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1 Mathematical Basis of cantilever fluctuations

The physical model of a fluctuating cantilever in a fluid environment was summarized in
[1], we recall here the main results necessary for the reader in order to assess the fluid
viscosity. These basis can be found in great detail in the original work of Sader [2] and
Bellon [3].

The main quantity is the power spectrum density, Sdn(ω), for each normal mode of the
deflection d for a microcantilever immersed a fluid environment at temperature T . This
writes,

Sdn(ω) =
2kBT

π

γeff(ω)

(kn −meff(ω)ω2)2 + (γeff(ω)ω)2
, (1)

where dn is the amplitude of the n−th normal mode of the cantilever and a fluctuating
variable due to the thermal bath, γeff(ω) is the frequency dependent effective damping
coefficient, meff(ω) is the frequency dependent effective mass, kn is the stiffness of the
n−th mode, kB is the Boltzmann constant and ω is the angular frequency. The effective
values meff and γeff write,

meff(ω) = m+mfΓr(ω) (2)

γeff(ω) = mfωΓi(ω), (3)

where m is the mass of the cantilever, mf = πρLW 2/4 is the mass of the cylinder of fluid
of density ρ surrounding the cantilever of length L and width W and Γ = Γr + iΓi is
the hydrodynamic function in the Sader’s model context, whose values are dependent of
the fluid density and viscosity. For the sake of completeness, we introduce explicitly the
hydrodynamic function for a rectangular beam,

Γ(ω) = Ω(ω)Γcirc(ω), (4)

where Γcirc is the hydrodynamic function for a cylinder expressed as,

Γcirc(ω) = 1 +
4iK1(−i

√
iRe)√

iReK0(−i
√
iRe)

, (5)

where K0 and K1 are modified Bessel functions of the third kind and Re is the Reynolds
number, expressed as,

Re =
ρW 2ω

4η
, (6)

where ρ is the density of the fluid where the cantilever is immersed, W is the width of
the cantilever and η is the viscosity of the fluid. Ω(ω) = Ωr + iΩi is a correction function,
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expressed in the real and imaginary parts as,

Ωr(ω) = (0.91324− 0.48274r + 0.46842r2 − 0.12886r3

+ 0.044055r4 − 0.0035117r5 + 0.00069085r6)

× (1− 0.56964r + 0.48690r2 − 0.13444r3

+ 0.045155r4 − 0.0035862r5

+ 0.00069085r6)−1 (7)

Ωi(ω) = (−0.024134− 0.029256r + 0.016294r2

− 0.00010961r3 + 0.000064577r4

− 0.000044510r5)× (1− 0.59702r + 0.55182r2

− 0.18357r3 + 0.079156r4 − 0.014369r5

+ 0.0028361r6)−1 (8)

r = log10(Re). (9)

The physical origin of the hydrodynamic function can be found in Sader’s work [2]. It
is worth nothing that in Sader’s model the dissipation is assumed homogeneous along the
cantilever. If in addition, the thermal noise is uncorrelated on different normal modes [3],
the PSD of the deflection d is written as,

Sd(x, ω) =
∞∑
n=1

Sdn(ω) |φn(x)|2 , (10)

where φn are the eigenfunctions of the Euler Bernoulli equation for a cantilever and x is
the spatial coordinate along the cantilever length, indicating here the position of the laser
spot, by means which deflection is measured. These eigenfunctions write,

φn(x) =
[
cos
(
αn

x

L

)
− cosh

(
αn

x

L

)]
− cosαn + coshαn

sinαn + sinhαn

[
sin
(
αn

x

L

)
− sinh

(
αn

x

L

)]
,

(11)
where αn are the eigenvalues, which in the absence of external forces are the solutions of
1 + cosαn coshαn = 0. The first eigenvalues are: α1 = 1.875, α2 = 4.695, α3 = 7.855 and
approximate to αn = (n− 1/2)π for higher n.

2 Data analysis

2.1 Determination of viscosity by tracking of the resonance frequency of
the cantilever

The use of the Eq 6 in the main text leads to the determination of viscosity of the solution
through the changes in the resonance frequency, ωr of the cantilever. A series of steps
allows us to find the viscosity from the PSD:

• A set of data taken around the maximum of the experimental PSD is fitted to a
Gaussian distribution and the resonance frequency, fr, is thus obtained from the
Gaussian maximum. The mean value fr is obtained from the average of N = 20
data.
The vacuum resonance frequency, f0, is obtained in air in the same manner.
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This brings the mean value of the resonance frequency and the respective error,
calculated as the standard deviation, fr = fr + ∆fr. The angular frequency is
calculated as usually, ωr = 2πfr, ∆ωr = 2π∆fr.

• In order to quantify the error propagation in the Eq 6 (see the main text), the
parenthesis is distributed to obtain a expression for η, η = A+B +C. Each term in
viscosity is analyzed :

A =
c1 · ω4

0

ω3
r

∆A =

√(
ω4

0∆c1

ω3
r

)2

+

(
4c1ω3

0∆ω0

ω3
r

)2

+

(
3c1ω4

0∆ωr

ω4
r

)2

B =
2 · c1 · (c2 + 1)ω2

0

ωr

∆B =

√(
2(c2 + 1)ω2

0∆c1

ωr

)2

+

(
2c1ω2

0∆c2

ωr

)2

+

(
4c1(c2 + 1)ω0∆ω0

ωr

)2

+

(
2c1(c2 + 1)ω2

0∆ωr

ω2
r

)2

C = c1 · (c2 + 1)2ωr

∆B =

√
((c2 + 1)2ωr∆c1)2 + (2c1(c2 + 1)ωr∆c2)2 + (c1(c2 + 1)2∆ωr)

2

η = A+B + C

∆η = ∆A+ ∆B + ∆C

• The parameters c1 and c2 depends on the cantilever geometry. These two parameters
must be found through a calibration procedure that is based on the nominal values
of the urea viscosity, ηs, [4] and the fit of the experimental data to the Eq 6. The
results are shown in S1 Fig and the respective values are: c1 = (1.0± 0.3) · 10−10 and
c2 = 0.39± 0.14.

2.2 Viscosity determination through the fit of the experimental PSD to
the theoretical PSD of Sader’s model.

2.2.1 Geometric parameters of the cantilever.

The data analysis includes two main steps; first the geometry of the cantilever is deter-
mined through a calibration procedure in a known fluid (water), and second the density
and viscosity of each sample are determined. The analysis is done through codes developed
in Matlab language, available in S1 Dataset for geometry determination and S2 Dataset
for density and viscosity.
The approximative geometrical properties of cantilever and its stiffness are known. How-
ever, a precise knowledge of these quantities is crucial for the accuracy of our method. We
therefore perform a fine tuning of these parameters by registering the PSDs of cantilever
when it is immersed in ultra pure water, whose density and viscosity are known for a given
temperature. The geometrical parameters, L, W , e and k, are then tuned until the cal-
culated PSD accurately reproduce the experimental PSD. The procedure is summarized
through the diagram S2 Fig, which indicates the main calculation routines. The average of
the power spectrum density < PSD >e is obtained from 20 acquisitions. Initial values of
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cantilever geometry loaded together with the exact values of the viscosity and density of
the reference fluid. For a set of geometrical parameters, a trial form of the power spectrum
density < PSD >t is obtained using the specified routines. An iterative process runs until
the difference < PSD >e − < PSD >t is minimized in a frequency interval containing the
desire frequency bandwidth. The whole process is summarized in a master routine whose
main panel is given, an example of fitting of the PSD is also given (see S3 Fig).

2.2.2 Determination of the viscosity and density.

The procedure to determine an unknown fluid viscosity is carried out in a similar way
but the cantilever’s geometry and stiffness, optimized previously, are kept fixed while the
viscosity and density are free parameters for the fitting procedure. The S4 Fig shows a
diagram for the viscosity and density determination, matlab’s routines are indicated and
available in S2 Dataset.

3 Correction to the hydrodynamic radius due to the appar-
ent diffusion in DLS measurements.

The concentration dependence of the apparent diffusion coefficient gives information about
proteins interactions. The effect of the protein concentration is in general considered by
extrapolating the value of the apparent diffusion coefficient to zero concentration using [5],

Dapp = D0(1 + kDcBSA), (12)

where Dapp is the apparent diffusion coefficient, D0 is the diffusion coefficient extrapo-
lated to zero concentration, cBSA is the BSA concentration and kD is the dynamic virial
coefficient. The parameter kD can be related to the thermodynamic properties of the poly-
mer/solvent mixture, depending therefore on the protein and solvent nature.
An important issue is the scaling of the apparent hydrodynamic radius, Rapp extrapolated
to zero concentration, R0. R0 is calculated from the diffusion coefficient in the limit of zero
BSA concentration, D0, and given by the Stokes–Einstein relation,

R0 =
kBT

6πηsD0
, (13)

where ηs is the solvent viscosity. If the apparent hydrodynamic radius, Rapp is calcu-
lated using the apparent diffusion coefficient Dapp and the solvent viscosity, the expression
relating the hydrodynamic radius reads,

Rapp =
R0

(1 + kDcBSA)
(14)

Thus, through measurements of the hydrodynamic radius from DLS, for increasing
BSA concentrations and for fixed buffer and denaturant concentration, the hydrodynamics
radius R0 and the kD constant can be obtained, allowing for a direct comparison with
hydrodynamic radius from viscosity measurements.

In fact, in S5 Fig, for increasing BSA concentrations, while keeping constant denaturant
concentration, a small decrease in the mean apparent radius is observed. This effect is more
pronounced for higher denaturant concentrations. For BSA in buffer, we obtained kDf =
0.17± 0.08 (mM)−1, which is in agreement with the value reported by Medda et al under
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similar conditions [6], and for BSA in urea at concentration 7M, our measurement provide
kDuf = 0.60 ± 0.27 (mM)−1. Finally, in order to estimate the corrected hydrodynamic
radius for all urea concentrations, a linear interpolation for the kD coefficient was assumed.
The corrected hydrodynamic radius for DLS are then contrasted to the corresponding
protein radius obtained from viscosity assessment (Fig 4B in the manuscript ).
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