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Highly structured prokaryote communities exist within the skeleton of coral colonies 

Vanessa R. Marcelino, Madeleine J.H. van Oppen and Heroen Verbruggen 

 

Sampling design 

 Coral skeletons were collected at three sites: three colonies of Porites lutea were sampled at 

Paradise beach (Western Australia), two colonies of Porites lobata were sampled at a reef slope in 

Coral Bay (~ 5 km from Paradise beach, Western Australia), and another three colonies of P. lobata 

were sampled in Heron Island (Queensland, Euclidean distance ~ 3900 km from Paradise beach). GPS 

coordinates are given in Supplementary table S1. These coral species were chosen because they form 

large bolder structures where a ~ 2 m transect can be done along a homogeneous surface. Twelve 

samples were collected from each colony using hammer and chisel, except for one smaller colony 

where only the first 6 samples were collected (90 samples in total, Supplementary table S1). To avoid 

environmental effects, samples were collected following the surface of the colony and at the same 

depth in the water column. Each sample consisted of a piece of skeleton of ~ 0.25 cm3, situated at 0.5 – 

1.5 cm (i.e. 1 cm long piece) below the upper surface of the coral’s tissue. All samples were physically 

similar, and environmental differences are not known to occur at the same depth into the skeletons. The 

skeleton samples analysed here were underneath a visibly healthy layer of coral living tissue and 

mucus, and therefore were not in direct contact with the surrounding seawater. It is still unknown how 

microbes populate coral skeletons, it is possible that lesions (e.g. parrot fish bites) and basal parts of the 

colony not covered in living tissue constitute major entry points for these microbes. 

Samples were collected according to a geometric progression design (Webster & Boag 1992): 

the distances between successive samples were: 0.4 cm, 1.2 cm, 4 cm, 11 cm, 33 cm, 100 cm, 33 cm, 

11 cm, 4 cm, 1.2 cm and 0.4 cm (Supplementary figure S1, Supplementary table S2). The three first 

and the three last samples from each colony (distances 0.4cm – 4cm) were collected as a single coral 

fragment, with the exact positions of the samples carved in the coral tissue. Pliers and a Dremel tool 

were used in the field laboratory to separate samples across smaller distances and obtain the ~ 0.25 cm3 

fragments. Samples were stored in RNAlater (samples collected in Western Australia in 2013) or 100% 

ethanol (samples collected in Queensland in 2015). We assessed that there were no differences in DDR 

patterns between sampling sites and preservation methods (Supplementary figure S8). 

 

Library preparation 

 The DNA isolation and amplification followed previously described protocols (Marcelino & 

Verbruggen 2016), with the addition of the amplification and sequencing of the Internal transcribed 

spacer (ITS) region for corals (White et al. 1990). The ITS region was amplified with 

Kapa Taq (Kapa biosystems) following the manufacturer's instructions for the PCR reaction mixture. 
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The PCR conditions consisted of an initial denaturation step at 94°C for 2 min, followed by 26 cycles 

of denaturation (94°C for 30s), annealing (45 s at 51°C for the first 6 cycles and 55°C for the remaining 

20 cycles) and extension (72°C for 60 s), 20 cycles of denaturation (94°C for 30 s), and a final 

extension step at 72°C for 7 min. Libraries were quantified with the Quant-iT PicoGreen dsDNA assay 

kit (Invitrogen), pooled according to their DNA quantity, and sequenced using the Illumina MiSeq 

platform (2×300 bp paired end reads).  

 

Biodiversity assessment 

 The initial parsing and quality filtering of the reads was carried out as described in Marcelino 

and Verbruggen (2016). After quality control, a total of 2,131,374 16S rRNA gene reads, 2,039,715 

UPA reads, 1,296,183 tufA reads and 218,315 ITS reads were retrieved and used to cluster Operational 

Taxonomic Units (OTUs). Sequences were clustered into OTUs using UPARSE (Edgar 2013). A 

similarity threshold of 98% was set for the tufA and ITS markers, and 97% for the 16S rRNA gene and 

UPA markers. A taxonomy was assigned to the OTUs using the Naïve Bayesian Classifier (RDP) 

implemented in QIIME v.1.9.1 (Wang et al. 2007; Caporaso et al. 2010). The Greengenes v.13.8 

dataset (DeSantis et al. 2006) was used to classify the 16S rRNA gene sequences, and custom-made 

reference datasets were used for tufA and UPA (Marcelino & Verbruggen 2017). A known issue with 

amplicon sequencing is the incorrect assignment of reads to incorrect samples – known as cross-talk or 

tag-jumping (Schnell et al. 2015; Edgar 2016). To address this issue and reduce the risk of false-

positives, OTUs with less than 50 reads across all samples and OTUs from samples where they were 

present with 50 or less reads were removed from the analysis. Chloroplast sequences were excluded 

from the 16S rRNA gene dataset and bacterial sequences were excluded from the tufA dataset. After 

this quality control, 2.9% of the 16S rRNA gene sequence reads were Archaea, 0.2% were 

Cyanobacteria and the remaining 96.9% were other bacterial taxa. For the UPA marker, 0.2% of the 

reads were Cyanobacteria and the remaining were eukaryotic algae. For the tufA marker, 100% of the 

reads used in the analyses were eukaryotic green algae. To investigate whether the sequencing effort 

was deep enough to represent the community, rarefaction curves of the number of observed OTUs per 

number of reads were constructed by randomly subsampling the reads in QIIME (Supplementary figure 

S6). To correct for different sequencing depth among samples, a rarefaction threshold was set for each 

marker where the curve reaches an asymptote – 2500 reads for 16S rRNA gene, UPA and ITS, and 

1000 reads for tufA marker. Samples containing less reads than this threshold were excluded from the 

analyses. After quality control and rarefaction, the remaining number of OTUs were 1,331 in the 16S 

rRNA gene, 52 in the tufA and 370 in the UPA datasets. Sørensen index and UniFrac distances 

(Lozupone et al. 2011) were calculated for each OTU pair in QIIME. 

 

Distance decay relationship and species accumulation curve 

 Analyses were carried out separately for the Sørensen, UniFrac and Bray-Curtis distances. 

These distances represent of community dissimilarity (d), and were converted to community similarity 
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using the formula S = 1- d, where S is the community similarity. The rate of the decay in community 

similarity with distance was calculated for each marker separately as the slope of the linear least 

squares regression on the relationship between pairwise spatial distance and similarity (Nekola & 

White 1999; Martiny et al. 2011). In cases where pairwise similarity was 0 (i.e. no OTUs in common), 

it was replaced by the lowest nonzero community similarity observed in the similarity matrix (Martiny 

et al. 2011). The community similarity and spatial distances were log10-transformed prior DDR 

analyses. The significance of the slope was tested using log10-transformed community dissimilarities 

and distances with Mantel tests (9,990 permutations), using the vegan R package (Oksanen et al. 

2007). 

 To investigate the degree of patchiness within colonies, species accumulation curves were 

calculated as a function of the number of samples included as well as linear distances. This was done 

for each colony, and using 100 permutations for sample-based curves. 

 

Collection site effects on the Distance Decay Relationship 

 To investigate whether samples from the three coral reefs had different β-diversities, we 

coloured the samples in the distance decay curve according to their location. The DDR patterns were 

similar irrespective of sampling site (Supplementary Figure S7).   

 

Similarity index effect on the Distance Decay Relationship 

 To test the effects of different similarity metrics on the results, we performed the DDR 

analysis using Sørensen, Bray-Curtis and weighted UniFrac distances. Since most studies using DDR 

are based on the Sørensen similarity index, the results based on Sørensen similarities are more 

comparable to other studies found in the literature. The Sørensen index is a presence-absence metric 

while Bray-Curtis takes into consideration the relative abundances of the OTUs. The weighted UniFrac 

metric takes into consideration the relative abundances and the phylogenetic distances among 

organisms (see Lozupone et al. 2011). The resulting slopes were slightly higher when using Bray-

Curtis similarity and less step when using UniFrac distances for all groups of organisms. The intra-

colony variation was significant for prokaryotes (16S rRNA dataset) and insignificant for algae 

regardless of the distance metric used (Supplementary table S3). 

 The reduced rates of species turnover observed when using UniFrac may be explained by its’ 

use of abundance and phylogenetic relatedness data. The weighted UniFrac distance is known to assign 

a disproportional weight to highly abundant OTUs (Chen et al. 2012), and it is possible that the rate of 

turnover of the most abundant species is slow. Another (non-exclusive) possibility is the existence of 

competitive exclusion of closely related microorganisms in small patches, as it has been demonstrated 

for some bacterial strains  (Perez-Gutierrez et al. 2013; Cordero & Datta 2016). Assuming that closely-

related OTUs perform similar ecological functions, the relatively shallow slope observed with UniFrac 

(compared to the very high slope observed with other metrics) suggests functional redundancy exist 

despite taxonomic turnover. 
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Coral and colony identification 

 Massive coral boulder structures were considered individual colonies when they were not 

interconnected with each other by coral living tissue. Supplementary figure S1, for example, shows 

three colonies of P. lutea. 

Coral species identifications were based on a combination of Internal Transcribed Spacer 

(ITS) sequences and corallite morphology. Samples for which the ITS region was sequenced are 

indicated in Supplementary table S1. The 5 most common OTUs (with relative abundances greater than 

75%) were aligned with reference ITS sequences of previously identified Porites species (Forsman et 

al. 2009; Hellberg et al. 2016) using MAFFT v.7.222 (Katoh & Standley 2013). A maximum 

likelihood tree was constructed with RAxML v.8.2.6 using a GTR + Gamma model (Stamatakis 2006) 

(Supplementary figure S8). The morphology of the taxa phylogenetically close to the OTUs (Veron et 

al. 2013) were contrasted with pictures and skeleton vouchers of the samples to obtain species level 

classification. 

 Although coral colonies can hybridize, all colonies analysed here had only one or two 

closely-related host ITS sequences, and by unifying ITS sequencing with morphological features we 

were able to obtain unambiguous species-level identifications. There is no reason to believe that the 

host genetic background will gradually change with distance within the same colony, and therefore it is 

unlikely to influence the rates of species turnover observed here. 

 

Distance-Decay relationships within individual coral colonies 

 To assess the generality of our results across colonies, we calculated the rate of species 

turnover and the significance of the distance-decay relationship for individual coral colonies. The 

analyses were based on the Sørensen similarity and were performed as described above. Note however 

that for colonies with less than 7 samples analysed (i.e. samples retained after rarefaction) it was not 

possible to perform 9990 Mantel permutations and the maximum number of permutations allowed 

were used (Supplementary table S4). The results show that different colonies have different rates of 

species turnover, nevertheless, a significant decay in bacterial community similarity with distance was 

observed for all but one colony (P8) where only 6 samples were collated and analysed (Supplementary 

figure S2 A, Supplementary table S4). The algal community showed a more variable pattern, some 

colonies showed a significant correlation between community similarity and distance, but the slope 

values (and therefore rates of species turnover) were much shallower than the ones observed for the 

prokaryotic community (Supplementary figure S2 B-C, Supplementary table S4). 

 

 

Generality of the results and guidelines for future studies 

 The results show a high rate of bacterial species turnover and a slow rate of algal species 

turnover in eight coral colonies, two different coral species and in different locations (~ 3900 km 
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apart), suggesting that this is a recurring pattern in large massive corals. Branching corals forming 

monospecific reefs (e.g. Acropora spp. and Porites rus) might feature an even higher -diversity due to 

their structural complexity and size, but that remains to be investigated. We cannot extrapolate our 

conclusions to smaller reef organisms like oysters, these studies would require an even finer-scale 

sampling strategy.  

Beta-diversity is expected to be higher in environmentally heterogeneous areas. The low β-

diversity of endolithic algae observed here may be due to the environmentally homogeneous sampling 

design and their ability to bore through limestone, and we expect that they can feature higher species 

turnover across environmental gradients. 

 The species accumulation curves obtained here help to design sampling strategies in future 

studies, but it is important to keep in mind that exact number of samples that should be collected per 

colony naturally depends on the coral species, size of colonies and available resources. For example, if 

the study focuses on similarly large coral species, at least three samples from different parts of the 

colony are necessary to capture over 50% of the 16S rRNA gene OTUs, while one sample is enough to 

observe 50% of green algal OTUs (Supplementary figures S3 and S4). Our prokaryotic OTU 

accumulation curves did not reach an asymptote, suggesting that more samples would retrieve more 

species diversity. Thus, if the goal would be to detect the core microbiome of a coral species, then the 

researchers should aim for the maximum number of samples per colony that is feasible within their 

timeframe and budget.  
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Supplementary table S1. Coral skeleton samples and geographical coordinates analysed in 

this study. Please refer to the excel file. 

 

 

Supplementary table S2: Distances between samples, between and within colonies. Please 

refer to the excel file. 

 

 

Supplementary table S3: Slopes of the distance-decay relationships and results of Mantel 

analyses to test the significance of the correlation between distance and community similarity. 

Analyses were based on Sørensen similarity distance matrices (presence-absence data) and on 

weighted UniFrac distance matrices (taking into consideration phylogenetic relatedness 

between species and their relative abundance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 16S UPA tufA 

 
Sørensen   

 
DDR slope  -0.1494 -0.0301 -0.0612 

 

 
Mantel r  0.7059 0.2147 0.3029 

 

 
Mantel P  0.0001* 0.1072 0.0543 

 

  
 

    
Bray-Curtis 

 

 
DDR slope  -0.1766 -0.0705 -0.0995  

 
Mantel r  0.698 0.1289 0.1102  

 
Mantel P  0.0002* 0.2247 0.2611  

       

UniFrac 
 

 
DDR slope  -0.0222 -0.0042 -0.0109  

 
Mantel r  0.4252 0.0644 0.1286  

 
Mantel P  0.0128* 0.3428 0.2345  

       



 

Supplementary table S4. Slopes of the distance-decay relationships and results of Mantel 

tests for individual colonies. Analyses were based on Sørensen similarity distance matrices. N 

= number of samples that remained after OTU rarefaction and that were used in this test. 

Perm = number of permutations used to assess the significance of the Mantel test, this number 

is limited by the number of samples. P-values ≤ 0.05 suggest a significant correlation between 

distance and community similarity and are indicated with an asterisk. 

 

 

Prokaryotes - 16S RNA gene 

Colony N Perm DDR Slope Mantel r P 

P1 8 9990 -0.2748 0.8133 0.0027* 

P2 7 5039 -0.1009 0.5731 0.0488* 

P3 8 9990 -0.1787 0.8421 0.0003* 

P4 8 9990 -0.1230 0.7388 0.0006* 

P5 9 9990 -0.1009 0.7181 0.0002* 

P6 11 9990 -0.0691 0.5288 0.0008* 

P7 12 9990 -0.2338 0.8569 0.0001* 

P8 6 719 -0.0423 0.3889 0.2000 

      Algae - UPA 

Colony N Perm DDR Slope Mantel r P 

P1 5 119 -0.0422 0.5889 0.1000 

P2 7 5039 -0.0114 0.0619 0.3901 

P3 11 9990 -0.1029 0.5658 0.0004* 

P4 10 9990 -0.0669 0.5535 0.0004* 

P5 8 9990 -0.0419 0.4482 0.0070* 

P6 11 9990 0.0030 -0.0089 0.4990 

P7 12 9990 -0.0173 0.1080 0.1510 

P8 6 719 0.0135 -0.1310 0.5792 

      Eukaryotic green algae - tufA 

Colony N Perm DDR Slope Mantel r P 

P1 6 719 -0.0757 0.2491 0.1333 

P2 5 119 -0.0804 0.1447 0.2667 

P3 10 9990 -0.0656 0.3035 0.0330* 

P4 8 9990 -0.1638 0.5123 0.0005* 

P5 7 5039 -0.0310 0.2694 0.1587 

P6 11 9990 -0.0307 0.2985 0.0215* 

P7 12 9990 -0.0554 0.4341 0.0015* 

P8 6 719 0.0106 -0.0138 0.4750 

 

 

 

 

 

 

 

 



 

Supplementary table S5. The strength of the distance-decay relationship (DDR-slope) for 

endolithic bacteria (16S rDNA) within colonies of Porites spp. in comparison with other 

organisms. The DDR slope of phototrophs was not significantly different from zero and 

therefore it is not shown. The taxa-area exponents (z-values) calculated from the DDR slope 

following the method of Harte et al (1999) or calculated independently based on area values 

(in Zinger et al 2014) are shown. It is important to note that z-values and DDR slope values 

can vary substantially according to spatial scale (Martiny et al 2011), sequencing approach 

(Terrat et al 2015) and methodologies (Zinger et al 2014). The z-values reviewed in Horner-

Devine et al (2004) represent an average across several studies, therefore scale and 

sequencing technologies are variable. HTS = High-throughput sequencing. 

 

Organism DDR slope z-value Scale 
Sequencing 

approach 
Reference 

Plants - 0.228 - - 

Reviewed in Horner-

Devine 

et al 2004 

Birds - 0.149 - - 
Reviewed in Horner-

Devine 

et al 2004 

Butterflies - 0.101 - - 

Reviewed in Horner-

Devine 

et al 2004 

Earthworms - 0.092 - - 

Reviewed in Horner-

Devine 

et al 2004 

Ants - 0.088 - - 

Reviewed in Horner-

Devine 
et al 2004 

Diatoms - 0.066 - - 

Reviewed in Horner-

Devine 

et al 2004 

Ciliates - 0.060 - - 
Reviewed in Horner-

Devine 

et al 2004 

Salt marsh bacteria 

(97% OTUs) 
-0.039 0.020 3cm - 300m 

Cloning and 

sequencing 

Horner Devine 

et al 2004 

Lake sediment bacteria -0.018 0.009 1cm - 1400m Fingerprint (T-RFLP) Barreto et al 2014 

Lake sediment Archaea -0.031 0.016 1cm - 1400m Fingerprint (T-RFLP) Barreto et al 2014 

Desert soil fungi -0.147 0.074 1m - 100km Fingerprint (ARISA) Green et al 2004 

Rainforest soil diazotrophs - 0.060 1-200m HTS (MiSeq) Tu et al 2016 

Temperate forest soil 

diazotrophs 
- 0.108 1-200m HTS (MiSeq) Tu et al 2016 

Soil bacteria and Archaea 

(97% OTUs) 
-0.063 0.032 - HTS (454) Terrat et al 2015 

Seawater (free-living) bacteria -0.04 0.44 Global HTS (454) Zinger et al 2014 

Marine sediments bacteria -0.07 0.51 Global HTS (454) Zinger et al 2014 

Deep sea waters bacteria -0.02 0.33 Global HTS (454) Zinger et al 2014 

Marine surface waters bacteria -0.03 0.29 Global HTS (454) Zinger et al 2014 

Coastal waters bacteria -0.05 0.36 Global HTS (454) Zinger et al 2014 

Deep sea sediments bacteria -0.05 0.46 Global HTS (454) Zinger et al 2014 

Coastal sediments bacteria -0.08 0.40 Global HTS (454) Zinger et al 2014 

Endolithic bacteria 

(97% OTUs) 
-0.149 0.075 

Intra-colony: 

0.4cm - 199cm 
HTS (MiSeq) This study 
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Barreto DP, Conrad R, Klose M, Claus P, Enrich-Prast A (2014) Distance-decay and taxa-area 

relationships for bacteria, archaea and methanogenic Archaea in a tropical lake sediment. PLoS One 9, 

e110128. 

Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, et al. (2004) Spatial scaling of microbial 

eukaryote diversity. Nature 432, 747-750. 

Horner-Devine MC, Lage M, Hughes JB, Bohannan BJ (2004) A taxa-area relationship for bacteria. 

Nature 432, 750-753. 

Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-

diversity depend on spatial scale. Proceedings of the National Academy of Sciences, USA 108, 7850-

7854. 

Terrat S, Dequiedt S, Horrigue W, Lelievre M, Cruaud C, et al. (2015) Improving soil bacterial taxa-

area relationships assessment using DNA meta-barcoding. Heredity 114, 468-475. 

Tu Q, Deng Y, Yan Q, Shen L, Lin L, et al. (2016) Biogeographic patterns of soil diazotrophic 

communities across six forests in the North America. Molecular Ecology 25, 2937-2948. 
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Supplementary Figure S1: Massive Porites lutea colonies in Western Australia and sampling design. 
The red line illustrate the transect along which samples were collected, the varying distances 
between samples is shown.
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Supplementary figure S2:  Distance-decay relationships for the endolithic communities
in individual Porites colonies. Blue lines indicate the linear regression between (log10 transformed) 
geographical distance and (log10 transformed) Sørensen community similarity. Colonies where a
significant decay was observed are indicated with an asterisk (see Supplementary table S4 for
slope values, Mantel r and significance values. A – C) Distance-decay relationships obtained with 
the 16S rRNA gene, UPA and tufA markers respectively.
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Supplementary figure S3. Prokaryotic species accumulation curves, based on the 16S rRNA gene
marker. A) Percentage of the total number of OTUs observed in each colony that is recovered with
increasing skeleton samples. These accumulation curves were obtained by randomizing the samples
and storing the recovered OTU percentage 100 times. B) Percentage of the total number of OTUs
observed in each colony that is recovered with increasing distance between samples. 
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Supplementary figure S4. Species accumulation curves of eukaryotic green algae based on the tufA 
marker. A) Percentage of the total number of OTUs observed in each colony that is recovered with 
increasing skeleton samples.These accumulation curves were obtained by randomizing the samples 
and storing the recovered OTU percentage 100 times. B) Percentage of the total number of OTUs 
observed in each colony that is recovered with increasing distance between samples. 
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Supplementary figure S5. Species accumulation curves of photosynthetic eukaryotes and cyanobacteria
based on the UPA marker. A) Percentage of the total number of OTUs observed in each colony that is 
recovered with increasing skeleton samples.These accumulation curves were obtained by randomizing
the samples and storing the recovered OTU percentage 100 times. B) Percentage of the total number 
of OTUs observed in each colony that is recovered with increasing distance between samples. 
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Supplementary Figure S6: Alpha rarefaction curves showing the number of OTUs per number of 
sequences for the different skeleton samples (coloured lines).
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Supplementary figure S7: Distance-decay relationships for the prokaryotic (16S rRNA gene)
and phototrophic (UPA and tufA) communities found in coral skeletons, highlighting the sites 
where corals were surveyed.
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Supplementary figure S8: Maximum Likelihood tree of ITS sequences.
Reference sequences from previously identified corals are in black and the
OTUs retrieved from the corals analysed in this study are in red.
High bootstrap support values (>80) in internal nodes are indicated. 
Bootstrap values from terminal nodes and smaller than 80 are ommited.
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