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Supplementary information BIGL paper

Two statistical tests were designed to measure whether a combination of different compounds results in
a synergistic or antagonistic effect. The first test, referred to as MeanR, tests the overall fit of the data to
the Generalized Loewe additivity model (further referred to as the null model). If the assay readout
values deviate too strongly from this null model, then one may identify synergy or antagonism. The size
of the deviation that is allowed under the null model depends on the biological variability present in the
data.

A second test, MaxR, allows the identification of combinations of concentrations where synergy or
antagonism is present by comparing the absolute deviation between observed and predicted readout.
Both tests are tests of the null hypothesis that the null model holds true.

The following sections describe the derivation of the test statistics MeanR and MaxR, as well as their null
distributions required for p-value calculations.

The null hypothesis states that the Generalized Loewe additivity model holds true. The parameters in
this model come from the Hill equations for the mono-therapies. Hence, only the observations from the
mono-therapies are needed to fit the model. The compound concentrations for the mono-therapies are
referred to as the ny on-axis points. The residual variance is denoted by 03. Based on the fit an estimate
of the residual variance is computed as the mean squared error, which is denoted by MSE,. The fitted
model is further used to predict the n; assay readouts at the concentrations of the compound
combinations, which are referred to as off-axis points.

We use the index i to refer to an off-axis point. We first describe the method for the setting where no
replicate measurements are available at the n; off-axis points. Let R; denote readout at off-axis point i,

A
and let R; denote the predicted readout at off-axis point i according to the null model. We assume that
all readouts are independently distributed. Under the null hypothesis the off-axis observations R; come
from the same null model, with possibly a different residual variance, say aZ. Our test is based on the
residuals

In matrix notation we write

(i.e. vectors constructed by stacking E;;, R;; and ﬁi). The covariance matrix of E is then given by

jr
Var(E) = Var(R) + Var(R) = o2I + 0§ Cyp,

where C,, is the covariance matrix of the predictions.

For a linear model, €}, can be easily computed from the design matrices of the data used to fit the null
model (X,) and of the off-axis points of the predictions (X;):
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Cp = X1 (XSXO)_lxlt:

but for a nonlinear model C, has no simple expression. We propose to approximate C, by means of a
bootstrap procedure (see further).

Under the assumption of normality, so far we have
E ~ MVN(0, 071 + 0§ Cp).
Hence, a meaningful test statistic is the quadratic form
Et(ofl + 0§Cy)7'E.

However, the residual variances o and o? are unknown. With MSE, and MSE, their corresponding
consistent estimators, the test statistic

E*(MSE,I + MSEOCp)‘lE
is asymptotically distributed as )(,211 under the null hypothesis, but the convergence may be slow.

An exact null distribution may be obtained by making the additional assumption that o¢ = gZ. This
common variance is denoted by 2. We then get

E ~MVN(0,0%(I + Cp)),
and the quadratic form becomes

E'(I+Cy)'E

o2

2
ni-

Et(c?(I +C,)) E =

Suppose we have an estimator of 2, say S? (details follow later), then it is often possible to show (for a
linear model, and under the assumption of normality of the model error terms)

2
mo 2
0_2 Xm'

for an appropriate m. The test statistic may now be written as

ECI+C)E  EYo?(+Cp) E/ny
52 M sz /02y m

in which we recognize in the numerator a statistic with distribution y2,/n;, and in the denominator a
statistic with distribution y2,/m. If numerator and denominator are independent, then by definition this
ratio is distributed as Fy; ;. Hence we write

E'(I+C)™'E  EY(a2(+C,) E/my
Tvmeanr = 7,52 = (mS2/a2)/m ~ fnim-

Thus, if we find an estimator S? of a2 for which (A) mS?/a? ~ y2, and (B) which is independent of E, we
can use Tyeqng as a test statistic with null distribution Fy,; ,,,. In this paper we propose to use §2 =
MSE, as the estimator; under the normality assumption (A) holds with m = df,, (residual degrees of
freedom from the fit of the null model using only the on-axis points), and since MSE, only makes use of
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the mono therapy data, it is definitely independent of the residuals E that are calculated from the off-
axis data. Thus the final form of the test statistic is given by
. Et(I+C)"'E  E'(c2(1+C,) E/my .
Hemt T mMSEy (dfoMSEo/a?)/dfy Y

Thus, if the residuals are normally distributed and if the residual variances at the off-axis and on-axis
(mono-therapies) points are equal, it can be shown that Ty .q,ghas approximately an Fy,q 47 null
distribution. Where df,, equals the degrees of freedom of MSE,,.

If no normality can be assumed, then the null distribution can be obtained through the parametric
bootstrap (see further).

The previous definition holds when no replicates are included in the study. When replicates are available
at the off-axis points, we continue to work with the average residuals at the off-axis points. In particular,

let ﬁi denote the average readout of the m; replicates at off-axis point i. We then define the (average)
residual at off-axis point i as

— A
Ei =Ri _Ri'

Let E denote the vector with all the E; stacked. Then, under the null hypothesis of no lack-of-fit and
assuming constant variance,

E ~MVN(0,6%(D + Cp)),
with D a diagonal matrix with at the ith position 1/m,;.
The test statistic and its null distribution can now be obtained in a similar way as before. In particular,

. CEYD+C)'E EY(02(D+Cp)) E/my .
Meamf T mMSEq (dfoMSEo/o?)/dfy YUY

If no replicates are available, the D matrix becomes the identity matrix I and the method reduces to the
one described in the previous section.

The C, matrix will be estimated using the bootstrap method, and to avoid relying on the normality
assumption a parametric bootstrap method will be used for p-value calculation.

Since the BIGL null model is highly non-linear, we propose a parametric bootstrap procedure to
approximate the (}, matrix:

1. pool all residuals of the on-axis and off-axis points

2. for each on-axis point i, sample (with replacement) m; residuals completely at random from the
pooled sample (step 1)

3. add residuals to corresponding predicted readout from fitted Hill equations (mono-therapies);
this generates a bootstrap sample of readouts at the on-axis points
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4. refit the Hill equations to the bootstrap sample data
5. use the fit from step 4 to generate predictions at the off-axis points

6. repeat steps 2-5 many times (say at least 100 times) and compute the covariance matrix
between the off-axis predictions. This gives an approximation of the €}, matrix.

If no normality can be assumed, then the null distribution of the Ty.qnr test statistic can be obtained
through a parametric bootstrap procedure. This procedure is very similar to the bootstrap procedure
outlined in the previous section. In particular, steps 1-5 are identical, but the remaining steps are now:

6. Sample completely at random m; residuals from the pooled sample of residuals (step 1) for each
off-axis point i. Add these sampled residuals to the predicted readout. This forms a bootstrap sample
of readouts at the off-axis points (under the null hypothesis of additivity)

7. Compute the test statistic based on the bootstrap sample of step 6.

8. Repeat steps 2-7 many times. The set of test statistics computed in step 7 forms the bootstrap null
distribution of the test statistic and can be used for p-value calculations.

Note that in the calculation of the test statistic (step 7) the matrix C, is required. Hence, the final
procedure is a nested bootstrap method in which the bootstrap procedure of section 1.1.2 is included in
step 7. However, from experience (simulation studies) we have learnt that the matrix C, is quite stable.
Therefore, as an approximation, we suggest to compute C, only once and use this single C,
approximation throughout the bootstrap procedure as outlined in this section.

We start from the residuals defined for MeanR:
— A
Ei = Ri - Ri'

Let E denote the vector with all the E; stacked. Then, assuming normality, equal residual variance at off
and on-axis points, and under the null hypothesis of no lack-of-fit,

E ~MVN(0,6%(D + ),
with D a diagonal matrix with at the ith position 1/m,;.
Define
Tmaxr = max | EX(D + C,)" %2 | /o.
Then, under the null hypothesis,
Tymaxgr ~ max | Zy, ..., Zy, |,

where Zy, ..., Zp 1.i.d N(0,1).
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Now we replace o in the definition of Ty, With ./ MSE,,

Traxg = max | EX(D + C,)~ /2 | /\/MSE,,.
Then, assuming normality, equal residual variance and under the null hypothesis,
Tymaxgr ~ max | Zy, ..., Zy, |,
where Zy, ..., Zp 1i.d typ, .

If the null hypothesis is rejected at the alpha-level of significance with the Ty, test statistic, one can
identify the off-axis points that were responsible for the rejection (i.e. the off-axis points at which the
corresponding element in E¢(D + Cp)‘l/z/ﬁMSEo) exceeds the critical value of the test). These points
correspond to the compounds for which the readout is different from what is expected under additivity.
This procedure basically performs simultaneous hypothesis tests at the individual off-axis points. The
procedure controls the familywise error rate (FWER) at the nominal significance level of the Ty, test.

Monte-Carlo simulations were conducted to assess whether the MeanR method is able to control the
type | error at a nominal level of 5%. Furthermore, we have assessed whether the MeanR method could
truly detect synergy and whether the MaxR method is able to select the true synergistic off-axis points.

For each scenario, 3000 Monte-Carlo simulations were performed. All tests were conducted at the
nominal 5% significance level. All p-values were computed with the parametric bootstrap (100 bootstrap
runs).

In each Monte-Carlo run, data were generated with parameters estimated from a real dataset, using the
Generalized Loewe additivity model. Data of multiple replicates of on- and off-axis points were available
in the dataset. The C,, matrix is computed based on 50 bootstrap runs.

The results are presented in Figure S1. From the results we conclude that the test statistic follows indeed
approximately an F-distribution and that the null distribution of the p-values is approximately uniform.
The type | error rate is 6% which is close to the nominal level of 5%.
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Figure S1. On the left side a QQplot of the F-distribution of the test statistic is shown under additivity. On

the right the null distribution of the p-values are shown

To verify whether the method is indeed able to detect synergy, we have simulated data with a synergistic
effect at three dose combinations. Data were first simulated under the null hypothesis using the
estimated parameters obtained from the Loewe model. Afterwards, a small effect of 0.075 was
subtracted from the predicted effect under additivity. This process was repeated 3000 times and the

bootstrap p-values of each test were saved.

Figure S2 shows that the MeanR method is indeed able to detect synergy at the a-level of 5%. For the
chosen effect of 0.075 we found that a synergy call was made in 63.9% of the Monte-Carlo runs (i.e.
power of test equals 63.9% in this scenario). The power of the test increases with increasing effect size.
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Figure S2. Histogram of the p-values in the presence of synergy.
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The test MaxR can detect those off-axis points with readouts different from what is expected under the
additive model. To assess its performance, we have looked at the sensitivity and specificity of the test.
The MaxR test was carried out only when the p-value of the MeanR test was < 0.05. Since we know
exactly in which points we have inserted a synergistic effect, we can check whether the MaxR test is able
to select these three points. The test was able to detect all true synergistic points in 52.06% of the cases
(= sensitivity). The specificity of the test however was, 99.46%. We can conclude that for the chosen
effect size of 0.075 the MaxR test almost never selects a negative point as a synergistic effect, but the
method is only able to detect all synergistic points in 52.06% of the cases. If another balance between
sensitivity and specificity is desired, ROC curves can be constructed by varying the p-value threshold
used to call synergy/antagonism.

Another simulation study where the effect size was doubled (0.15) showed that the power of the MeanR
test increased to 99%. The specificity of the MaxR test decreased a little to 99.21%. The sensitivity of the
test however increased to 99.23%. This shows that the sensitivity and specificity of the test are strongly
dependent on the effect size.
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3 Shlny application

An interactive shiny application (https://bigl.openanalytics.eu) visualizes the predicted response
surface for a given set of marginal model parameters. Data points are simulated according to the
BIGL null model from the provided marginal parameters. Marginal parameters are then re-
estimated from the data and the response surface is subsequently computed and depicted as a
3-dimensional plot. Detailed predicted response decomposition in the BIGL model is available
within the application as well. This interactive web application comes with 3 pre-defined
examples of compound pairs, namely two agonists, an agonist and a partial agonist as well as an
agonist and an antagonist (Figure S3).

Additionally one can use an alternative null model, being either the classical Loewe or the highest single
agent (HSA) model. In the classical Loewe, both maximal responses of the marginals are restricted to be
the same and the surface is computed. Expected response for the HSA, on the other hand, is constructed
simply by taking either the minimum (if dose response curves are decreasing) or the maximum (if dose
response curves are increasing) at a particular dose combination.

<3900
1.0009 “
3333111 10_03700.012% 0043 0014 80 &64‘?&8

i ¥ 0.0000 0.00

Drug 1

Figure S3. Example BIGL null surface for Agonist-Inverse Agonist combination as obtained by R Shiny app.
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For additional interpretation of the BIGL null response surface, in the R shiny web application a
corresponding two-dimensional visualization (isobologram using a colour scale) is made. As an example,

in Figure S4 a dose response combination of a partial agonist and a neutral antagonist has been
simulated using the BIGL model from the marginal dose response curves as shown below (doses are in

linear scale).
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Figure S4. Example for partial Agonist-neutral Antagonist combination as obtained by R Shiny app.
a. dose response curve partial Agonist b. dose response curve neutral Antagonist c. expected BIGL null

response surface d. isobologram of the null model.
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4 Heatmap O’Neil paper

Heatmaps were generated, similarly to the ones in the original paper, illustrating the number of cell lines
with synergy (Figure S5) and antagonism (Figure S6) for each pairwise combination. We used the BIGL
model as the null model, while O’Neil used both Bliss independence null model as well as single agent
model. However, in general pairs that were found synergistic in the majority of cell lines were also found

to be synergistic in our case.
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Figure S5. Heatmap illustrating synergistic combinations. The coloring indicates the number of times a
particular pair was called synergistic across the different cell lines. Grey wells are pairs that were not

present in the dataset.
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Figure S6. Heatmap illustrating antagonistic combinations. The coloring indicates the number of times a
particular pair was called antagonistic across the different cell lines. Grey wells are pairs that were not
present in the dataset.
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