodegenerative diseases. (a) Cell
growth analysis showed a slower growth rate for aggregate-positive (AP) cells compared to control aggregate-
negative (AN) cells. **p<0.01 student t-test, n=8, mean + SD. (b) Hydralazine treatment (5 pM) improves the
growth rate of aggregate-positive cells. *p<0.05 and **p<0.01, student t-test, n=8, mean * SD. (c¢) Superoxide
fluorescence signal intensity was higher in aggregate-positive cells compared to the control cells and
decreases with hydralazine treatment in a dose dependent-manner in both cell models. *p<0.05 and **p<0.01,
student t-test, n=6, mean + SD. (d) Hydralazine (10 uM) improved the viability of both aggregate-positive and
negative cells that are under rotenone stress (1 uM). Sulforaphane (5 yM) was used as positive control.
**p<0.01, student t-test, n=6, mean + SD. (e) Hydralazine (10 uM) reversed rotenone-mediated (1 uM)
reduction in NRF2 protein signal intensity measured by Western blot. *p<0.05 and **p<0.01, student t-test,

n=3, mean + SD.
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Supplementary Figure 7. Hydralazine activates SKN-1/NRF2 pathway in worms treated with rotenone.
(a) Volcano plot showing the ratio (hydralazine+rotenone/rotenone) distribution of proteins quantified by label-
free mass spectrometry. Proteins ratios obtained by label free mass spectrometry were uploaded for IPA
analysis. SKN-1/NRF2 was number four in the top five activated stress response pathways (p-value cutoff of
0.05, right-tailed Fisher Exact Test.). (b) Volcano plot showing the ratio (rotenone/Ctrl) distribution of proteins
quantified by label-free mass spectrometry. The results of IPA analysis for worms treated with rotenone
compared to control. SKN-1/NRF2 was not among activated pathways (p-value cutoff of 0.05, right-tailed
Fisher Exact Test.). (¢) Volcano plot showing the hydralazine+rotenone/Ctrl ratio distribution of proteins
quantified by label-free mass spectrometry. SKN-1/NRF2 pathway was among activated pathways when
worms treated with rotenone and hydralazine were compared to control worms (p-value cutoff of 0.05, right-
tailed Fisher Exact Test.). We showed our results pathways based on the p-value simply because this is a
statistical figure of-merit. From a statistical point of view, a p-value means that the probability of getting the
results obtained with a set null hypothesis (in our case was whether the results are statistically significantly
different or not) is true. This is an indication for reproducibility. Further, these results were confirmed with the

volcano plot based on Tukey Honestly Significant difference Test.
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Figure 3d.
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Figure 3f.
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Supplementary Table 1. Sequences of primers used for quantitative real-time PCR analysis of NRF2 pathway

gene expression.

Gene Forward (5’-3’) Reverse (5’-3’) Annealing
name temperature
(°C)

NRF2 AACCACCCTGAAAGCACAGC TGAAATGCCGGAGTCAGAATC 60
NQO1 CGCAGACCTTGTGATATTCCAG CGTTTCTTCCATCCTTCCAGG 60
HMOX1 TCTCTTGGCTGGCTTCCTTAC GCTTTTGGAGGTTTGAGACA 60
GST4 GAGAACCCTGATTGACATGTA GCTGATTACCAACAAGAAAGC 60
GSTP1 | TCCCTCATCTACACCAACTATGAG GGTCTTGCCTCCCTGGTT 60
GCLC ATGGAGGTGCAATTAACAGAC ACTGCATTGCCACCTTTGCA 60
GCLM GCTGTATCAGTGGGCACAG CGCTTGAATGTCAGGAATGC 60
B-actin GCCGGGACCTGACTGACTAC TTCTCCTTAATGTCACGCACGAT 60




Supplementary Table 2. Statistical data for lifespan studies.

Correspon Strain, treatment Median Lifespan % P-values N (number of
ding Figure (days) difference animals)
Vehicle Treatment Vehicle Treatment
N2, 10 uM Hyd 14 15 +07.14 0.3494 105 108
13 15 +15.38 <0.0001 86 98
N2, 50 uM Hyd
Fig. 5a and 14 16 +14.28 <0.0001 105 112
Supgl- Fig 14 17 +21.50 <0.0001 105 109
a 13 16 +23.07 <0.0001 86 88
N2, 100 uM Hyd 15 18 +20.00 <0.0001 75 84
14 18 +28.60 <0.0001 108 112
N2-heat-inactivated 100 yM 18 22 +22.22 <0.0001 117 120
Hyd 17 21 +23.52 <0.0001 102 95
Fig. 5b
N2- 100 uM Hyd pretreated
HB101 15 15 - 02696 99 90
15 18 +20.00 <0.0001 130 112
N2,100 uM Hyd 14 16 +14.28 <0.0001 117 101
Fig. 5¢ N2,100 uM Curcumin 15 16 +06.25 0.0815 130 122
. 15 17 +13.30 <0.0006 130 99
N2,20 mM Metformin 14 16 +14.28 <0.0001 117 120
. 13 16 +23.07 <0.0001 79 80
_ N2- Ser. RNAI,100 uM Hyd 14 17 +21.50 <0.0001 87 84
1g.
N2- skn-1 RNAi, 100 uM Hyd ]g ?g '10_'00 8'8(1522 gf 1%‘;
10 10 - 0.3257 80 95
EU31, 100 uM Hyd 11 11 - 0.4184 112 108
Fig. Se 11 12 09.09 0.0141 91 105
+09. .
EU1,100 uM Hyd 13 15 +16.16 <0.0001 103 97
) 22 21 -04.54 0.4118 70 67
Fig. 59 DA1113,100 uM Hyd o o4 " 0.2646 82 83
13 13 - 0.3820 90 95
LG357,100 uM Hyd 11 11 - 0.3628 108 115
Suppl. Fig. 12 13 +08.33 0.1946 94 93
Sc 14 16 +14.28 <0.0001 108 101
LG348,100 pM Hyd 12 13 +08.33 0.0868 68 69
11 12 +09.09 0.0304 77 75
Suppl. Fig. 10 12 +20.00 <0.0001 56 60
5e CF1038,100 uM Hyd 11 13 +18.18 <0.0001 64 64
BR6516, 100 uM Hyd 13 17 +30.76 <0.0006 64 60
Fia. 6d 08 11 +37.50 <0.0001 106 105
9- BR5270,100 uM Hyd 10 13 +30.00 <0.0001 71 75
y
11 13 +18.00 <0.0001 114 112







