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Supplementary Note 1
Materials and Methods

Collecting data from API service

Origin-Destination (OD) pairs were generated having the cities’ centers as the reference points. In the
absence of a worldwide definition of a city center, we used the coordinates collected and provided by
the ‘latlong.net’service, for each of the 92 cities. Having such coordinates as reference center points, we
systematically computed theoretical OD pairs corresponding to combinations of discretized radial and
angular ranges.

In many cases, the theoretical points have no access to the streets networks, being therefore approx-
imated to their closest point within the networks. Such approximation is done automatically by the
OpenStreetMap (OSM) routing API. However, to avoid the large discrepancies between a requested (the-
oretical) point and those returned by the OSM API, we applied two post-processing filters. First, if the
distance of a returned OD coordinate is off by more than 1km from the center, we exclude such routes
from the data. Second, we also excluded those routes whose lengths are longer than 3s + 1km, where s
is the geodesic distance between the origin and destination points.

Data description

For each of the 92 cities, the maximum total number of unique driving routes is 630. However, after
filtering out those discrepant routes and OD pairs, for each of the radii values, the average number of
valid routes we analyzed were 575.9 (2km), 532.8 (5km), 461.7 (10km), 391.0 (15km), 349.3 (20km) and
254.7 (30km). Supplementary Table 1 also describes the detour index (DI) (i.e., the ratio d/r between
the travel distance d and geodesic distance r) for fastest (F) and shortest (S). Avg. waypoint represents
the average number of route points as returned by the OSM API for each city.

Supplementary Table 1: Data description

Avg. Number of Valid routes for each radius
City DI (S) DI (F) Avg. waypoint 2km 5km 10km 15km 20km 30km
Abidjan 1.576 1.659 188.88 584 589 571 386 328 177
Accra 1.497 1.595 158.81 587 611 421 266 216 169
Ahmadabad 1.392 1.491 233.76 625 612 610 481 539 378
Ankara 1.48 1.599 367.45 612 619 580 571 420 397
Atlanta 1.307 1.478 386.32 599 621 624 629 630 630
Baghdad 1.6 1.766 212.38 550 602 606 496 339 220
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Bandung 1.573 1.657 380.07 619 580 536 418 211 309
Bangalore 1.338 1.506 354.03 616 623 627 628 630 628
Bangkok 1.505 1.634 275.5 476 608 597 606 606 485
Barcelona 1.504 1.68 384.15 597 342 266 195 203 182
Belo Horizonte 1.525 1.682 456.71 612 617 619 606 470 516
Berlin 1.297 1.47 405.61 629 626 622 622 619 626
Bogota 1.566 1.661 455.55 608 621 606 583 583 427
Boston 1.374 1.519 626.85 576 616 571 520 495 405
Buenos Aires 1.353 1.511 178.25 613 520 259 252 231 209
Cairo 1.5 1.614 241.77 607 600 601 597 558 481
Cape town 1.471 1.562 275.8 479 357 251 320 187 66
Chennai 1.409 1.566 163.64 613 624 270 228 210 167
Chicago 1.387 1.551 206.56 590 346 228 210 210 190
Chongqing 1.72 1.769 287.77 448 521 578 480 403 304
Dalian 1.486 1.535 129.62 615 533 210 133 100 65
Dar es salaam 1.488 1.54 169.06 609 595 590 516 217 141
Delhi 1.409 1.483 262.27 618 604 608 617 621 453
Dhaka 1.568 1.648 244.44 519 593 462 489 380 293
Dongguan 1.569 1.61 159.03 587 500 512 425 542 516
Dubai 1.629 1.656 154.63 570 443 394 240 212 182
Fuzhou 1.656 1.719 481.95 608 586 503 492 469 426
Guadalajara 1.431 1.623 277.36 613 630 623 469 522 219
Guangzhou 1.55 1.644 312.96 512 558 594 556 537 502
Hangzhou 1.473 1.574 167.2 613 616 587 544 569 416
Hanoi 1.453 1.556 218.4 622 606 612 570 571 439
Harbin 1.593 1.638 119.13 543 456 406 243 425 178
Ho Chi Minh City 1.438 1.534 257.03 594 628 623 580 579 502
Houston 1.298 1.458 308.5 595 627 626 630 628 626
Hyderabad 1.38 1.533 346.95 623 620 622 621 622 546
Istanbul 1.462 1.615 335.32 454 569 431 452 315 187
Jakarta 1.461 1.618 236.13 604 620 620 551 348 246
Johannesburg 1.394 1.575 226.01 589 623 608 619 592 567
Kabul 1.656 1.678 219.18 351 508 376 179 161 27
Khartoum 1.538 1.615 228.41 603 606 339 357 405 217
Kinshasa 1.579 1.648 213.51 600 604 586 465 209 86
Kolkata 1.396 1.523 322.11 630 608 617 447 336 145
Kuala Lumpur 1.549 1.648 337.27 564 595 575 533 433 393
Lagos 1.633 1.726 283.73 592 442 400 465 240 66
Lahore 1.533 1.627 147.2 584 602 437 365 340 136
Lima 1.434 1.574 241.57 614 618 545 281 232 61
London 1.295 1.488 619.26 615 628 629 623 625 627
Los Angeles 1.294 1.463 329.49 614 624 616 629 630 427
Luanda 1.518 1.699 138.07 616 623 589 251 182 100
Madrid 1.416 1.557 414.53 609 607 600 583 486 521
Manila 1.399 1.501 271.95 623 586 481 390 296 294
Medan 1.478 1.565 161.89 625 620 591 561 335 43
Mexico City 1.411 1.608 314.42 611 608 624 612 580 455
Miami 1.486 1.589 168.23 546 567 296 171 153 135
Milan 1.348 1.519 562.1 621 611 624 628 627 630
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Monterrey 1.413 1.571 218.96 623 622 589 487 324 245
Moscow 1.437 1.564 384.64 600 616 618 619 586 581
Mumbai 1.536 1.654 235.4 588 615 417 283 238 183
Nagoya 1.21 1.397 423.62 629 629 630 627 629 595
Nairobi 1.541 1.669 273.97 603 487 590 511 458 426
Nanjing 1.473 1.576 186.61 609 546 565 505 475 351
New York 1.405 1.561 338.79 536 615 605 624 559 429
Osaka 1.279 1.471 426.54 620 626 623 494 463 494
Paris 1.283 1.465 536.62 619 624 628 627 629 630
Philadelphia 1.331 1.505 411.91 623 598 617 620 622 629
Phoenix 1.328 1.454 318.56 619 625 629 622 592 489
Pune 1.461 1.536 397.43 602 616 618 511 615 373
Qingdao 1.527 1.592 125.23 617 400 174 191 170 180
Quanzhou 1.684 1.717 148.72 168 201 432 390 239 173
Rio de Janeiro 1.674 1.758 337.41 555 476 401 307 225 247
Rome 1.455 1.593 491.23 602 613 598 617 617 400
San Francisco 1.457 1.565 367.15 611 579 344 265 227 228
Sao Paulo 1.405 1.565 490.48 603 618 628 625 621 573
Shanghai 1.351 1.496 215.91 567 623 625 616 558 366
Shenyang 1.414 1.53 125.36 615 620 611 563 507 371
Shenzhen 1.569 1.655 344.57 571 545 595 556 526 369
Singapore 1.518 1.599 152.25 524 525 361 295 223 190
Surabaya 1.574 1.661 232.05 573 579 324 325 285 185
Surat 1.441 1.522 152.92 609 563 400 458 340 187
Suzhou 1.459 1.544 140.48 598 602 549 593 542 416
Sydney 1.475 1.58 316.83 588 611 526 292 222 148
Taipei 1.537 1.672 540.47 597 599 608 523 597 360
Tehran 1.505 1.649 295.42 622 603 603 571 417 300
Tianjin 1.467 1.568 191.99 600 604 586 465 209 86
Tokyo 1.229 1.487 448.21 630 629 630 623 593 495
Toronto 1.304 1.414 229.89 624 593 226 190 189 171
Washington DC 1.312 1.494 566.67 624 606 627 615 624 618
Wuhan 1.558 1.646 211.51 519 570 566 523 536 403
Xiamen 1.57 1.626 176.6 589 482 375 347 305 265
Xian 1.423 1.506 171.11 625 607 611 591 516 562
Yangon 1.469 1.513 162.23 623 624 595 514 340 176
Zhengzhou 1.454 1.532 133.43 613 590 607 533 493 353

Routes as street samples

If we consider only the subset of the streets within the 30km radius of our analyses, on average, the shortest
and fastest routes covered approximately 24% and 18 % of the overall streets networks, respectively
(Supplementary Figure 2a). However, when we talk about different routing approaches, faster arterial
roads and minor residential streets are going to respond for different aspects of the route optimization, and
therefore they are expected to cover different samples of a road network. The distribution of road types
being sampled by each routing method is depicted in the Supplementary Figure 2 b&c. As explained in
the main text, arterial roads such as motorway and trunk roads are much more relevant for fastest routes
than for shortest routes, reflecting in how frequently they appear in each type of route. Supplementary
Table 2 shows the fraction of the overall streets networks being sampled by the shortest and fastest
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routes for each city as well as the ratio between the two fractions. Supplementary Figure 3 & 4 depict
the participation of the most frequent road types for each city.

Supplementary Table 2: Sample fraction of routes

City Shortest route Fastest route Fastest route/Shortest route
Abidjan 0.149 0.117 0.786
Accra 0.247 0.179 0.722
Ahmadabad 0.285 0.226 0.791
Ankara 0.288 0.191 0.662
Atlanta 0.183 0.141 0.768
Baghdad 0.282 0.183 0.651
Bandung 0.188 0.165 0.874
Bangalore 0.240 0.151 0.627
Bangkok 0.154 0.124 0.808
Barcelona 0.195 0.125 0.641
Berlin 0.186 0.133 0.713
Bogota 0.193 0.125 0.649
Boston 0.248 0.163 0.659
Buenos Aires 0.278 0.192 0.688
Cairo 0.139 0.103 0.738
Cape Town 0.163 0.117 0.718
Chennai 0.177 0.112 0.632
Chicago 0.209 0.126 0.605
Chongqing 0.507 0.486 0.959
Dalian 0.540 0.511 0.947
Dar es Salaam 0.101 0.083 0.821
Delhi 0.092 0.061 0.662
Dhaka 0.185 0.133 0.717
Dongguan 0.181 0.184 1.013
Dubai 0.126 0.100 0.796
Fuzhou 0.367 0.364 0.991
Guadalajara 0.278 0.154 0.554
Guangzhou 0.271 0.248 0.915
Hangzhou 0.343 0.330 0.963
Hanoi 0.354 0.278 0.784
Harbin 0.408 0.374 0.915
Ho Chi Minh City 0.238 0.188 0.791
Houston 0.213 0.129 0.605
Hyderabad 0.097 0.056 0.579
Istanbul 0.204 0.105 0.516
Jakarta 0.178 0.125 0.700
Johannesburg-East Rand 0.222 0.143 0.643
Kabul 0.154 0.118 0.767
Khartoum 0.176 0.112 0.639
Kinshasa 0.135 0.095 0.705
Kolkata 0.197 0.129 0.656
Kuala Lumpur 0.170 0.118 0.697
Lagos 0.309 0.231 0.747
Lahore 0.181 0.136 0.754

S-4



Lima 0.231 0.143 0.620
London 0.214 0.129 0.602
Los Angeles 0.250 0.146 0.582
Luanda 0.264 0.177 0.671
Madrid 0.203 0.136 0.669
Manila 0.158 0.108 0.682
Medan 0.321 0.231 0.721
Mexico City 0.222 0.140 0.630
Miami 0.215 0.145 0.676
Milan 0.226 0.131 0.580
Monterrey 0.236 0.136 0.576
Moscow 0.117 0.083 0.706
Mumbai 0.208 0.167 0.802
Nagoya 0.172 0.052 0.305
Nairobi 0.275 0.221 0.802
Nanjing 0.298 0.276 0.927
New York 0.244 0.155 0.634
Osaka 0.153 0.066 0.435
Paris 0.221 0.116 0.527
Philadelphia 0.297 0.189 0.636
Phoenix 0.165 0.099 0.596
Pune 0.368 0.277 0.754
Qingdao 0.404 0.414 1.026
Quanzhou 0.406 0.414 1.019
Rio de Janeiro 0.201 0.150 0.745
Rome 0.289 0.206 0.713
San Francisco 0.213 0.135 0.633
Santiago 0.354 0.275 0.778
Sao Paulo 0.260 0.150 0.575
Shanghai 0.265 0.210 0.792
Shenyang 0.430 0.391 0.910
Shenzhen 0.165 0.146 0.885
Singapore 0.222 0.178 0.802
Surabaya 0.197 0.155 0.785
Surat 0.459 0.391 0.852
Suzhou 0.264 0.259 0.982
Sydney 0.208 0.149 0.715
Taipei 0.230 0.164 0.712
Tehran 0.238 0.148 0.624
Tianjin 0.439 0.397 0.903
Tokyo 0.170 0.058 0.341
Toronto 0.190 0.109 0.577
Washington DC 0.179 0.115 0.645
Wuhan 0.415 0.359 0.866
Xiamen 0.342 0.337 0.986
Xian 0.406 0.355 0.874
Yangon 0.136 0.094 0.695
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Supplementary Note 2
Comparison with network centrality measures

In this section, we compare the spatial distribution of inness with different centrality measures of relevance
in the context of transport networks. The objective here is to verify to what extent inness can deliver
additional relevant information for which traditional measures of centrality do not account.

Without loss of generality, one can say that the inness of a certain point in the road network of a
city is the result of the aggregation of the characteristics of the routes that potentially pass through that
point. Indeed, it captures geometric aspects of the network since it is a measure based on the curvature
of the roads along a route. It also reflects the structure of the network since it is a metric influenced by
topology and network connectivity. Moreover, it also reflects the long-range topographical and geometric
relationships since it is not a local measure of centrality but is actually a property of the route. Thus,
if a certain point participates in routes with both positive and negative inness, and of equal magnitude,
that point is expected to exhibit a null inness. On the other hand, if the inness of the routes crossing a
given point is predominantly positive (or negative), we can safely say that that particular point is part
of a functional sub-structure of the network with specific geometric characteristics.

We compared the inness with network centrality measures capable of reflecting different facets of the
structures, such as topology, locality and geometry. The centrality measures of choice were:

Closeness is a measure of centrality that determines how close a particular node in the network is to
all other nodes. Clearly, in the context of spatial networks in a finite area, the nodes with the
greatest closeness are those close to the centroid of the network. In the context of spatial networks,
closeness is essentially a geometric metric as the actual topology of the network has no importance
in determining the centrality of a node.

Eccentricity - the eccentricity of a given node is the largest geodesic distance between that node and
any other node in the network. Contrasting with the closeness centrality, eccentricity, by definition,
does not reflect the geometric characteristics of the network being mostly a topological metric.

Degree centrality is a measure of local connectivity of a node in which the importance of a node is
determined by the number of nodes directly connected to it. It is primarily a measure of the local
connectivity of the nodes, having no long-range correlations.

Betweenness is a measure that ascribes importance to those nodes lying along the shortest paths
between other pairs of nodes such that the more the shortest paths crossing a node, the higher
its betweenness centrality will be. It is probably one of the most investigated centrality measures,
especially in the context of road networks.

In Supplementary Figure 1 the inness profile, along with the four centrality measures for three large
European cities. In each panel, values above the average are colored in red, and below that, in blue. The
first striking feature we can observe is that the inness profile is very distinct from the ones produced by
the centrality measures. For instance, none of the centrality measures managed to capture the concentric
circumferential patterns produced by the ring-like structures in the network, manifested as low inness
zones.

Another interesting pattern we can observe is the region of extreme inness profiles, suggesting the
presence of large detour spots such that routes traveling through those regions have no option but to
drive inward. For example, a closer look at the East of London, where routes across the River Thames
are being pushed away (low inness in blue) or pulled towards the city center (high inness in red), is a
direct consequence of the absence of bridges in that area. Such functional insights from the systems are
not possible from the observation of the standard centrality measures in isolation.
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Supplementary Figure 1: Comparison of inness and network metrics Spatial distribution of inness
in comparison with different network centrality measures. Here we show spatial profile of the inness
(center panel) compared with the spatial profiles of different centrality measures (bottom and top panels)
for three different cities, a. London, b. Berlin and c. Paris.

Supplementary Note 3
Types of roads

We summarize the statistics of road types for our sample cities. We also compare the routes samples
with the complete road network within the same boundary we used for the inness calculation. The
complete road network data was collected from the OpenStreetMap repository using a service1. In
Supplementary Figure 2 we show the distribution of the road types in our routes data for each. See
http://wiki.openstreetmap.org/wiki/Key:highway#Values for detailed information about the road
type labels and their meanings.

1https://extract.bbbike.org/
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Supplementary Figure 2: Summary of route information for 92 cities A Sample fraction of routes
among entire street networks in each urban area for 92 cities described as boxplots (both shortest and
fastest routes). B&C Fraction of road types for sampled routes. B shows the shortest routes and C
represents the fastest routes.
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Supplementary Figure 3: Fraction of road types for shortest routes
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Supplementary Figure 4: Fraction of road types for fastest routes
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Supplementary Figure 5: Summary statistics for inness and travel area
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Supplementary Figure 6: Normalized inness of shortest routes for 89 cities The normalized inness
patterns of shortest routes for individual cities are arranged by its similarity. The cities with similar
inness patterns are close to each other and the cities at the both ends are most different to each other.
The values range from -0.3 (blue) to 0.3 (red). The cities were clustered using a Self-Organizing Map
(SOM) to assign positions in a 2D plane.
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Supplementary Figure 7: Normalized inness of fastest routes for 89 cities Method and scale same
as in Supplementary Figure 6
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Supplementary Note 4
Metric for road structure

We suggest three metrics to measure various facet of infrastructural and geographical features. We use
same road networks data used and explained in Supplementary Note 3

Road length is the total length of motorways, trunks, secondary, primary and tertiary roads for each
city.

Level of geographical constraints (GC) represents the overall fraction of the city that is not covered
by the road network due to the presence of barriers. Here, we define a barrier as an area of the city
that is unaccessible via public roads, being either natural (e.g., forests and mountains) or artificial
(e.g., a large industrial or military site). To calculate the GC we generated 10,000 uniformly
distributed points within the same area of our study and computed its relative distance to the
nearest point of the road network. More precisely, GC can be defined as

GC = rd/rc,

where rd is the distance of the point to the closest street segment and rc is the distance to the
city center from the random point. For instance, if many random points in a particular area are
closer to the center than to a road, GC becomes bigger, suggesting, therefore, the presence of a
large barrier close to the center. In the Supplementary Figure 8a, the point A is inside the urban
area and have road segments nearby while the point B is located in a mountainous area. Although
the two points have similar rc (the blue dashed line), B has higher rd (the red dashed line) than
A and consequently the GC of B is higher than that of A. The term rc accounts for barriers near
the city center having a greater impact to routes than barriers of similar area in the periphery.
In Supplementary Figure 9 we show two examples of representative cities with very different GC
profiles.

As one can see, London has almost no regions of poor connectivity caused by geographical con-
straints. Mumbai, on the other hand, has many regions of little to no connectivity due to the
presence of geographical constraints such as the large Sanjay Gandhi National Park (the brighter
spot in the north-northeast region), and the Thane Creek, the inlet that isolates the city of Mumbai
from the Indian mainland.

Peripheral connectivity represents the average value of all the acute angles of the higher-level pe-
ripheral roads, or more precisely, the motorways and trunks beyond a minimum distance from the
center, in this case, 10km. These parameter choices are motivated by the reasonable assumption
that a road segment with a high angle (or close to 90 degrees) is likely to be part of ring-like struc-
ture, which is presumably used more for connecting peripheries than spoke-like roads. The greater
the average angle, the more likely it is that the peripheries are connected, thus acting as a proxy
for the presence of circumferential roads. To calculate the angle between the center and a road
segment, we draw the shortest line between the center and the middle point of a road segment and
measure the angle between the line and the road segment, as depicted in Supplementary Figure 8b.
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Supplementary Figure 8: Schematic diagram of road structure metrics a Geographical constraints
(GC) b Peripheral connectivity (PC)
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Supplementary Figure 9: Examples of the spatial distribution of the geographical constraints
(GC) The values of geographical constraints (GC) for 10,000 random points are spatially mapped on
two sample cities; a London and b Mumbai. The same color scheme is applied to both cities with a range
from 0 to 0.1. Note that London is one of the cities with low average and standard deviation inness (i.e.,
LL group) whereas Mumbai is a low average and high standard deviation inness city (i.e., LH group).
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Supplementary Figure 10: Spatial distribution of cities for each group. Examples of cities of the
types discussed in Fig. 4 of the main manuscript. The group LL, LH and HH are classified according
to the standard deviation and average values of the inness (LL Group: Low standard deviation and low
average (close to zero); LH Group: high standard deviation and low average; HH Group: High standard
deviation and high average).
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Supplementary Note 5
Outlier cities

Some cities such as Quanzhou, Dongguan, Qingdao, Kinshasa, Harbin, Surat and Kabul exhibit extremely
high standard deviation in comparison with other cities (See SI, Section Fig for details on the outliers).
For Quanzhou, Dongguan and Qingdao which have relatively low average inness, most part of these
cities are shaped by geographical constraints such as the closeness to the coast or being along the path
of a river. Just like the geographical constraints influence the shape of the routes of cities in the third
category, similar barriers strongly affect these outlier cities. For instance, Kinshasa, Harbin, Surat and
Kabul basically belong to the second category, i.e., a “hub and spoke” structure with strong positive
inness signal. However these cities also have negative inness values due to lack of infrastructure (e.g.,
bridges) connecting different parts of the city across the rivers.
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Supplementary Note 6
The correlation between shortest and fastest routes

When we take into account the inness of the fastest routes, we are indirectly incorporating the influence of
second-order structural features of the network such as roadway capacity and speed limits. The analysis
of the faster routes, therefore, offers an additional perspective and to a certain point closer to the real
operation of that structure.

However, a decidedly more elaborate picture about the structure of the road network can be obtained
by means of a quantitative characterization of the geometric similarities and, above all, of the discrepancies
between the shorter and faster routes.

This is because it is only through this comparison that we can verify where and with what magnitude
the influence of the path capacity in the geometry of the routes occurs. For example, if for a given pair of
origin and destination the shortest and fastest route have discrete inness profiles, this difference is only
possible because the segments along the faster route are potentially more temporally efficient.

The correlation between the inness of the shortest and the fastest routes is a measure capable of
revealing this difference between the two route types. In fact, those urban systems where the shortest
and the fastest routes have little difference are those where any increases in distance are not offset by
gains in terms of travel time. From a purely structural perspective this could be said to be an efficient
road network such that the fastest routes are also the shorter routes.

Our hypothesis, however, is that it can occur for two main reasons: (1) due to greater homogeneity in
terms of road capacity and/or (2) due to low road network capillarity. Therefore, we used three different
correlation measures to classify cities according to their similarity profiles between the shortest and fastest
routes.

Classifying cities based on their Inness profiles

Although we are not claiming that the cities can be naturally classified into different discrete groups,
here we show that the correlation between the inness of shortest (Is) and fastest (If ) routes can be used
as a metric to classify cities. Thus, we computed three correlation measures, namely Pearson correlation,
Spearman’s rank order correlation and Kendall rank correlation. The measures were computed comparing
the inness of the average shortest and fastest routes for each radius/angle value.

For each of the N ≤ 36 routes with radius r and angular distance θ we computed the average IS and
IF , with the inequality being due to the existence of unfeasible paths for certain OD pairs, and measured
the correlation coefficients between the two inness arrays. The rationale to use three correlation metrics
is that this way we can characterize the said dissimilarities in a higher dimensionality space, accounting
not only for the absolute values of the inness but also for the ranks of the (r, θ) pairs in terms of their
inness .

We then applied a hierarchical clustering method to produce a partitioning of the cities based on
their similarities in terms of their fastest and shortest inness profiles. The method is a standard complete
linkage clustering method in which the maximum possible distance between points belonging to different
groups is sought. Supplementary Figure 12 shows the dendrogram of the partitioning.
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Supplementary Figure 12: Hierarchical clustering of cities based on three correlation measures
The colors illustrate a 3-clusters partitioning.
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Next we computed the within-clusters sum of squared deviations (WCSS) to quantify how much of
the variance could be explained by partitioning the cities intok clusters. Clearly, a perfect partitioning
would be one in which each cluster contains one single city. Supplementary Figure 13 shows the WCSS as
we increase the number of clusters. As we can see, most of the variance can be explained by three clusters
and only very little variance is explained by increasing the number of clusters from 4 to 5, suggesting
that the best partition would be one with k = 3 or k = 4. Bellow we show one partitioning obtained
from the Pearson correlation coefficient ρ.

Type I ( ρ ≤ 0.22) London, Bangalore, Berlin, Paris, Nagoya, Atlanta, Shenyang, Milan, Shanghai,
Tokyo, Houston;

Type II ( 0.22 < ρ ≤ 0.6) Philadelphia, Ahmadabad, Zhengzhou, Chennai, Buenos Aires, Madrid, Phoenix,
Johannesburg Barcelona, Guangzhou, Boston, Miami, Toronto, Moscow, Los Angeles, Hyderabad,
Guadalajara, Chicago, Tianjin, Hangzhou, Ankara, Wuhan, Osaka, Washington DC, Accra, Ho Chi
Minh City, Rome, Jakarta, Kuala Lumpur, Xian;

Type III (0.6 < ρ ≤ 1) Shenzhen, Dubai, Manila, Surat, Luanda, Tehran, Pune, Kolkata, Dhaka, Nairobi,
Mexico City, São Paulo, Lahore, Bangkok, Hanoi, Xiamen, Qingdao, Baghdad, Suzhou, Dalian,
Nanjing, Monterrey, Fuzhou, Istanbul, Delhi, New York, Dongguan, Sydney, Cairo, Lima, Abid-
jan, Yangon, Chongqing, Khartoum, Bandung, Surabaya, Harbin, Mumbai, Bogota, Taipei, Rio de
Janeiro, Kabul, Kinshasa, Quanzhou.
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Supplementary Figure 13: Within-clusters sum of squared deviations (WCSS) as a function of
the number of clusters k Most of the variance can be explained by three clusters and only very little
variance is explained by increasing the number of clusters from 4 to 5, suggesting that the best partition
would be one with k = 3 or k = 4.
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Socio-economic indicators

As we presented in the main manuscript, the (dis)similarities between the inness profiles produced by
the shortest and fastest routes are often rooted on the level of development of the road infrastructure,
which in turn is driven by the socio-economic development of the cities. We then explored the correlation
between the Is and If with three relevant indicators that could reflect the said stages of developments,
namely the productivity index (PI), the infrastructure development index (IDI) and the GDP per capita
of the cities. The first two indexes (PI and IDI) are part of the City Prosperity Index, to date, the
most comprehensive measure of the development of a city, developed by the United Nations program for
human settlements (UN-Habitat). Each one of the six CPI indexes (including the PI and IDI) is defined
in terms of an array of other indicators such as household income, economic specialization and housing
infrastructure. The decision to employ the PI and IDI is motivated by the fact that these are the indexes
more closely related to the structural development of the cities than other ones. For more details on the
CPI indexes we refer the interested reader to the UN-Habitat Methodology and Metadata report 2.

The third indicator we used, i.e., the GDP per-capita of the cities, is based on the GDP@Risk estimate,
a projected GDP of the cities based on the World City Risk Index — a risk-assessment metric developed
by the Cambridge Centre for Risk Studies and published on the Lloyd’s City Risk Index. More precisely,
the index is a projection from 2015-2025 of the GDP accounting for different risk factors for the 301
world’s major cities. More detailed information on the methodology can be found in the report ‘World
City Risk 2025: Part 2 Methodology’ 3.

The decision to use a projected GDP – instead of the official estimated nominal GDPs officially
published by the governments – is justified by three main reasons. The nominal GDP of a city is
subject to some volatility due to many internal and external factors, contrasting with the transportation
infrastructure of a city that tend to evolve over longer periods of time. Moreover, there are a lot of
methodological variation in the way the nominal GDPs are estimated, especially for non-OECD cities.
Additionally, the most recent data of the official GDPs does not necessarily correspond to the same period
for different cities.

On the other hand, the projected GDP of the cities is a standardized metric based on the same
scientific methodology for all the cities accounting for many factors of internal and external origin, from
present infrastructure to potential natural disasters. Moreover, the GDP projection can reflect with
a reasonable precision the potentialities of growth for a city, in which the level of development of the
infrastructure plays a major role.

New York

Contrasting with other large developed urban cities (type I), New York exhibited similar inness pattern
between the shortest routes and fastest routes. The reason for such phenomena can be related to the
geography of the motorways in the New York metropolitan area. Unlike other cities, New York does not
have strong ring-like motorway structure in its periphery, which often are the preferred structures when
it comes to congestion reduction and travel-times optimization. Instead, it has many radial and grid-like
motorways, which has a limited effect on the inness patterns, as shown in the spatial distribution of
fastest routes. Such particularity of the motorways of New York gives it unique inness characteristics,
although further investigations regarding other factors (e.g., socioeconomic characteristics) is necessary.

2http://cpi.unhabitat.org/sites/default/files/resources/CPI%20METADATA.2016.pdf
3http://cambridgeriskframework.com/wcr
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Supplementary Figure 14: Inness pattern and spatial distribution of New York.
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