### CHANCE OF REMISSION FOLLOWING A BREAKTHROUGH SEIZURE ### library(cmprsk) library(MASS) # read in data # rpat <- read.csv("Risk of Breakthrough Seizure.csv") # arma data # sdata <- subset(rpat,with.Arm=="CBZ") sdatb <- subset(rpat,with.Arm=="VPS") # Kaplan-Meier curve # library(prodlim) tiff(file="Fig 2.tiff",width=2250,heigh=2625,units="px",res=300) ttime <- rpat$ttbs.bttime/365 fit <- prodlim(Surv(ttime,ttbs.btcens)~1,data=rpat) plot(fit,type="cuminc",percent=FALSE,background=FALSE,lwd=0.7,atRisk.dist=1,xlab="Time from achieving 12-month remission (years)",ylab="Probability of Breakthrough Seizure",confint=FALSE,legend.x=0,legend.y=1,atrisk.labels="No. at risk:",atRisk.times=c(0,1,2,3,4,5),atRisk.adjust.labels=FALSE) dev.off() # Risk of a breakthrough seizure 2 years following remission # summary(fit,times=2) ## Patient Characteristics ## # No. breakthrough seizures # sum(rpat$ttbs.btcens) # Time to breakthrough # btpeeps <- subset(rpat,ttbs.btcens==1) summary(btpeeps$ttbs.bttime/365) # Duration of follow-up after acheiving 12 month remission # summary((rpat$lastfup.dlfu-(rpat$all.rand+rpat$rem.Remtime))/365) # Median time to breakthrough seizure # summary(sdata$ttbs.bttime/365) summary(sdatb$ttbs.bttime/365) summary(rpat$ttbs.bttime/365) # Gender # table(sdata$all.sex) prop.table(table(sdata$all.sex)) table(sdatb$all.sex) prop.table(table(sdatb$all.sex)) table(rpat$all.sex) prop.table(table(rpat$all.sex)) # Febrile Seizure History # table(sdata$all.feb) prop.table(table(sdata$all.feb)) table(sdatb$all.feb) prop.table(table(sdatb$all.feb)) table(rpat$all.feb) prop.table(table(rpat$all.feb)) # First degree relative # table(sdata$all.rels) prop.table(table(sdata$all.rels)) table(sdatb$all.rels) prop.table(table(sdatb$all.rels)) table(rpat$all.rels) prop.table(table(rpat$all.rels)) # Neurological Insult # neuro <- function(data) { neuro <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.neur[i]=="Y") neuro[i] <- 1 } return(neuro) } neuroa <- neuro(sdata) neurob <- neuro(sdatb) neuroab <- neuro(rpat) learn <- function(data) { learn <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.learn[i]=="Y") learn[i] <- 1 } return(learn) } learna <- learn(sdata) learnb <- learn(sdatb) learnab <- learn(rpat) nsigna <- neuroa + learna nsignb <- neurob + learnb nsignab <- neuroab + learnab nsign <- function(data) { nsign <- rep(-1/2,length(data)) for(i in 1:length(data)){ if(data[i]>0) nsign[i] <- 1/2 } return(nsign) } table(nsign(nsigna)) prop.table(table(nsign(nsigna))) table(nsign(nsignb)) prop.table(table(nsign(nsignb))) table(nsign(nsignab)) prop.table(table(nsign(nsignab))) # Stype # stype <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 1 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 1 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 2 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 2 if(data$all.scgtc[i]>=1) stype[i] <- 2 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 3 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- 4 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.otc[i]>=1) stype[i] <- 6 if(data$all.o[i]>=1) stype[i] <- 7 } return(stype) } table(stype(sdata)) prop.table(table(stype(sdata))) table(stype(sdatb)) prop.table(table(stype(sdatb))) table(stype(rpat)) prop.table(table(stype(rpat))) table(sdata$all.type) prop.table(table(sdata$all.type)) table(sdatb$all.type) prop.table(table(sdatb$all.type)) table(rpat$all.type) prop.table(table(rpat$all.type)) eegfour <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(3,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<-1 if(data$all.eegabnormal[i]=="N") eegfour[i]<-0 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<-2 } return(eegfour) } # Normal = 0 # Non-spec = 2 # Abnorm = 3 # Not indicated = 1 table(eegfour(sdata)) prop.table(table(eegfour(sdata))) table(eegfour(sdatb)) prop.table(table(eegfour(sdatb))) table(eegfour(rpat)) prop.table(table(eegfour(rpat))) # CT/MRI Scan Result # table(sdata$all.ctabnormal) prop.table(table(sdata$all.ctabnormal)) table(sdatb$all.ctabnormal) prop.table(table(sdatb$all.ctabnormal)) table(rpat$all.ctabnormal) prop.table(table(rpat$all.ctabnormal)) # Randomised treatment # table(sdata$with.Treat) prop.table(table(sdata$with.Treat)) table(sdatb$with.Treat) prop.table(table(sdatb$with.Treat)) table(rpat$with.Treat) prop.table(table(rpat$with.Treat)) # Number of drugs to achieve remission # mono <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$ttbs.nodrugs)[i]) data$ttbs.nodrugs[i]<-0 } mono <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$ttbs.nodrugs[i]<=1) mono[i] <- 0 if(data$ttbs.nodrugs[i]>=2) mono[i] <- 1 } return(mono) } table(mono(sdata)) prop.table(table(mono(sdata))) table(mono(sdatb)) prop.table(table(mono(sdatb))) table(mono(rpat)) prop.table(table(mono(rpat))) # Number t-c at achievement of remission # summary(sdata$newtc) summary(sdatb$newtc) summary(rpat$newtc) # Age at achievement of remission # summary(sdata$newage) summary(sdatb$newage) summary(rpat$newage) # Time to achieve 12 month remission # summary(sdata$rem.Remtime/365) summary(sdatb$rem.Remtime/365) summary(rpat$rem.Remtime/365) # Time on randomised (monotherapy) treatment # summary(sdata$with.Withtime/365) summary(sdatb$with.Withtime/365) summary(rpat$with.Withtime/365) ## Univariable analysis ## # Gender # sind <- function(data) { sind <- rep(1/2,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sex[i]=="F") sind[i] <- -1/2 } return(sind) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~sind(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Febrile Seizure History # fsh <- function(data) { fsh <- rep(-1/2,nrow(data)) for(i in 1:nrow(data)){ if(data$all.feb[i]=="Y") fsh[i] <- 1/2 } return(fsh) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~fsh(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # First degree relative with epilepsy # fdr <- function(data) { fdr <- rep(-1/2,nrow(data)) for(i in 1:nrow(data)){ if(data$all.rels[i]=="Y") fdr[i] <- 1/2 } return(fdr) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~fdr(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Neurological Signs # neuro <- function(data) { neuro <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.neur[i]=="Y") neuro[i] <- 1 } return(neuro) } neuroa <- neuro(rpat) learn <- function(data) { learn <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.learn[i]=="Y") learn[i] <- 1 } return(learn) } learna <- learn(rpat) nsigna <- neuroa + learna nsign <- function(data) { nsign <- rep(-1/2,length(data)) for(i in 1:length(data)){ if(data[i]>0) nsign[i] <- 1/2 } return(nsign) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~nsign(nsigna)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Seizure Type # stype <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 2 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 2 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 3 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- 4 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.otc[i]>=1) stype[i] <- 6 if(data$all.o[i]>=1) stype[i] <- 7 } return(stype) } stype1 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(-1/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 6/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 6/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.otc[i]>=1) stype[i] <- -1/7 if(data$all.o[i]>=1) stype[i] <- -1/7 } return(stype) } stype2 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(-1/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 6/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.otc[i]>=1) stype[i] <- -1/7 if(data$all.o[i]>=1) stype[i] <- -1/7 } return(stype) } stype3 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(-1/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 6/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 6/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 6/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- 6/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- 6/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.otc[i]>=1) stype[i] <- -1/7 if(data$all.o[i]>=1) stype[i] <- -1/7 } return(stype) } stype4 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(-1/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- 6/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- 6/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- 6/7 if(data$all.otc[i]>=1) stype[i] <- -1/7 if(data$all.o[i]>=1) stype[i] <- -1/7 } return(stype) } stype5 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(-1/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.otc[i]>=1) stype[i] <- 6/7 if(data$all.o[i]>=1) stype[i] <- -1/7 } return(stype) } stype6 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(6/7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- -1/7 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.scgtc[i]>=1) stype[i] <- -1/7 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- -1/7 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- -1/7 if(data$all.otc[i]>=1) stype[i] <- -1/7 if(data$all.o[i]>=1) stype[i] <- 6/7 } return(stype) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~stype1(rpat)+stype2(rpat)+stype3(rpat)+stype4(rpat)+stype5(rpat)+stype6(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Epilepsy type analysis # pgu1 <- function(data) { x1 <- rep(-1/3,nrow(data)) for(i in 1:nrow(data)){ if(is.na(data$all.type)[i]) data$all.type[i]<-"U" } for(i in 1:nrow(data)){ if(data$all.type[i]=="P") x1[i] <- -1/3 if(data$all.type[i]=="G") x1[i] <- 2/3 if(data$all.type[i]=="U") x1[i] <- -1/3 } return(x1) } pgu2 <- function(data) { x2 <- rep(-1/3,nrow(data)) for(i in 1:nrow(data)){ if(is.na(data$all.type)[i]) data$all.type[i]<-"U" } for(i in 1:nrow(data)){ if(data$all.type[i]=="P") x2[i]<- -1/3 if(data$all.type[i]=="G") x2[i]<- -1/3 if(data$all.type[i]=="U") x2[i]<- 2/3 } return(x2) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~pgu1(rpat)+pgu2(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # EEG Results # eegfour <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(3,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<-1 if(data$all.eegabnormal[i]=="N") eegfour[i]<-0 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<-2 } return(eegfour) } eeg1 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(-1/4,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<-3/4 if(data$all.eegabnormal[i]=="N") eegfour[i]<--1/4 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<--1/4 } return(eegfour) } eeg2 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(-1/4,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<--1/4 if(data$all.eegabnormal[i]=="N") eegfour[i]<--1/4 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<-3/4 } return(eegfour) } eeg3 <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(3/4,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<--1/4 if(data$all.eegabnormal[i]=="N") eegfour[i]<--1/4 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<--1/4 } return(eegfour) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~eeg1(rpat)+eeg2(rpat)+eeg3(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # CT/MR Results # ctmr1 <- function(data) { ctmr <- rep(-1/3,nrow(data)) for(i in 1:nrow(data)){ if(data$all.ctabnormal[i]=="Y") ctmr[i] <- 2/3 if(data$all.ctabnormal[i]=="NR") ctmr[i] <- -1/3 } return(ctmr) } ctmr2 <- function(data) { ctmr <- rep(-1/3,nrow(data)) for(i in 1:nrow(data)){ if(data$all.ctabnormal[i]=="Y") ctmr[i] <- -1/3 if(data$all.ctabnormal[i]=="NR") ctmr[i] <- 2/3 } return(ctmr) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~ctmr1(rpat)+ctmr2(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Treatment # treat <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- 1 if(data$with.Treat[i]=="GBP") treat[i] <- 2 if(data$with.Treat[i]=="LTG") treat[i] <- 3 if(data$with.Treat[i]=="OXC") treat[i] <- 4 if(data$with.Treat[i]=="TPM") treat[i] <- 5 if(data$with.Treat[i]=="VPS") treat[i] <- 6 } return(treat) } treat1 <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- -1/6 if(data$with.Treat[i]=="GBP") treat[i] <- 5/6 if(data$with.Treat[i]=="LTG") treat[i] <- -1/6 if(data$with.Treat[i]=="OXC") treat[i] <- -1/6 if(data$with.Treat[i]=="TPM") treat[i] <- -1/6 if(data$with.Treat[i]=="VPS") treat[i] <- -1/6 } return(treat) } treat2 <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- -1/6 if(data$with.Treat[i]=="GBP") treat[i] <- -1/6 if(data$with.Treat[i]=="LTG") treat[i] <- 5/6 if(data$with.Treat[i]=="OXC") treat[i] <- -1/6 if(data$with.Treat[i]=="TPM") treat[i] <- -1/6 if(data$with.Treat[i]=="VPS") treat[i] <- -1/6 } return(treat) } treat3 <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- -1/6 if(data$with.Treat[i]=="GBP") treat[i] <- -1/6 if(data$with.Treat[i]=="LTG") treat[i] <- -1/6 if(data$with.Treat[i]=="OXC") treat[i] <- 5/6 if(data$with.Treat[i]=="TPM") treat[i] <- -1/6 if(data$with.Treat[i]=="VPS") treat[i] <- -1/6 } return(treat) } treat4 <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- -1/6 if(data$with.Treat[i]=="GBP") treat[i] <- -1/6 if(data$with.Treat[i]=="LTG") treat[i] <- -1/6 if(data$with.Treat[i]=="OXC") treat[i] <- -1/6 if(data$with.Treat[i]=="TPM") treat[i] <- 5/6 if(data$with.Treat[i]=="VPS") treat[i] <- -1/6 } return(treat) } treat5 <- function(data) { treat <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$with.Treat[i]=="CBZ") treat[i] <- -1/6 if(data$with.Treat[i]=="GBP") treat[i] <- -1/6 if(data$with.Treat[i]=="LTG") treat[i] <- -1/6 if(data$with.Treat[i]=="OXC") treat[i] <- -1/6 if(data$with.Treat[i]=="TPM") treat[i] <- -1/6 if(data$with.Treat[i]=="VPS") treat[i] <- 5/6 } return(treat) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~treat1(rpat)+treat2(rpat)+treat3(rpat)+treat4(rpat)+treat5(rpat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Monotherapy to achieve remission # mono <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$ttbs.nodrugs)[i]) data$ttbs.nodrugs[i]<-0 } mono <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$ttbs.nodrugs[i]<=1) mono[i] <- 0 if(data$ttbs.nodrugs[i]>=2) mono[i] <- 1 } return(mono) } monodat <- mono(rpat) mntp <- function(data) { mntp <- rep(-1/2,length(data)) for(i in 1:length(data)){ if(data[i]==1) mntp[i] <- 1/2 } return(mntp) } coxfita=coxph(Surv(ttbs.bttime,ttbs.btcens)~mntp(monodat)+strata(with.Arm),data=rpat) coxfita exp(coxfita$coefficients) exp(confint(coxfita)) # Number of tonic-clonic seizures # library(mfp) library(Hmisc) fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~newtc+strata(with.Arm),data=rpat) extractAIC(fit1) fit2 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~log(newtc+1)+strata(with.Arm),data=rpat) extractAIC(fit2) fit3 <- mfp(Surv(ttbs.bttime,ttbs.btcens)~fp(newtc)+strata(with.Arm),family=cox,data=rpat,select=0.05,verbose=TRUE) extractAIC(fit3) tccount <- log((rpat$newtc+1)/10) fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~tccount+strata(with.Arm),data=rpat) summary(fit2) summary(rpat$newtc) # Age at 12-month remission # fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~newage+strata(with.Arm),data=rpat) extractAIC(fit1) fit2 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~log(newage)+strata(with.Arm),data=rpat) extractAIC(fit2) coxfitf1 <- mfp(Surv(ttbs.bttime,ttbs.btcens)~fp(newage)+strata(with.Arm),family=cox,data=rpat,select=0.05,verbose=TRUE) extractAIC(coxfitf1) summary(fit2) summary(rpat$newage) # Time to achieve first period of 12 month remission # rem1 <- rpat$rem.Remtime fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~rem1+strata(with.Arm),data=rpat) extractAIC(fit1) fit2 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~log(rem1)+strata(with.Arm),data=rpat) extractAIC(fit2) coxfitf1 <- mfp(Surv(ttbs.bttime,ttbs.btcens)~fp(rem1)+strata(with.Arm),family=cox,data=rpat,select=0.05,verbose=TRUE) extractAIC(coxfitf1) remtime <- (rem1/1000)^(-2) fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~remtime+strata(with.Arm),data=rpat) summary(fit1) summary(rem1) rcspline.eval(rem1,knots.only=T) # Time on randomised treatment # fit1 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~with.Withtime+strata(with.Arm),data=rpat) extractAIC(fit1) fit2 <- coxph(Surv(ttbs.bttime,ttbs.btcens)~log(with.Withtime)+strata(with.Arm),data=rpat) extractAIC(fit2) coxfitf1 <- mfp(Surv(ttbs.bttime,ttbs.btcens)~fp(with.Withtime)+strata(with.Arm),family=cox,data=rpat,select=0.05,verbose=TRUE) extractAIC(coxfitf1) summary(fit2) summary(rpat$with.Withtime) rcspline.eval(rpat$with.Withtime,knots.only=T) ### Multivariable Model ### neuro <- function(data) { neuro <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.neur[i]=="Y") neuro[i] <- 1 } return(neuro) } neuroa <- neuro(rpat) learn <- function(data) { learn <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.learn[i]=="Y") learn[i] <- 1 } return(learn) } learna <- learn(rpat) nsigna <- neuroa + learna nsign <- function(data) { nsign <- rep(0,length(data)) for(i in 1:length(data)){ if(data[i]>0) nsign[i] <- 1 } return(nsign) } stype <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.sp)[i]) data$all.sp[i]<-0 if(is.na(data$all.cp)[i]) data$all.cp[i]<-0 if(is.na(data$all.scgtc)[i]) data$all.scgtc[i]<-0 if(is.na(data$all.tc)[i]) data$all.tc[i] <- 0 if(is.na(data$all.ta)[i]) data$all.ta[i] <- 0 if(is.na(data$all.aa)[i]) data$all.aa[i] <- 0 if(is.na(data$all.m)[i]) data$all.m[i] <- 0 if(is.na(data$all.otc)[i]) data$all.otc[i] <- 0 if(is.na(data$all.o)[i]) data$all.o[i] <- 0 } stype <- rep(7,nrow(data)) for(i in 1:nrow(data)){ if(data$all.sp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 2 if(data$all.cp[i]>=1 && data$all.scgtc[i]==0) stype[i] <- 2 if(data$all.sp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.cp[i]>=1 && data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.scgtc[i]>=1) stype[i] <- 1 if(data$all.tc[i]>=1 && data$all.aa[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 3 if(data$all.aa[i]>=1 && data$all.tc[i]==0 && data$all.ta[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]==0 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.ta[i]>=1 && data$all.tc[i]==0 && data$all.aa[i]>=1 && data$all.m[i]==0 && data$all.otc[i]==0 && data$all.o[i]==0) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.ta[i]>=1) stype[i] <- 4 if(data$all.m[i]>=1 && data$all.aa[i]>=1) stype[i] <- 4 if(data$all.aa[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.m[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.ta[i]>=1 && data$all.tc[i]>=1) stype[i] <- 5 if(data$all.otc[i]>=1) stype[i] <- 6 if(data$all.o[i]>=1) stype[i] <- 7 } return(stype) } type <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.type)[i]) data$all.type[i]<-"U" } type <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$all.type[i]=="P") type[i] <- 1 if(data$all.type[i]=="G") type[i] <- 2 if(data$all.type[i]=="U") type[i] <- 3 } return(type) } eegfour <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$all.nonspecab)[i]) data$all.nonspecab[i]<-"N" } eegfour <- rep(3,nrow(data)) for(i in 1:nrow(data)){ if(data$all.eegabnormal[i]=="NR") eegfour[i]<-1 if(data$all.eegabnormal[i]=="N") eegfour[i]<-0 if(data$all.eegabnormal[i]=="Y" && data$all.nonspecab[i]=="Y") eegfour[i]<-2 } return(eegfour) } mono <- function(data) { for(i in 1:nrow(data)){ if(is.na(data$ttbs.nodrugs)[i]) data$ttbs.nodrugs[i]<-0 } mono <- rep(0,nrow(data)) for(i in 1:nrow(data)){ if(data$ttbs.nodrugs[i]<=1) mono[i] <- 0 if(data$ttbs.nodrugs[i]>=2) mono[i] <- 1 } return(mono) } tccount <- log((rpat$newtc+1)/10) newage2 <- log(rpat$newage) remtime <- (rpat$rem.Remtime/1000)^(-2) coxfit1=coxph(Surv(ttbs.bttime,ttbs.btcens)~all.sex+all.feb+all.rels+nsign(nsigna)+factor(stype(rpat))+factor(eegfour(rpat))+factor(all.ctabnormal)+mono(rpat)+tccount+newage2+remtime+strata(with.Arm),data=rpat) rema.step=stepAIC(coxfit1,scope=list(upper=~all.sex+all.feb+all.rels+nsign(nsigna)+factor(stype(rpat))+factor(eegfour(rpat))+factor(all.ctabnormal)+mono(rpat)+tccount+newage2+remtime+strata(with.Arm)),direction="backward",trace=FALSE) rema.step remb.step=stepAIC(coxfit1,scope=list(upper=~all.sex+all.feb+all.rels+nsign(nsigna)+factor(stype(rpat))+factor(eegfour(rpat))+factor(all.ctabnormal)+mono(rpat)+tccount+newage2+remtime+strata(with.Arm)),direction="both",trace=FALSE) remb.step remamod = coxph(Surv(ttbs.bttime,ttbs.btcens)~nsign(nsigna)+tccount+remtime+strata(with.Arm),data=rpat) summary(remamod) exp(remamod$coef) exp(confint(remamod)) ## Forest Plot # library(grid) # load relevant data: breakthrough # breakthrough <- read.table("Risk Factor Combos - Breakthrough.txt",header=TRUE) Ys=seq(from=1,to=nrow(breakthrough),by=1) par(mfrow=c(1,4),mar=c(5,1,1,1)) plot(0,0,xlim=c(0,100),ylim=c(0,nrow(breakthrough)+3),type="n",axes=F,xlab="",ylab="",main="") text(10,Ys,rev(breakthrough$nele),cex=0.7) text(50,Ys,rev(breakthrough$tccount),cex=0.7) text(90,Ys,rev(breakthrough$remtime),cex=0.7) text(10,nrow(breakthrough)+3,"Neuro.",font=2,cex=0.7) text(10,nrow(breakthrough)+2,"insult",font=2,cex=0.7) text(50,nrow(breakthrough)+3,"TC",font=2,cex=0.7) text(50,nrow(breakthrough)+2,"count",font=2,cex=0.7) text(90,nrow(breakthrough)+3,"Time to",font=2,cex=0.7) text(90,nrow(breakthrough)+2,"remission",font=2,cex=0.7) text(90,nrow(breakthrough)+1,"(years)",font=2,cex=0.7) abline(h=9.5) plot(0,0,xlim=c(0,100),ylim=c(0,nrow(breakthrough)+3),type="n",axes=F,xlab="Risk of breakthrough at 1 year after remission (%)",ylab="",main="",cex.lab=0.7) estimate1y <- rev(breakthrough$HR1)*100 lower1y <- rev(breakthrough$Lower1)*100 upper1y <- rev(breakthrough$Upper1)*100 points(estimate1y,Ys,pch=15,cex=1.5,) for(i in 1:length(Ys)){ lines(c(lower1y[i],upper1y[i]),rep(Ys[i],2),lwd=1.0) } axis(1,at=c(0,10,20,30,40,50,60,70,80,90,100),c(0,10,20,30,40,50,60,70,80,90,100),cex.axis=0.65) abline(h=9.5) plot(0,0,xlim=c(0,100),ylim=c(0,nrow(breakthrough)+3),type="n",axes=F,xlab="Risk of breakthrough at 2 years after remission (%)",ylab="",main="",cex.lab=0.7) estimate2y <- rev(breakthrough$HR2)*100 lower2y <- rev(breakthrough$Lower2)*100 upper2y <- rev(breakthrough$Upper2)*100 points(estimate2y,Ys,pch=15,cex=1.5,) for(i in 1:length(Ys)){ lines(c(lower2y[i],upper2y[i]),rep(Ys[i],2),lwd=1.0) } axis(1,at=c(0,10,20,30,40,50,60,70,80,90,100),c(0,10,20,30,40,50,60,70,80,90,100),cex.axis=0.65) abline(h=9.5) plot(0,0,xlim=c(0,100),ylim=c(0,nrow(breakthrough)+3),type="n",axes=F,xlab="Risk of breakthrough at 3 years after remission (%)",ylab="",main="",cex.lab=0.7) estimate3y <- rev(breakthrough$HR3)*100 lower3y <- rev(breakthrough$Lower3)*100 upper3y <- rev(breakthrough$Upper3)*100 points(estimate3y,Ys,pch=15,cex=1.5,) for(i in 1:length(Ys)){ lines(c(lower3y[i],upper3y[i]),rep(Ys[i],2),lwd=1.0) } axis(1,at=c(0,10,20,30,40,50,60,70,80,90,100),c(0,10,20,30,40,50,60,70,80,90,100),cex.axis=0.65) abline(h=9.5)