Morphology of travel routes and the organization of cities Supplementary Information

Minjin Lee, Hugo S. Barbosa, Hyejin Youn, Petter Holme, and Gourab Ghoshal

Supplementary Note 1 Materials and Methods

Collecting data from API service

Origin-Destination (OD) pairs were generated having the cities' centers as the reference points. In the absence of a worldwide definition of a city center, we used the coordinates collected and provided by the 'latlong.net'service, for each of the 92 cities. Having such coordinates as reference center points, we systematically computed *theoretical* OD pairs corresponding to combinations of discretized radial and angular ranges.

In many cases, the theoretical points have no access to the streets networks, being therefore approximated to their closest point within the networks. Such approximation is done automatically by the OpenStreetMap (OSM) routing API. However, to avoid the large discrepancies between a requested (theoretical) point and those returned by the OSM API, we applied two post-processing filters. First, if the distance of a returned OD coordinate is off by more than 1km from the center, we exclude such routes from the data. Second, we also excluded those routes whose lengths are longer than 3s + 1km, where s is the geodesic distance between the origin and destination points.

Data description

For each of the 92 cities, the maximum total number of unique driving routes is 630. However, after filtering out those discrepant routes and OD pairs, for each of the radii values, the average number of valid routes we analyzed were 575.9 (2km), 532.8 (5km), 461.7 (10km), 391.0 (15km), 349.3 (20km) and 254.7 (30km). Supplementary Table 1 also describes the detour index (DI) (i.e., the ratio d/r between the travel distance d and geodesic distance r) for fastest (F) and shortest (S). Avg. waypoint represents the average number of route points as returned by the OSM API for each city.

				Avg. Number of Valid routes for each radius				h radius	
City	DI(S)	DI(F)	Avg. waypoint	$2 \mathrm{km}$	$5 \mathrm{km}$	$10 \mathrm{km}$	$15 \mathrm{km}$	$20 \mathrm{km}$	$30 \mathrm{km}$
Abidjan	1.576	1.659	188.88	584	589	571	386	328	177
Accra	1.497	1.595	158.81	587	611	421	266	216	169
Ahmadabad	1.392	1.491	233.76	625	612	610	481	539	378
Ankara	1.48	1.599	367.45	612	619	580	571	420	397
Atlanta	1.307	1.478	386.32	599	621	624	629	630	630
Baghdad	1.6	1.766	212.38	550	602	606	496	339	220

Supplementary Table 1: Data description

Bandung	1.573	1.657	380.07	619	580	536	418	211	309
Bangalore	1.338	1.506	354.03	616	623	627	628	630	628
Bangkok	1.505	1.634	275.5	476	608	597	606	606	485
Barcelona	1.504	1.68	384.15	597	342	266	195	203	182
Belo Horizonte	1.525	1.682	456.71	612	617	619	606	470	516
Berlin	1.297	1.47	405.61	629	626	622	622	619	626
Bogota	1.566	1.661	455.55	608	621	606	583	583	427
Boston	1.374	1.519	626.85	576	616	571	520	495	405
Buenos Aires	1.353	1.511	178.25	613	520	259	252	231	209
Cairo	1.5	1.614	241.77	607	600	601	597	558	481
Cape town	1.471	1.562	275.8	479	357	251	320	187	66
Chennai	1.409	1.566	163.64	613	624	270	228	210	167
Chicago	1.387	1.551	206.56	590	346	228	210	210	190
Chongqing	1.72	1.769	287.77	448	521	578	480	403	304
Dalian	1.486	1.535	129.62	615	533	210	133	100	65
Dar es salaam	1.488	1.54	169.06	609	595	590	516	217	141
Delhi	1.409	1.483	262.27	618	604	608	617	621	453
Dhaka	1.568	1.648	244.44	519	593	462	489	380	293
Dongguan	1.569	1.61	159.03	587	500	512	425	542	516
Dubai	1.629	1.656	154.63	570	443	394	240	212	182
Fuzhou	1.656	1.719	481.95	608	586	503	492	469	426
Guadalajara	1.431	1.623	277.36	613	630	623	469	522	219
Guangzhou	1.55	1.644	312.96	512	558	594	556	537	502
Hangzhou	1.473	1.574	167.2	613	616	587	544	569	416
Hanoi	1.453	1.556	218.4	622	606	612	570	571	439
Harbin	1.593	1.638	119.13	543	456	406	243	425	178
Ho Chi Minh City	1.438	1.534	257.03	594	628	623	580	579	502
Houston	1.298	1.458	308.5	595	627	626	630	628	626
Hyderabad	1.38	1.533	346.95	623	620	622	621	622	546
Istanbul	1.462	1.615	335.32	454	569	431	452	315	187
Jakarta	1.461	1.618	236.13	604	620	620	551	348	246
Johannesburg	1.394	1.575	226.01	589	623	608	619	592	567
Kabul	1.656	1.678	219.18	351	508	376	179	161	27
Khartoum	1.538	1.615	228.41	603	606	339	357	405	217
Kinshasa	1.579	1.648	213.51	600	604	586	465	209	86
Kolkata	1.396	1.523	322.11	630	608	617	447	336	145
Kuala Lumpur	1.549	1.648	337.27	564	595	575	533	433	393
Lagos	1.633	1.726	283.73	592	442	400	465	240	66
Lahore	1.533	1.627	147.2	584	602	437	365	340	136
Lima	1.434	1.574	241.57	614	618	545	281	232	61
London	1.295	1.488	619.26	615	628	629	623	625	627
Los Angeles	1.294	1.463	329.49	614	624	616	629	630	427
Luanda	1.518	1.699	138.07	616	623	589	251	182	100
Madrid	1.416	1.557	414.53	609	607	600	583	486	521
Manila	1.399	1.501	271.95	623	586	481	390	296	294
Medan	1.478	1.565	161.89	625	620	591	561	335	43
Mexico Citv	1.411	1.608	314.42	611	608	624	612	580	455
Miami	1.486	1.589	168.23	546	567	296	171	153	135
Milan	1.348	1.519	562.1	621	611	624	628	627	630

Monterrey	1.413	1.571	218.96	623	622	589	487	324	245
Moscow	1.437	1.564	384.64	600	616	618	619	586	581
Mumbai	1.536	1.654	235.4	588	615	417	283	238	183
Nagoya	1.21	1.397	423.62	629	629	630	627	629	595
Nairobi	1.541	1.669	273.97	603	487	590	511	458	426
Nanjing	1.473	1.576	186.61	609	546	565	505	475	351
New York	1.405	1.561	338.79	536	615	605	624	559	429
Osaka	1.279	1.471	426.54	620	626	623	494	463	494
Paris	1.283	1.465	536.62	619	624	628	627	629	630
Philadelphia	1.331	1.505	411.91	623	598	617	620	622	629
Phoenix	1.328	1.454	318.56	619	625	629	622	592	489
Pune	1.461	1.536	397.43	602	616	618	511	615	373
Qingdao	1.527	1.592	125.23	617	400	174	191	170	180
Quanzhou	1.684	1.717	148.72	168	201	432	390	239	173
Rio de Janeiro	1.674	1.758	337.41	555	476	401	307	225	247
Rome	1.455	1.593	491.23	602	613	598	617	617	400
San Francisco	1.457	1.565	367.15	611	579	344	265	227	228
Sao Paulo	1.405	1.565	490.48	603	618	628	625	621	573
Shanghai	1.351	1.496	215.91	567	623	625	616	558	366
Shenyang	1.414	1.53	125.36	615	620	611	563	507	371
Shenzhen	1.569	1.655	344.57	571	545	595	556	526	369
Singapore	1.518	1.599	152.25	524	525	361	295	223	190
Surabaya	1.574	1.661	232.05	573	579	324	325	285	185
Surat	1.441	1.522	152.92	609	563	400	458	340	187
Suzhou	1.459	1.544	140.48	598	602	549	593	542	416
Sydney	1.475	1.58	316.83	588	611	526	292	222	148
Taipei	1.537	1.672	540.47	597	599	608	523	597	360
Tehran	1.505	1.649	295.42	622	603	603	571	417	300
Tianjin	1.467	1.568	191.99	600	604	586	465	209	86
Tokyo	1.229	1.487	448.21	630	629	630	623	593	495
Toronto	1.304	1.414	229.89	624	593	226	190	189	171
Washington DC	1.312	1.494	566.67	624	606	627	615	624	618
Wuhan	1.558	1.646	211.51	519	570	566	523	536	403
Xiamen	1.57	1.626	176.6	589	482	375	347	305	265
Xian	1.423	1.506	171.11	625	607	611	591	516	562
Yangon	1.469	1.513	162.23	623	624	595	514	340	176
Zhengzhou	1.454	1.532	133.43	613	590	607	533	493	353

Routes as street samples

If we consider only the subset of the streets within the 30km radius of our analyses, on average, the shortest and fastest routes covered approximately 24% and 18% of the overall streets networks, respectively (Supplementary Figure 2a). However, when we talk about different routing approaches, faster arterial roads and minor residential streets are going to respond for different aspects of the route optimization, and therefore they are expected to cover different samples of a road network. The distribution of road types being sampled by each routing method is depicted in the Supplementary Figure 2 b&c. As explained in the main text, arterial roads such as motorway and trunk roads are much more relevant for fastest routes than for shortest routes, reflecting in how frequently they appear in each type of route. Supplementary Table 2 shows the fraction of the overall streets networks being sampled by the shortest and fastest routes for each city as well as the ratio between the two fractions. Supplementary Figure 3 & 4 depict the participation of the most frequent road types for each city.

City	Shortest route	Fastest route	Fastest route/Shortest route
Abidjan	0.149	0.117	0.786
Accra	0.247	0.179	0.722
Ahmadabad	0.285	0.226	0.791
Ankara	0.288	0.191	0.662
Atlanta	0.183	0.141	0.768
Baghdad	0.282	0.183	0.651
Bandung	0.188	0.165	0.874
Bangalore	0.240	0.151	0.627
Bangkok	0.154	0.124	0.808
Barcelona	0.195	0.125	0.641
Berlin	0.186	0.133	0.713
Bogota	0.193	0.125	0.649
Boston	0.248	0.163	0.659
Buenos Aires	0.278	0.192	0.688
Cairo	0.139	0.103	0.738
Cape Town	0.163	0.117	0.718
Chennai	0.177	0.112	0.632
Chicago	0.209	0.126	0.605
Chongqing	0.507	0.486	0.959
Dalian	0.540	0.511	0.947
Dar es Salaam	0.101	0.083	0.821
Delhi	0.092	0.061	0.662
Dhaka	0.185	0.133	0.717
Dongguan	0.181	0.184	1.013
Dubai	0.126	0.100	0.796
Fuzhou	0.367	0.364	0.991
Guadalajara	0.278	0.154	0.554
Guangzhou	0.271	0.248	0.915
Hangzhou	0.343	0.330	0.963
Hanoi	0.354	0.278	0.784
Harbin	0.408	0.374	0.915
Ho Chi Minh City	0.238	0.188	0.791
Houston	0.213	0.129	0.605
Hvderabad	0.097	0.056	0.579
Istanbul	0.204	0.105	0.516
Jakarta	0.178	0.125	0.700
Johannesburg-East Rand	0.222	0.143	0.643
Kabul	0.154	0.118	0.767
Khartoum	0.176	0.112	0.639
Kinshasa	0.135	0.095	0.705
Kolkata	0 197	0.129	0.656
Kuala Lumpur	0.170	0.118	0.697
Lagos	0.309	0.231	0.747
Lahore	0.181	0.136	0.754
	VALUE	V. (•) ()	V.197

Supplementary Table 2: Sample fraction of routes

Lima	0.231	0.143	0.620
London	0.214	0.129	0.602
Los Angeles	0.250	0.146	0.582
Luanda	0.264	0.177	0.671
Madrid	0.203	0.136	0.669
Manila	0.158	0.108	0.682
Medan	0.321	0.231	0.721
Mexico City	0.222	0.140	0.630
Miami	0.215	0.145	0.676
Milan	0.226	0.131	0.580
Monterrey	0.236	0.136	0.576
Moscow	0.117	0.083	0.706
Mumbai	0.208	0.167	0.802
Nagoya	0.172	0.052	0.305
Nairobi	0.275	0.221	0.802
Nanjing	0.298	0.276	0.927
New York	0.244	0.155	0.634
Osaka	0.153	0.066	0.435
Paris	0.221	0.116	0.527
Philadelphia	0.297	0.189	0.636
Phoenix	0.165	0.099	0.596
Pune	0.368	0.277	0.754
Qingdao	0.404	0.414	1.026
Quanzhou	0.406	0.414	1.019
Rio de Janeiro	0.201	0.150	0.745
Rome	0.289	0.206	0.713
San Francisco	0.213	0.135	0.633
Santiago	0.354	0.275	0.778
Sao Paulo	0.260	0.150	0.575
Shanghai	0.265	0.210	0.792
Shenyang	0.430	0.391	0.910
Shenzhen	0.165	0.146	0.885
Singapore	0.222	0.178	0.802
Surabaya	0.197	0.155	0.785
Surat	0.459	0.391	0.852
Suzhou	0.264	0.259	0.982
Sydney	0.208	0.149	0.715
Taipei	0.230	0.164	0.712
Tehran	0.238	0.148	0.624
Tianjin	0.439	0.397	0.903
Tokyo	0.170	0.058	0.341
Toronto	0.190	0.109	0.577
Washington DC	0.179	0.115	0.645
Wuhan	0.415	0.359	0.866
Xiamen	0.342	0.337	0.986
Xian	0.406	0.355	0.874
Yangon	0.136	0.094	0.695

Supplementary Note 2 Comparison with network centrality measures

In this section, we compare the spatial distribution of inness with different centrality measures of relevance in the context of transport networks. The objective here is to verify to what extent inness can deliver additional relevant information for which traditional measures of centrality do not account.

Without loss of generality, one can say that the inness of a certain point in the road network of a city is the result of the aggregation of the characteristics of the routes that potentially pass through that point. Indeed, it captures geometric aspects of the network since it is a measure based on the curvature of the roads along a route. It also reflects the structure of the network since it is a metric influenced by topology and network connectivity. Moreover, it also reflects the long-range topographical and geometric relationships since it is not a local measure of centrality but is actually a property of the route. Thus, if a certain point participates in routes with both positive and negative inness, and of equal magnitude, that point is expected to exhibit a null inness. On the other hand, if the inness of the routes crossing a given point is predominantly positive (or negative), we can safely say that that particular point is part of a functional sub-structure of the network with specific geometric characteristics.

We compared the inness with network centrality measures capable of reflecting different facets of the structures, such as topology, locality and geometry. The centrality measures of choice were:

- **Closeness** is a measure of centrality that determines how close a particular node in the network is to all other nodes. Clearly, in the context of spatial networks in a finite area, the nodes with the greatest closeness are those close to the centroid of the network. In the context of spatial networks, closeness is essentially a geometric metric as the actual topology of the network has no importance in determining the centrality of a node.
- **Eccentricity** the eccentricity of a given node is the largest geodesic distance between that node and any other node in the network. Contrasting with the closeness centrality, eccentricity, by definition, does not reflect the geometric characteristics of the network being mostly a topological metric.
- **Degree** centrality is a measure of local connectivity of a node in which the importance of a node is determined by the number of nodes directly connected to it. It is primarily a measure of the local connectivity of the nodes, having no long-range correlations.
- Betweenness is a measure that ascribes importance to those nodes lying along the shortest paths between other pairs of nodes such that the more the shortest paths crossing a node, the higher its betweenness centrality will be. It is probably one of the most investigated centrality measures, especially in the context of road networks.

In Supplementary Figure 1 the inness profile, along with the four centrality measures for three large European cities. In each panel, values above the average are colored in red, and below that, in blue. The first striking feature we can observe is that the inness profile is very distinct from the ones produced by the centrality measures. For instance, none of the centrality measures managed to capture the concentric circumferential patterns produced by the ring-like structures in the network, manifested as low inness zones.

Another interesting pattern we can observe is the region of extreme inness profiles, suggesting the presence of large *detour* spots such that routes traveling through those regions have no option but to drive inward. For example, a closer look at the East of London, where routes across the River Thames are being pushed away (low inness in blue) or pulled towards the city center (high inness in red), is a direct consequence of the absence of bridges in that area. Such functional insights from the systems are not possible from the observation of the standard centrality measures in isolation.

Supplementary Figure 1: Comparison of inness and network metrics Spatial distribution of inness in comparison with different network centrality measures. Here we show spatial profile of the inness (center panel) compared with the spatial profiles of different centrality measures (bottom and top panels) for three different cities, **a.** London, **b.** Berlin and **c.** Paris.

Supplementary Note 3 Types of roads

We summarize the statistics of road types for our sample cities. We also compare the routes samples with the complete road network within the same boundary we used for the inness calculation. The complete road network data was collected from the OpenStreetMap repository using a service¹. In Supplementary Figure 2 we show the distribution of the road types in our routes data for each. See http://wiki.openstreetmap.org/wiki/Key:highway#Values for detailed information about the road type labels and their meanings.

¹https://extract.bbbike.org/

Supplementary Figure 2: Summary of route information for 92 cities A Sample fraction of routes among entire street networks in each urban area for 92 cities described as boxplots (both shortest and fastest routes). **B**&C Fraction of road types for sampled routes. **B** shows the shortest routes and **C** represents the fastest routes.

Supplementary Figure 3: Fraction of road types for shortest routes

Supplementary Figure 4: Fraction of road types for fastest routes

Supplementary Figure 5: Summary statistics for inness and travel area

Supplementary Figure 6: Normalized inness of shortest routes for 89 cities The normalized inness patterns of shortest routes for individual cities are arranged by its similarity. The cities with similar inness patterns are close to each other and the cities at the both ends are most different to each other. The values range from -0.3 (blue) to 0.3 (red). The cities were clustered using a Self-Organizing Map (SOM) to assign positions in a 2D plane.

Supplementary Figure 7: Normalized inness of fastest routes for 89 cities Method and scale same as in Supplementary Figure 6

Supplementary Note 4 Metric for road structure

We suggest three metrics to measure various facet of infrastructural and geographical features. We use same road networks data used and explained in Supplementary Note 3

- **Road length** is the total length of motorways, trunks, secondary, primary and tertiary roads for each city.
- Level of geographical constraints (GC) represents the overall fraction of the city that is not covered by the road network due to the presence of *barriers*. Here, we define a barrier as an area of the city that is unaccessible via public roads, being either natural (e.g., forests and mountains) or artificial (e.g., a large industrial or military site). To calculate the GC we generated 10,000 uniformly distributed points within the same area of our study and computed its relative distance to the nearest point of the road network. More precisely, GC can be defined as

$$GC = rd/rc$$
,

where rd is the distance of the point to the closest street segment and rc is the distance to the city center from the random point. For instance, if many random points in a particular area are closer to the center than to a road, GC becomes bigger, suggesting, therefore, the presence of a large barrier close to the center. In the Supplementary Figure 8a, the point A is inside the urban area and have road segments nearby while the point B is located in a mountainous area. Although the two points have similar rc (the blue dashed line), B has higher rd (the red dashed line) than A and consequently the GC of B is higher than that of A. The term rc accounts for barriers near the city center having a greater impact to routes than barriers of similar area in the periphery. In Supplementary Figure 9 we show two examples of representative cities with very different GC profiles.

As one can see, London has almost no regions of poor connectivity caused by geographical constraints. Mumbai, on the other hand, has many regions of little to no connectivity due to the presence of geographical constraints such as the large Sanjay Gandhi National Park (the brighter spot in the north-northeast region), and the Thane Creek, the inlet that isolates the city of Mumbai from the Indian mainland.

Peripheral connectivity represents the average value of all the acute angles of the *higher-level* peripheral roads, or more precisely, the motorways and trunks beyond a minimum distance from the center, in this case, 10km. These parameter choices are motivated by the reasonable assumption that a road segment with a high angle (or close to 90 degrees) is likely to be part of ring-like structure, which is presumably used more for connecting peripheries than spoke-like roads. The greater the average angle, the more likely it is that the peripheries are connected, thus acting as a proxy for the presence of circumferential roads. To calculate the angle between the center and a road segment, we draw the shortest line between the center and the middle point of a road segment and measure the angle between the line and the road segment, as depicted in Supplementary Figure 8b.

Supplementary Figure 8: Schematic diagram of road structure metrics a Geographical constraints (GC) b Peripheral connectivity (PC)

Supplementary Figure 9: Examples of the spatial distribution of the geographical constraints (GC) The values of geographical constraints (GC) for 10,000 random points are spatially mapped on two sample cities; a London and b Mumbai. The same color scheme is applied to both cities with a range from 0 to 0.1. Note that London is one of the cities with low average and standard deviation inness (i.e., LL group) whereas Mumbai is a low average and high standard deviation inness city (i.e., LH group).

Supplementary Figure 10: **Spatial distribution of cities for each group.** Examples of cities of the types discussed in Fig. 4 of the main manuscript. The group LL, LH and HH are classified according to the standard deviation and average values of the inness (LL Group: Low standard deviation and low average (close to zero); LH Group: high standard deviation and low average; HH Group: High standard deviation and high average).

Supplementary Note 5 Outlier cities

Some cities such as Quanzhou, Dongguan, Qingdao, Kinshasa, Harbin, Surat and Kabul exhibit extremely high standard deviation in comparison with other cities (See SI, Section Fig for details on the outliers). For Quanzhou, Dongguan and Qingdao which have relatively low average inness, most part of these cities are shaped by geographical constraints such as the closeness to the coast or being along the path of a river. Just like the geographical constraints influence the shape of the routes of cities in the third category, similar barriers strongly affect these *outlier* cities. For instance, Kinshasa, Harbin, Surat and Kabul basically belong to the second category, i.e., a "hub and spoke" structure with strong positive inness signal. However these cities also have negative inness values due to lack of infrastructure (e.g., bridges) connecting different parts of the city across the rivers.

Supplementary Figure 11: **Outlier cities** Inness profiles of cities that do not fall into any of our categories. The values range from -0.3 (blue) to 0.3 (red)

Supplementary Note 6 The correlation between shortest and fastest routes

When we take into account the inness of the fastest routes, we are indirectly incorporating the influence of second-order structural features of the network such as roadway capacity and speed limits. The analysis of the faster routes, therefore, offers an additional perspective and to a certain point closer to the real operation of that structure.

However, a decidedly more elaborate picture about the structure of the road network can be obtained by means of a quantitative characterization of the geometric similarities and, above all, of the discrepancies between the shorter and faster routes.

This is because it is only through this comparison that we can verify where and with what magnitude the influence of the path capacity in the geometry of the routes occurs. For example, if for a given pair of origin and destination the shortest and fastest route have discrete inness profiles, this difference is only possible because the segments along the faster route are potentially more temporally efficient.

The correlation between the inness of the shortest and the fastest routes is a measure capable of revealing this difference between the two route types. In fact, those urban systems where the shortest and the fastest routes have little difference are those where any increases in distance are not offset by gains in terms of travel time. From a purely structural perspective this could be said to be an efficient road network such that the fastest routes are also the shorter routes.

Our hypothesis, however, is that it can occur for two main reasons: (1) due to greater homogeneity in terms of road capacity and/or (2) due to low road network capillarity. Therefore, we used three different correlation measures to classify cities according to their similarity profiles between the shortest and fastest routes.

Classifying cities based on their Inness profiles

Although we are not claiming that the cities can be *naturally* classified into different discrete groups, here we show that the correlation between the inness of shortest (I_s) and fastest (I_f) routes can be used as a metric to classify cities. Thus, we computed three correlation measures, namely Pearson correlation, Spearman's rank order correlation and Kendall rank correlation. The measures were computed comparing the inness of the average shortest and fastest routes for each radius/angle value.

For each of the $\mathcal{N} \leq 36$ routes with radius r and angular distance θ we computed the average I_S and I_F , with the inequality being due to the existence of unfeasible paths for certain OD pairs, and measured the correlation coefficients between the two inness arrays. The rationale to use three correlation metrics is that this way we can characterize the said dissimilarities in a higher dimensionality space, accounting not only for the absolute values of the inness but also for the ranks of the (r, θ) pairs in terms of their inness.

We then applied a hierarchical clustering method to produce a partitioning of the cities based on their similarities in terms of their fastest and shortest inness profiles. The method is a standard complete linkage clustering method in which the maximum possible distance between points belonging to different groups is sought. Supplementary Figure 12 shows the dendrogram of the partitioning.

Supplementary Figure 12: Hierarchical clustering of cities based on three correlation measures The colors illustrate a 3-clusters partitioning.

Next we computed the within-clusters sum of squared deviations (WCSS) to quantify how much of the variance could be explained by partitioning the cities intok clusters. Clearly, a perfect partitioning would be one in which each cluster contains one single city. Supplementary Figure 13 shows the WCSS as we increase the number of clusters. As we can see, most of the variance can be explained by three clusters and only very little variance is explained by increasing the number of clusters from 4 to 5, suggesting that the best partition would be one with k = 3 or k = 4. Bellow we show one partitioning obtained from the Pearson correlation coefficient ρ .

- **Type I** ($\rho \leq 0.22$) London, Bangalore, Berlin, Paris, Nagoya, Atlanta, Shenyang, Milan, Shanghai, Tokyo, Houston;
- **Type II** ($0.22 < \rho \le 0.6$) Philadelphia, Ahmadabad, Zhengzhou, Chennai, Buenos Aires, Madrid, Phoenix, Johannesburg Barcelona, Guangzhou, Boston, Miami, Toronto, Moscow, Los Angeles, Hyderabad, Guadalajara, Chicago, Tianjin, Hangzhou, Ankara, Wuhan, Osaka, Washington DC, Accra, Ho Chi Minh City, Rome, Jakarta, Kuala Lumpur, Xian;
- **Type III** $(0.6 < \rho \le 1)$ Shenzhen, Dubai, Manila, Surat, Luanda, Tehran, Pune, Kolkata, Dhaka, Nairobi, Mexico City, São Paulo, Lahore, Bangkok, Hanoi, Xiamen, Qingdao, Baghdad, Suzhou, Dalian, Nanjing, Monterrey, Fuzhou, Istanbul, Delhi, New York, Dongguan, Sydney, Cairo, Lima, Abidjan, Yangon, Chongqing, Khartoum, Bandung, Surabaya, Harbin, Mumbai, Bogota, Taipei, Rio de Janeiro, Kabul, Kinshasa, Quanzhou.

Supplementary Figure 13: Within-clusters sum of squared deviations (WCSS) as a function of the number of clusters k Most of the variance can be explained by three clusters and only very little variance is explained by increasing the number of clusters from 4 to 5, suggesting that the best partition would be one with k = 3 or k = 4.

Socio-economic indicators

As we presented in the main manuscript, the (dis)similarities between the inness profiles produced by the shortest and fastest routes are often rooted on the level of development of the road infrastructure, which in turn is driven by the socio-economic development of the cities. We then explored the correlation between the I_s and I_f with three relevant indicators that could reflect the said stages of developments, namely the productivity index (PI), the infrastructure development index (IDI) and the GDP per capita of the cities. The first two indexes (PI and IDI) are part of the City Prosperity Index, to date, the most comprehensive measure of the development of a city, developed by the United Nations program for human settlements (UN-Habitat). Each one of the six CPI indexes (including the PI and IDI) is defined in terms of an array of other indicators such as household income, economic specialization and housing infrastructure. The decision to employ the PI and IDI is motivated by the fact that these are the indexes more closely related to the structural development of the cities than other ones. For more details on the CPI indexes we refer the interested reader to the UN-Habitat Methodology and Metadata report ².

The third indicator we used, i.e., the GDP per-capita of the cities, is based on the GDP@Risk estimate, a projected GDP of the cities based on the World City Risk Index — a risk-assessment metric developed by the Cambridge Centre for Risk Studies and published on the Lloyd's City Risk Index. More precisely, the index is a projection from 2015-2025 of the GDP accounting for different risk factors for the 301 world's major cities. More detailed information on the methodology can be found in the report 'World City Risk 2025: Part 2 Methodology' ³.

The decision to use a *projected* GDP – instead of the official estimated nominal GDPs officially published by the governments – is justified by three main reasons. The nominal GDP of a city is subject to some volatility due to many internal and external factors, contrasting with the transportation infrastructure of a city that tend to evolve over longer periods of time. Moreover, there are a lot of methodological variation in the way the nominal GDPs are estimated, especially for non-OECD cities. Additionally, the most recent data of the official GDPs does not necessarily correspond to the same period for different cities.

On the other hand, the projected GDP of the cities is a standardized metric based on the same scientific methodology for all the cities accounting for many factors of internal and external origin, from present infrastructure to potential natural disasters. Moreover, the GDP projection can reflect with a reasonable precision the *potentialities* of growth for a city, in which the level of development of the infrastructure plays a major role.

New York

Contrasting with other large developed urban cities (type I), New York exhibited similar inness pattern between the shortest routes and fastest routes. The reason for such phenomena can be related to the geography of the motorways in the New York metropolitan area. Unlike other cities, New York does not have strong ring-like motorway structure in its periphery, which often are the preferred structures when it comes to congestion reduction and travel-times optimization. Instead, it has many radial and grid-like motorways, which has a limited effect on the inness patterns, as shown in the spatial distribution of fastest routes. Such particularity of the motorways of New York gives it unique inness characteristics, although further investigations regarding other factors (e.g., socioeconomic characteristics) is necessary.

 $^{^2 \}rm http://cpi.unhabitat.org/sites/default/files/resources/CPI%20METADATA.2016.pdf <math display="inline">^3 \rm http://cambridgeriskframework.com/wcr$

Shortest route

Supplementary Figure 14: Inness pattern and spatial distribution of New York.