Regulation of ribonucleotide synthesis by the *Pseudomonas aeruginosa* twocomponent system AlgR in response to oxidative stress

Anna Crespo¹¶, Lucas Pedraz¹¶, Marc Van Der Hofstadt², Gabriel Gomila², Eduard Torrents^{1*}

¹ Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.

² Nanoscale Bioelectrical Characterization, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.

*: Corresponding author; e-mail: <u>etorrents@ibecbarcelona.eu (ET)</u>

[¶]: AC and LP, listed in alphabetical order, contributed equally to this work.

Supplementary Fig. S1. Count matrices for AlgR-box identification. Count matrices were generated by FIMO search using three different sets of sequences containing AlgR binding spots (see Materials and Methods). Matrices are adjusted for a box size of 11 bp, represented in rows, and the bases are expressed in columns in the order A–C–G–T; each matrix is accompanied by its corresponding HMM logo.

Original Figure 3

Supplementary Fig. S3. AlgR – DNA binding affinities. EMSA assays for *PnrdA*, *PnrdJ*, and *PalgD* promoter long bands. (**A**), A wide array of concentrations was used to illustrate different binding affinities (shown below the figures; numbers represent protein amount in pmol). Different boxes involved in bindings are shown in the table below, (**B**). Most conserved base pairs are underlined, and cytosine in position 7, which is described to distinguish weak and strong binding sites, is marked in gray.

В

Binding site	Sequence	Orientation	Strength	Source
P <i>nrdA</i> box 1	G CCATTCGTC G	3'-5' ←	Strong	This work
P <i>nrdJ</i> box 1	G CCGCCG<u>GTC</u>C	5' - 3' →	Weak	This work
P <i>nrdJ</i> box 2	G CCGGCTGTC T	5' - 3' →	Weak	This work
PalgD RB1	A CCGTTCGTC C	5' - 3' →	Strong	1, 2
PalgD RB2	A CCGTTCGTC T	5'- 3' →	Strong	1, 2
PalgD RB3	G CCGTTTGTC C	3'-5' ←	Weak	1, 2
PalgC ABS1	C CCGTTCGTC G	5'-3' →	Strong	3
PalgC ABS2	T CCGTTGT<u>TC</u>C	5' - 3' →	Weak	3
PalgC ABS3	A CCGTGCGTC G	5' - 3' →	Strong	3

(1) Kato, J. and A. M. Chakrabarty (1991). "Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa." Proc Natl Acad Sci U S A 88(5): 1760-1764.

(2) Mohr, C. D., et al. (1991). "AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site." J Bacteriol 173(16): 5136-5143.

(3) Zielinski, N. A., et al. (1991). "Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase." J Biol Chem 266(15): 9754-9763.

Supplementary Fig. S4. Cooperative regulation of AlgZR and Anr/Dnr systems on RNR class II. Gene reporter assay for the *PnrdJ* promoter fused to GFP, during anaerobic liquid cultures, grown to $OD_{550} = 2.0$. The cooperative action of these two systems is explored by combining a $\Delta algR$ background with the mutation of the Anr/Dnr box on *PnrdJ*. Values are averages from at least three independent experiments; error bars show positive standard deviation. Asterisks (*) indicate statistically significant differences from the wild-type strain harboring *PnrdJ* wild-type promoter (*p*-value less than 0.05 in pairwise T-tests). Shortened names are used (see Table S1).

Supplementary Fig. S5. Protein overexpression and purification. Coomassie blue-stained gel showing SDS-PAGE analysis of AlgR wild type and AlgRD54N overexpression. MW, molecular weight marker; CE, crude extract; FT, flow through; UN, nonspecific elution step; P, protein recovered after specific elution step. Molecular weights of the standards are indicated.

Supplementary Table S1. Bacterial strains and plasmids used in this study. For each element, a general description is provided, together with an alternative self-explanatory name which will be commonly used in figures to make interpretation of the data easier for the reader. Throughout all the paper, a P before the name of a gene indicates the promoter controlling this gene (e.g., *PnrdA* for *nrdAB* operon promoter).

Name	Referred as	Description	Source
Plasmids			
pGEM-T easy	pGEM-T easy	A/T cloning vector; Amp ^R	Promega
pUCP20T	pUCP20T	Broad-host-range vector; Amp ^R	(1)
pET28a	pETS28a	Vector for His ₆ -tagged protein overexpression; Kn ^R	Laboratory
pETS130-GFP	pETS130	Broad host range, promoterless GFP; Gm ^R	(2)
pETS134	pETS-PnrdA	pETS130 derivative carrying <i>nrdA</i> promoter; Gm ^R	(2)
pETS136	pETS-PnrdD	pETS130 derivative carrying <i>nrdD</i> promoter; Gm ^R	(2)
pETS180	pETS-PnrdJ	pETS130 derivative carrying <i>nrdJ</i> promoter; Gm ^R	(3)
pETS191	pETS-PJ∆dnr	pETS130 derivative carrying Anr/Dnr box mutating in PnrdJ; Gm ^R	(4)
pETS201	pETS201	pET28a derivative carrying <i>algR</i> , AlgR overproducer, Kn ^R	This work
pETS202	pETS202	pET28a derivative carrying algRD54N, AlgRD54N overproducer, Kn ^R	This work
pETS203	pUCP-AlgR	pUCP20T derivative carrying the <i>algR</i> gene; Cb ^R	This work
pETS204	pUCP-D54N	pUCP20T derivative carrying the <i>algRD54N</i> gene; Cb ^R	This work
pETS205	pETS-PalgD	pETS130 derivative carrying <i>algD</i> promoter; Gm ^R	This work
pETS206	pETS-P1157	pETS130 derivative carrying PA1157 promoter; Gm ^R	This work
pETS207	pETS-PalgR	pETS130 derivative carrying <i>algR</i> promoter; Gm ^R	This work
pETS208	pETS-PA∆box1	pETS130 derivative carrying AlgR-box1 mutation in PnrdA, Gm ^R	This work
pETS209	pETS-PJ∆box1	pETS130 derivative carrying AlgR-box1 mutation in PnrdJ, Gm ^R	This work
pETS210	pETS-PJ∆box2	pETS130 derivative carrying AlgR-box2 mutation in PnrdJ, Gm ^R	This work
pETS211	pETS-PJ∆box1+2	pETS130 derivative carrying AlgR-box1 and AlgR-box2 mutation in PnrdJ, Gm ^R	This work

Strains

E. coli			
DH5a	DH5a	recA1 endA1 hsdR17 supE44 thi-1 relA1 Δ (lacZYA-argF)U169 deoR Φ 80dlacZM15	Laboratory
Rossetta(DE3)	Rosetta	F ompT hsdS _B (r_B m _B) gal dcm (DE3) pRARE (CamR)	Merck
P. aeruginosa			
PAO1	PAO1 WT	Wild-type (ATCC 15692 / CECT 4122) - Spanish Type Culture Collection	Lab strain
PW9855	PAO1 $\Delta algR$	<i>P. aeruginosa</i> PAO1 <i>algR</i> :: <i>IS</i> phoA/hah; Tc ^R	(5)
PAOMA	PAO1 ∆mucA	P. aeruginosa mucA strain	A. Oliver Lab

- 1. West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ. 1994. Construction of improved *Escherichia-Pseudomonas* shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in *Pseudomonas aeruginosa*. Gene 148:81-86.
- 2. Sjöberg BM, Torrents E. 2011. Shift in ribonucleotide reductase gene expression in *Pseudomonas aeruginosa* during infection. Infect Immun 79:2663-2669.
- 3. Crespo A, Pedraz L, Torrents E. 2015. Function of the *Pseudomonas aeruginosa* NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression. PLoS One 10:e0123571.
- 4. Crespo A, Pedraz L, Astola J, Torrents E. 2016. *Pseudomonas aeruginosa* Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth. Front Microbiol 7:688.
- Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C. 2003. Comprehensive transposon mutant library of *Pseudomonas aeruginosa*. Proc Natl Acad Sci U S A 100:14339-14344.

Name	Sequence (5'→3')	Application
M13-dir	GTTTTCCCAGTCACGAC	Check-Cloning
M13-rev	CAGGAAACAGCTATGACC	Check-Cloning
pUCP20T-up	CCTCTTCGCTATTACGCCAG	Cloning
pUCP20T-low	TCCGGCTCGTATGTTGTGTG	Cloning
pBBR1-up	CATCGCAGTCGGCCTATTGG	Cloning
pBBR1-low	CACTTTATGCTTCCGGCTCG	Cloning
AlgR-up	ACATATGAATGTCCTGATTGTCGATG	AlgR overproducer
AlgR-low	ATCAGAGCTGATGCATCAGAC	AlgR overproducer
AlgRD54N-up	GCGGATGTTCAGCAGGAC	AlgRD54N overproducer
AlgRD54N-low	GTCCTGCTGAACATCCGC	AlgRD54N overproducer
PfimSalgR-up	GGATCCTGTCTTCCTGGTTGTCCTTGTT	PfimSalgR cloning / AlgR complementation
PalgR-SmaI-GFP-low	TTCCCGGGCTTGAATCGGAT	PfimSalgR cloning
PA1157-up	AAGGATCCGGTATGCATGGGTGGGTATC	PA1157 promoter cloning
PA1157-low	AACCCGGGTTCTTGCTCCACACAGCCTC	PA1157 promoter cloning
PnrdA-BamHI-EcoRI-GFP-up	AGGATCCGAATTCTTGCTCCACACAGCCTC	PnrdAB cloning / EMSA PnrdA long / AFM
PnrdA-SmaI-GFP-low	ACCCGGGTTCTCGCGTGTGGTGTCG	PnrdAB cloning / AFM
PnrdA-EXT-low-M13	CTGGGCGTCGTTTTACGGCTCCTTGCGATGAG	EMSA PnrdA long
PnrdA-AlgR-EMSA-up	TACATATTGTGGGTAGGGTG	EMSA PnrdA short 1
PnrdA-AlgR-EMSA-low-M13	CTGGGCGTCGTTTTACGGATAAAGTGTGGGTCTTCT	EMSA PnrdA short 1
PnrdA-EMSA-up	TTTCCCCCAGACTGTCAC	EMSA PnrdA short 2
PnrdA-EMSA-low-M13	CTGGGCGTCGTTTTACTCAGAGTGGTCCGTGCG	EMSA PnrdA short 2
PnrdJ-AlgR-BamHI-EMSA-up	GGATCCTACGGGTTGCGCCATA	PnrdJ promoter cloning
PnrdJ-SmaI-GFP-low	AACCCGGGGACTGCGTTGCGTCTGTC	PnrdJ promoter cloning / AFM
PnrdJ-BamHI-GFP-up	GGATCCCGCGCCCAGCTGAAGGCC	EMSA PnrdJ long
PnrdJ-EXT-low-M13	CTGGGCGTCGTTTTACGGCCACCGTACGCAAC	EMSA PnrdJ long
PnrdJ-AlgR-EMSA-up	TACGGGTTGCGCCATA	EMSA PnrdJ short 1
PnrdJ-AlgR-EMSA-low-M13	CTGGGCGTCGTTTTACTTCGCTGAGGGTGTCG	EMSA PnrdJ short 1
	10	

Supplementary Table S2. Primers and probes used in this study.

PnrdJ-mid-up PnrdJ-mid-low-M13 PnrdJ-EMSA-up PnrdJ-EMSA-low-M13 PnrdJ-AFM-up PnrdD-BamHI-GFP-up PnrdD-EMSA-low-M13 PalgD-BamHI-GFP-up PalgD-low-M13 PalgD-SmaI-GFP-low PalgD-BamHI-AFM-up Anr-EcoRI-up Anr-low-M13 DinB-AFM-up DinB-low-M13 PnrdA-mutAlgR1-up PnrdA-mutAlgR1-low PnrdJ-mutAlgR1-up PnrdJ-mutAlgR1-low PnrdJ-mutAlgR2-up PnrdJ-mutAlgR2-low PnrdJ-mutAlgR3-up PnrdJ-mutAlgR3-low PnrdJ-mutAlgR4-up PnrdJ-mutAlgR4-low WellRed-M13

CCGACACCCTCAGCGAAG CTGGGCGTCGTTTTACAGACAACCTTAGTCATCGG TCCCGATGACTAAGGTTGTC CTGGGCGTCGTTTTACCTGATTAACCTCCCGATGG GCGCAAGTTCGTCAATTTCG AGGATCCCGCGACGCCCATTTC CTGGGCGTCGTTTTACCTTGAGCAGGGTGGCC GGATCCCTCCTCTTTCGGCAC CTGGGCGTCGTTTTACTTCCTTAATCTTCGACCCA CCCGGGAGATGCTGATTCGCATC TGGATCCCCCTATCGACTGGAAATGG GAATTCATGGCCGAAACCATCAAG CTGGGCGTCGTTTTACGCATCGGTGATGCTGAAG CTGGTGATGCTGGTCGTG CTGGGCGTCGTTTTACCAGCTCCCGCAACCAC GCTTCGCCTAACATTCTCCAGCGCTG TGTTAGGCGAAGCCCTCGGAAAGC GGTTGCCGTAACGGTCTGCA CAGACCGTTACGGCAACCT GCTCTGAAAACTAGTTCCTGATATCCGC GCGCGGATATCAGGAACTAGTTT ATGGCCGCGAACGCTTGAGCG CGCTCAAGCGTTCGCGGCCAT CGAATTTGAAGGCTTAATGGAAAAGC TTCCATTAAGCCTTCAAATTCGC [D3-PA]GTCACTGGGCGTCGTTTTAC

EMSA PnrdJ short 2 EMSA PnrdJ short 2 EMSA PnrdJ short 3 EMSA PnrdJ short 3 AFM EMSA PnrdD long EMSA PnrdD long PalgD cloning / EMSA positive control EMSA positive control / AFM PalgD cloning AFM EMSA negative control EMSA negative control AFM AFM Mutagenesis PnrdA box1 Mutagenesis PnrdA box1 Mutagenesis PnrdJ box1 Mutagenesis PnrdJ box1 Mutagenesis PnrdJ boxA1 Mutagenesis PnrdJ boxA1 Mutagenesis PnrdJ boxA2 Mutagenesis PnrdJ boxA2 Mutagenesis PnrdJ box2 Mutagenesis PnrdJ box2 EMSA band infrared labelling

Sun	plementary	Table S3.	PCR	reactions and	primer	pairs used.
~~p	promonou j	1 4010 000		i caccions ana	Primer	pans asca

Primer pair	Forward primer	Reverse primer	Application
1	AlgR-D54N-up	AlgR-D54N-low	AlgR D54N directed mutagenesis
2	PfimSalgR-up	AlgR-low	AlgR complementation plasmids
3	PalgD-BamHI-GFP-up	PalgD-SmaI-GFP-low	PalgD::gfp transcriptional fusion
4	PfimSalgR-up	PalgR-SmaI-GFP-low	PalgR::gfp transcriptional fusion
5	PA1157-up	PA1157-low	P _{PA1157} ::gfp transcriptional fusion
6	PnrdA-BamHI-EcoRI-GFP-up	PnrdA-SmaI-GFP-low	Outer primers in PnrdA promoter
7	PnrdJ-AlgR-BamHI-GFP-up	PnrdJ-SmaI-GFP-low	Outer primers in PnrdJ promoter
8	PnrdA-mutAlgR1-up	PnrdA-mutAlgR1-low	PnrdA AlgR box 1 mutagenesis
9	PnrdJ-mutAlgR1-up	PnrdJ-mutAlgR1-low	PnrdJ AlgR box 1 mutagenesis
10	PnrdJ-mutAlgR4-up	PnrdJ-mutAlgR4-low	PnrdJ AlgR box 2 mutagenesis
11	PnrdJ-mutAlgR2-up	PnrdJ-mutAlgR2-low	PnrdJ AlgR box A1 mutagenesis
12	PnrdJ-mutAlgR3-up	PnrdJ-mutAlgR3-low	PnrdJ AlgR box A2 mutagenesis
13	PnrdA-BamHI-EcoRI-GFP-up	PnrdA-EXT-low-M13	EMSA PnrdA long band
14	PnrdA-AlgR-EMSA-up	PnrdA-AlgR-EMSA-low-M13	EMSA PnrdA short 1 band
15	PnrdA-EMSA-up	PnrdA-EMSA-low-M13	EMSA PnrdA short 2 band
16	PnrdJ-BamHI-GFP-up	PnrdJ-EXT-low-M13	EMSA PnrdJ long band
17	PnrdJ-AlgR-EMSA-up	PnrdJ-AlgR-EMSA-low-M13	EMSA PnrdJ short 1 band
18	PnrdJ-mid-up	PnrdJ-mid-low-M13	EMSA PnrdJ short 2 band
19	PnrdJ-EMSA-up	PnrdJ-EMSA-low-M13	EMSA PnrdJ short 3 band
20	PalgD-BamHI-GFP-up	PalgD-low-M13	EMSA PalgD positive control band
21	Anr-EcoRI-up	Anr-low-M13	EMSA anr negative control band
22	PnrdA-BamHI-EcoRI-GFP-up	PnrdA-SmaI-GFP-low	AFM PnrdA probe
23	PnrdJ-AFM-up	PnrdJ-SmaI-GFP-low	AFM PnrdJ probe
24	PalgD-BamHI-AFM-up	PalgD-low-M13	AFM PalgD probe
25	PdinB-AFM-up	PdinB-low-M13	AFM PdinB probe