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Supplementary Figure 1: Ribosomal RNA rate computed from each RNA-
Seq experiment
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Supplementary Figure 2: Effect of copy number variation on expression of
proximal genes. Expression of genes near CNV breakpoints were plotted and
z-score of expression of each gene was used to identify expression outliers.
Each line presents the expression of the set of genes for individuals with the
CNV (red) and without the CNV (grey). Z-scores are plotted at the midpoint of
the body of each gene.
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Supplementary Figure 3: Quality control for sex, contamination and
mislabeling. A) Check that labeled sex is concordance with gene expression on
chrX, and chrY. Plot of the sum of expression of 6 chrY genes (USPYY, UTY,
NLGN4Y, ZFY, RPS4Y1, TXLNGZ2P) versus expression on XIST from chrX.
Males (blue) have distinct expression patterns of high chrY and low chrX
expression. High quality female samples (red) have high chrX expression and
low chrY expression. Problematic samples (grey) have intermediate expression
patterns due to problems in X-inactivation, sample mislabeling or contamination
involving a male and female sample. These samples were excluded from further
analysis. These individuals are not known to have Klinefelter's or other sex
chromosome abnormality that would produce this observation. B) Contamination
analysis using VerifyBamID ! comparing variants called for each sample from
RNA-Seq to variants from PsychChip and whole exome sequencing of the
donors. Individual 499 shows a contamination percentage of 100%,
recapitulating a known issue with sample mislabeling. Sample 1275-B-3F has a
contamination percentage of 50%, consistent with (A) where this sample shows
and expression patter intermediate between male and female. This sample is
likely contains both male and female RNA.
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Supplementary Figure 4

reads. A) Analysis workflow illustrating de novo assembly with Trinity/Inchworm,



aligning contigs to Sendai genome and quantifying Sendai expression for each
RNA-Seq experiment. B) Plot from NCBI showing results of BLAST alignment to
the Sendai virus genome of all de novo contigs compiled across all 94 RNA-Seq
experiments. Notice that Sendai gene F is not observed in the dataset likely due
to the fact that the virus used in the experimental procedure was engineered. C)
Quantification of Sendai expression in counts per million for each RNA-Seq
experiment.
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Supplementary Figure 5: Genes differentially expressed based on residual
Sendai virus expression. A) Gene set enrichment based on hypergeometric
test for genes with FDR < 5%. B) Differential expression results for 3 Yamanaka
factors genes used in a Sendai virus vector in the hiPSC reprogramming.
POUSF1 (i.e. OCT4) is not expressed at sufficient levels to be included in this
analysis.
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Supplementary Figure 6: Comparing expression patterns in hiPSC-NPC and
hiPSC-neurons. A) Venn diagram indicating high overlap of genes expressed at
logz RPKM of 1 in each cell type. B) Jaccard similarity between sets of genes
that are expressed in each cell type at a level exceeding the expression cutoff on
the x-axis. This indicates high overlap between sets of expressed genes. C)
Volcano plot showing -logio p-value and log; fold change between hiPSC-NPC
and hiPSC-neurons. Genes with FDR < 1% are indicated in light red and genes
with FDR < 5% are indicated in dark red. Remaining genes are show in grey.
D,E) Gene set enrichment tests based on hypergeometric test for gene sets in
MSigDB for genes with FDR < 1% in D) hiPSC-NPCs and E) hiPSC-neurons.
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Supplementary Figure 7: Genes with high inter-donor expression variation
in hiPSC-NPCs and -neurons are enriched for brain cis-eQTLs. Fold
enrichment (logz) for the 2000 top cis-eQTLs discovered in post mortem
dorsolateral prefrontal cortex data generated by the CommonMind Consortium?
shown for the inter-donor variance component in hiPSC-NPCs and —neurons.
Each line indicates the fold enrichment for genes with the fraction of variance
explained exceeding the cutoff indicated on the x-axis. Shaded regions indicate
the 90% confidence interval based on 10,000 permutations of the variance
fractions. Enrichments are shown on the x-axis until less that 100 genes pass
the cutoff.
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Supplementary Figure 8: Similarity between RNA-Seq samples from the
A) Hierarchical clustering of RNA-Seq
samples before correcting for the two fibroblast cell type composition scores.
B,C) Correlation between samples from different donors compared to the
correlation between samples from the sample donor.
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Supplementary Figure 9: Cell type composition scores for current study
and hiPSC-NPC and hiPSC-neuron samples from external datasets.
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Supplementary Figure 10. Expression of mesenchymal (top) and neural
crest (bottom) markers in hiPSC-NPCs, hiPSC-neurons and across our cell
type composition (CTC) signatures.

Plots of selected mesenchymal (NT5E (CD73), VIM, THBS1, CDH2, VTN, FN1,
ENG, ITGB1, CD44, THYT) 3 http://www.abcam.com/human-mesenchymal-
stromal-cell-marker-panel-cd44-cd45-cd90-cd29-and-cd105-ab93758.html) and
neural crest (NGFR (CD271), TFAP2A, NR2F1, NR2F2, TWIST1, SNAI1, SNAI2,
RARA, ALX3, ALX4, PAX3, SOX9, SOX10, MYC, SEMA3A, NOTCH1, NOTCH?2,
ASCL1, CHD7, FOXD3, NGN1, NGN2, NGN3, NUMB, VIM, BMP4, BMP7)
markers 43, https://www.rndsystems.com/research-area/neural-crest-cell-
markers) markers in our hiPSC-NPC and hiPSC-neuron RNA-seq data as well as
the CTC reference signatures.
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Supplementary Figure 11: Accounting for fibroblast cell type composition
scores increases similarity between RNA-Seq samples from the same
donor within each cell type. A,B) Correlation between samples from different
donors compared to the correlation between samples from the sample donor for
A) hiPSC-NPCs and B) hiPSC-neurons. P-value indicates one-sided Wilcoxon
test.
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Supplementary Figure 12: Violin plots of the percentage of variance

explained by each variable over all the genes for multiple biological and
technical sources of variation.
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Supplementary Figure 13: No differences in cell type composition scores
between cases and controls. A) Cell type composition scores stratified by
case/control status for hiPSC-neurons and hiPSC-NPCs. B) -logo p-values for
hypothesis test (two-sided Wilcoxon) for each boxplot in (A). Dotted line



indicates p-value of 0.05 and dashed line indicates Bonferroni cutoff at 5%. No
tests are significant at even the nominal cutoff.



0.2 0.4 0.6 0.8
1

Scale Free Topology Model Fit

-0.2

iPSC-neuron
iPSC-NPC

-0.4
1

T T T T T
0 5 10 15 20

Height
0.6 0.8 1.0

0.4

0.2

1108 BN (] T

c hiPSC-NPC: Gene dendrogram and module colors, TOM dissimilarity

N e Y ﬁ 1‘ﬁ—r“
\
. |

0.8 1.0

Height
0.6

0.4

0.2

(TIHITNN R |

Supplementary Figure 14: Coexpression analysis. A) Metric of scale free
network topology for hiPSC-NPC and hiPSC-neuron networks. Dashed line
indicates the software threshold of 9 used in the analysis. B,C) Dendrogram and
module assignments from expression analysis for B) hiPSC-neurons and C)
hiPSC-NPCs.
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Supplementary Figure 15: Concordance between case/control differential
expression results from hiPSC-NPCs from the current study and two adult
post mortem cohorts. A,B) Concordance between t-statistics from hiPSC-
NPCs and A) CommonMind and B) NIMH HBCC cohorts. C,D) Concordance
between log, fold change estimates from hiPSC-NPCs and A) CommonMind and
B) HBCC cohorts. Dashed grey line indicates a slope of 1. Dark red line
indicates best fit line based on observed data. Correlation between two datasets
are summarized in terms of Pearson correlation (R) and Spearman correlation
(rho), each with corresponding p-values.
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Supplementary Figure 16: Concordance between case/control differential
expression results from hiPSC-neurons from the current study and two
adult post mortem cohorts. A,B) Concordance between t-statistics from
hiPSC-neurons and A) CommonMind and B) NIMH HBCC cohorts. C,D)
Concordance between log, fold change estimates from hiPSC-neurons and A)
CommonMind and B) HBCC cohorts. Dashed grey line indicates a slope of 1.
Dark red line indicates best fit line based on observed data. Correlation between
two dataset are summarized in terms of Pearson correlation (R) and Spearman
correlation (rho), each with corresponding p-values.
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Supplementary Figure 17: Concordance of case/control differential
expression signatures between current study and post mortem cohorts
depends on correction for cell type composition scores. A,B) Spearman
correlation between t-statistics for case/control differential expression analysis
from the current study compared to A) CommonMind and B) NIMH HBCC
cohorts were cell type composition scores were included as a covariate in the
regression model. NULL indicates a model with no score included. Note the
large effect of including the fibroblasts score in the concordance with the HBCC
cohort. C,D) One-sided hypothesis test for the correlation analysis in the
previous panels for C) CommonMind and D) HBCC cohorts.
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Supplementary Figure 18: Correcting for fibroblast, cell type composition
score in test of case/control differential expression affects specific genes
in hiPSC-NPCs. A) Comparison of absolute value of t-statistics from differential
expression analysis including the fibroblast; score as a covariate compared to
absolute t-statistics omitting it. Dashed line indicates a slope of 1. Genes are
colored based on their difference between the two analyses. Red indicates the
500 genes with the greatest increase in the absolute t-statistic and blue indicates
the 500 genes with the greatest decrease. The remaining genes are in black. B)
Histogram of differences in absolute t-statistics from (A). Dashed lines indicate
the cutoff for the 500 genes with greatest increase (red) and greatest decrease
(blue). C,D) Gene set enrichments using a hyper geometric test for the 500
genes with the greatest C) increase and D) decrease of absolute t-statistics.
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Supplementary Figure 19: Correcting for fibroblast, cell type composition
score in test of case/control differential expression affects specific genes
in hiPSC-neurons. A) Comparison of absolute value of t-statistics from
differential expression analysis including the fibroblast; score as a covariate
compared to absolute t-statistics omitting it. Dashed line indicates a slope of 1.
Genes are colored based on their difference between the two analyses. Red
indicates the 500 genes with the greatest increase in the absolute t-statistic and
blue indicates the 500 genes with the greatest decrease. The remaining genes
are in black. B) Histogram of differences in absolute t-statistics from (A).
Dashed lines indicate the cutoff for the 500 genes with greatest increase (red)
and greatest decrease (blue). C,D) Gene set enrichments using a hyper
geometric test for the 500 genes with the greatest C) increase and D) decrease
of absolute t-statistics.
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SUPPLEMENTARY NOTE 1
Computing effective sample size

The concept of effective sample size is widely used in statistical genetics to
compare the relative power of two or more case/control genome-wide association
studies °. Assuming that the effect sizes and allele frequencies are the same, the
power of each study is determined by the total sample size and the case/control
ratio. A balanced study with equal number of cases and control is the most
powerful. Because cases tend to be the limiting factor, most studies are
unbalanced. In order to compare the power of studies with different sample sizes
and case/control ratios, the “effective sample size” (N,) indicates the sample size
of the balanced study with equivalent power. This statistic allows comparisons
by putting all studies with different characteristics on the same scale. Moreover,
intuition about effective sample size can guide study design to allocate resources
to maximize power.

Designing gene expression studies to detect differential expression raises a
corollary challenge: how to compare the relative power of studies with different
numbers of total experiments and biological replicates, assuming all other factors
are equivalent. Biological replicates from the same donor will be correlated
because they measure the same underlying biological process. So a comparison
of relative power must consider this degree of correlation.

Here we formalize the concept of effective sample size for studies with correlated
samples by computing the sample size of a study of independent samples with
equivalent power . We start by assuming that all experiments have equal cost
(in terms of labor, sequencing, etc.) and relax this assumption below.

Consider a study of k donors with m biological replicates per donor where p
indicates the correlation between multiple experiments from the sample donor.
This corresponds to mk total experiments. Following standard statistical theory
of repeated measures study design 2'° the effective sample size is

N = mk
* 1+p(m-1)

Examination of this formula indicates key insights: 1) With 1 biological replicate
per donor (m=1), the effective sample size equals the number of donors. 2) The
increase in effective sample size obtained by increasing the number of biological
replicates (i.e. m) is mediated by the correlation between biological replicates
from the same donor (i.e. p).

Consider the contribution of each experiment to the power of the study as
measured by effective sample size. Letting N;,:o; = mk be the total number of
experiments, and V be the contribution of each experiment to the effective
sample size, then



:1+p(m—1)

Examination of this formula indicates two key insights: 1) V represents the
incremental impact of each successive experiment and is bounded between 0
and 1. 2) The incremental impact is highest when p and m are small. The latter
point indicates that adding a biological replicate has a larger impact to increase
power when there are few replicates or when the correlation between
experiments from the same donor is small. When there are already, say, m =5
replicates or p is large then the contribution is minimal.

Computing effective sample size when costs are variable

In practice, there are substantial overhead costs for each donor in terms of
recruitment, biopsy and hiPSC reprogramming. This overhead makes
subsequent experiments from the same donor less expensive than the first
experiment. When the total number of experiments in the study is fixed, then

k= Ntotal

m
is the number of biological replicates per donor. Consider that the cost per
experiment varies so that the first experiment from a new donor costs C1 units
and all subsequent biological replicates cost €2 units with C2 < C1. It follows that
the first experiment costs C1 units and the sum of all subsequent experiments
from the same donor is

C2(m—1)
and the total cost per donor is
Cl+C2(m-—1).

If the total cost of the study is fixed at C, it follows that the number of donors that
can be afforded is

C
k= c2m-1)
A decreased cost of adding biological replicates changes computation of the

effective sample size and pushes the calculation to favor increasing biological
replicates when the total cost is fixed.

The companion website http:/gabrielhoffman.shinyapps.io/design_ips_study/
creates interactive plots showing the effective sample size or the incremental
impact of each experiment when either the total cost or number of donors is
fixed.
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