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Supplementary Figure 1| Pulse sequence during spin-echo NMR measurements. 

The NMR pulse sequence was synchronized with a pulsed electric current. 

 

 

 

Supplementary Figure 2| 
125

Te-NMR spectra of single crystal of trigonal tellurium. 

A magnetic field of 7.3858 T was applied in direction away from the c axis (red) and 

almost parallel to the c axis (blue). The latter is the same spectrum as in Fig. 1e. 

  



2 

 

Supplementary Note  1: Estimation of the current-induced magnetization 

In principle, one can estimate the amount of the current-induced magnetization from the 

current-induced NMR shift observed, using the value of the hyperfine coupling of 
125

Te 

in elemental trigonal tellurium. However, at present, it is impossible to estimate the 

amount of the induced magnetization because there is no reliable source of information 

on the hyperfine coupling in elemental trigonal tellurium. In other words, reliable K 

(Knight shift)– (spin susceptibility) analyses have not been achieved, despite the long 

length of time of the elemental tellurium study. This is because elemental trigonal 

tellurium is a semiconductor with a band gap Eg of ~330 meV, which is much larger 

than room temperature, and thus the spin susceptibility is too small to be detected. 

Indeed, the total magnetic susceptibility does not show a temperature dependence in 

non-doped pure cyrstals below room temperature
1,2

; the experimental value of the spin 

susceptibily is, therefore, not available. 

Nevertheless, we will provide a rough and tentative estimate of the current-induced 

magnetization. In Supplementary Ref. 3, the Knight shift data of the intrinsic region 

(350–700 K) is reported. We estimated the hyperfine coupling to be 5.4  10
3
 T B

-1
 

(where B is the Bohr magneton) by using the reported Knight shift data and 

theoretically calculated spin susceptibility; the details are provided below. 

We calculate the high-temperature spin susceptibility under a magnetic field along the c 

axis, according to the procedure discussed in Supplementary Ref. 3. First, we adopt the 

approximate form of the spin susceptibility of trigonal tellurium caused by 

non-degenarate electrons and holes thermally excited across the band gap: s = 

[B
2
ne(T) + (2B)

2
nh(T)] / kBT, where ne(T) and nh(T) are the density of the electrons and 

holes, respectively. Next, we assume the density of the electrons and holes to be 

B/23 3/2 * * 3/4

e h B( ) ( ) (2 )(2 ) ( ) gE k T

e hn T n T h k T m m e


  , where h is the Planck constant, and 

me* and mh* are the density-of-states effective mass of the conduction and valence 

bands, respectively. By substituting me* = 0.091m0 and mh* = 0.143m0 (where m0 is the 

free electron mass)
4
, we obtain s = B  [7.50  10

14
 (cm−3

 T−1
 K−1/2

)]  [T(K)]
1/2

  

exp(−Eg / 2kBT). Lastly, we compare this susceptibility with the reported Knight shift, K 

= [1.38  10−4
 (K−1/2

)]  [T(K)]
1/2

  exp(−Eg / 2kBT); this allows us to obtain a hyperfine 

coupling of 5.4  10
3
 T B

-1
. We note that this value does not represent the hyperfine 

coupling of the uppermost valence band, but rather it is the average value of those of the 

uppermost valence band and the conduction bands, which can be different. In addition, 

we neglect the effect of the temperature dependence of the orbital magnetism, which 
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can also contribute to the temperature dependence of the Knight shift. As a result, the 

estimated hyperfine coupling is not very reliable. 

Nevertheless, if we adopt this hyperfine coupling value (i.e., 5.4  10
3
 T B

-1
), the 

spectral shift of ~0.7 Gauss (under 82 A cm−2
) observed in the present study yields a 

magnetization of 1.3  10−8
 B per site. 

 

Next, we try to compare the above rough estimation of the current-induced 

magnetization with a theoretical calculation. When an electric field is applied along the 

c (z) axis, a current-induced spin polarization <sz> and an electric current density <jz> 

can be expressed by a Boltzmann transport equation approach in the relaxation-time 

approximation
5
:
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where V is a system volume, e (>0) is the elementary charge, k is the wave vector of a 

hole, s
h

z(k) is the z-axis component of the spin of a hole at k, v
h
z(k) is the z-axis 

component of the group velocity of a hole at k, Ez is the z-axis component of an electric 

field,  is the scattering time, E
h
(k) is the energy dispersion of a hole, (f

h
0/=E

h
(k) is a 

derivative of the equilibrium distribution function of the holes at E
h
(k) with respect to 

an energy, and BZ denotes the first Brillouin zone. If the energy dependence of  is 

neglected, then the following equation is obtained: 
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Note that the value of eE is absent in this equation. Below, we use the actual chemical 

potential at 100 K, <jz> = 82 A cm−2
, 

h 2 2 2 2 2 2

0( ) ( ) [ ( ) ]x y z zE E A k k Bk S k E           k k , 

 h 2 2 2( ) ( ) 3 2z z z zs s Sk S k      k k  and 
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h 2 2 2 2( ) (2 )z z z zv Bk S k S k    k , where k = (k x, k y, k z) is a wave vector from the 

H or H’ points, A = −32.6 eV Å
2
, B = −36.4 eV Å

2
, S = −2.47 eV Å (for P3121),  = 63 

meV, and E0 = 2.4 meV. As a result, the density of the current-induced spin polarization 

is calculated to be <sz>/V= −4.1  10
13

 cm−3
. The current-induced magnetization per 

tellurium atom Matom is calculated to be Matom = gJ=3/2B<sz>  Vatom ~ 1.9  10−9
 B, 

where gJ=3/2 = −4/3 is the Landé g-factor of J =3/2 (S = 1/2, L = 1), and Vatom = 34 Å
3
 is 

the atomic volume of tellurium. This theoretically calculated result, ~10−9
 B per site, is 

comparable to the above estimation obtained from the NMR shift, even though both the 

estimations are rough. Note that the present calculation quantitatively reproduces the 

result of a similar calculation in Supplementary Ref. 6 with accuracy less than a few per 

cents, considering the different conditions between the two studies, such as temperature, 

carrier densities, and band parameters. 

 

In spite of the rough agreement between the experimental estimation and the theoretical 

calculation, we emphasize again that the hyperfine coupling value described above is 

not very reliable and may contain considerable uncertainties. Further quantitative 

discussions would therefore be needed with regards to current-induced bulk 

magnetization. 
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