Supplementary Information

Probing the surface charge on the basal planes of Kaolinite particles with high resolution Atomic Force Microscopy

N. Kumar^{1†}, M. P. Andersson², D. van den Ende¹, F. Mugele¹ and I. Siretanu^{1*}

¹Physics of Complex Fluids Group, MESA+ Institute for nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

²Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

* Corresponding author, email: <u>i.siretanu@utwente.nl</u>

[†]present address: Delft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlands Effect of pH: force and charge maps on gibbsite facet

Figure S1 (a) Topography image of kaolinite particle adsorbed on sapphire imaged under 10mM NaCl solution (b) Force maps showing tip-sample interaction forces on kaolinite under 10mM NaCl solution at pH 6 and 9. Note: The maps are shown at 1 nm distance from the surface. (c) Surface charge maps calculated by analysing the tip sample interaction forces with DLVO theory. (Tip parameters: Q = 2.37, $f_0 = 17.06$ kHz, K = 0.448 N/m, $A_{tip} = 1018 \pm 12.5$ nm²)

Effect of pH: force and charge maps on gibbsite facet

Figure S2 (a) Topography image of kaolinite particle adsorbed on mica imaged under 10 mM NaCl, pH 6 solution (b) Force maps showing tip sample interaction forces on kaolinite under 10mM NaCl solution at pH 4, 6 and 9. Note: The maps are shown at 1 nm distance from the surface. (c) Surface charge maps calculated by analysing the tip sample interaction forces with DLVO theory. (Tip parameters: Q = 2.16, $f_0 = 16.97$ kHz, K = 0.367 N/m, $A_{tip} = 531 \pm 12.5$ nm²).

Effect of CaCl2 solutions: force and charge maps on gibbsite facet

Figure S3 (a) Topography image of kaolinite particle adsorbed on sapphire imaged under 10mM CaCl₂ solution (b) Force maps showing tip sample interaction forces on kaolinite under different (0.5, 5, and 30mM) CaCl₂ salt concentrations. Note: The maps are shown at 1 nm distance from the surface. (b) Surface charge maps calculated by analysing the interaction force curves with DLVO theory. (Tip parameters: Q = 2.94, $f_0 = 22,67$ kHz, K = 0.71N/m, $A_{tip} = 314 \pm 12.5$ nm²)

SEM Images of AFM tips

Figure S4 SEM images of the AFM tips used for different experiments. (a) $A_{tip} = 531 \pm 12.5 \text{ nm}^2$ for measurements on the silica facet and (b) $A_{tip} = 1018 \pm 12.5 \text{ nm}^2$ for measurements on the gibbsite facet of the kaolinite particles.

Surface potential:

Figure S5: Surface potential of (a) mica, silica tip, sapphire and the two facets of kaolinite particle as a function of pH and (b) Sapphire and the gibbsite facet as a function of $CaCl_2$ salt concentration. Note: These potential values are calculated on the areas marked on the force maps shown in Figure 1, 3, S1, S2, and S3.