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Web Appendix A

Here, we present conditions under which the simultaneous variable selection problem defined

by Equation (3) in Section 3.2 in the main paper has a unique solution. An immediate

corollary is that a solution exists when Φsum is given by a sum of the squared error and

logistic loss, i.e., when defining linear and logistic regression models for the outcome and

treatment, respectively.

For notational purposes, let D denote the working data {Y , A, V} and L(β|D) be the

empirical loss, i.e.,

L(β|D) =
1

n

n∑
i=1

Φsum(Yi, Ai,Vi; β). (1)

Yang and Zou (2015) show that Equation (3) in the main paper has a solution provided

the loss function Φsum satisfies a so-called quadratic majorization (QM) condition, i.e., if

and only if the following two assumptions hold:

(i) L(β|D) is a differentiable function of β, i.e., ∇L(β,D) exists everywhere.

1



(ii) There exists a p x p matrix H, which may only depend on D, such that for all β, β∗

L(β|D) ≤ L(β∗|D) + (β − β∗)T∇L(β∗|D) +
1

2
(β − β∗)TH(β − β∗)

We state and prove the following extension to their result which characterizes a class of

loss functions of the form of Equation (2) in the main paper that satisfy the QM condition:

Lemma 1 Let Φsum(Y,A, f, g) = Φout(Y, f)+Φtrt(A, g), where Φout is the loss function used

to link outcome Y with predictors Z1 = {Z11, . . . , Z1r} through a linear predictor f = αTZ1,

and Φtrt is the loss function used to link treatment A with predictors Z2 = {Z21, . . . , Z2s}

through a linear predictor g = γTZ2. Let Z = {Z11, . . . , Z1r, Z21, . . . , Z2s}. Assume Φout is

differentiable with respect to the coefficient parameters in f and write Φ′out = ∂Φout(Y,f)
∂f

, and

similarly, assume Φtrt is differentiable with respect to the coefficient parameters in g and

write Φ′trt = ∂Φtrt(A,g)
∂g

. Then:

(1). If Φ′out and Φ′trt are Lipschitz continuous with constants C1 and C2 such that

(i) |Φ′out(Y, f1)− Φ′out(Y, f2)| ≤ C1|f1 − f2| ∀Y, f1, f2,

and

(ii) |Φ′trt(A, g1)− Φ′trt(A, g2)| ≤ C2|g1 − g2| ∀A, g1, g2,

then the QM condition holds for Φsum and H = 2(C1+C2)
n

ZTZ.

(2). If Φ′′1 = ∂Φ2(Y,f)
∂f2

and Φ′′2 = ∂Φ2(A,g)
∂g2

exist and there are constants C3 and C4

such that

(i) Φ′′1 ≤ C3 ∀Y, f,

and

(ii) Φ′′2 ≤ C4 ∀A, g
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then the QM condition holds for Φsum and H = C3+C4

n
ZTZ.

(3) If

(i) Φout satisfies condition (1)(i) with constant C1,

(ii) Φtrt satisfies condition (2)(ii) with constant C2,

and

(iii) Φ′′2 = ∂Φ2(A,g)
∂g2

≥ CL ∀A, g (i.e., Φ′′2 is bounded),

or

(i) Φtrt satisfies condition (1)(ii) with constant C1,

(ii) Φout satisfies condition (2)(i) with constant C2,

and

(iii) Φ′′1 = ∂Φ2(Y,f)
∂f2

≥ CL ∀Y, f (i.e., Φ′′1 is bounded),

then the QM condition holds for Φsum and H =
2(C1+C∗2 )

n
ZTZ, where C∗2 = max {|C2|, |CL|}.

Proof. Before proving Lemma 1, we first present a lemma (without observation weights)

from Yang and Zou (2015):

Lemma 2 Assume Φ(y, f) is differentiable with respect to f and write Φ′f = ∂Φ(y,f)
∂f

. Then

∇Φ(β|D) =
1

n

n∑
i=1

τiΦ
′(yi, x

T
i β)xi

(1). If Φ′f is Lipschitz continuous with constant C such that

|Φ′f (y, f1)− Φ′f (y, f2)| ≤ C|f1 − f2| ∀y, f1, f2,

then the QM condition holds for Φ and H = 2C
n

XTX.

(2). If Φ′′f = ∂Φ2(y,f)
∂f2

exists and Φ′′f ≤ C2 ∀y, f ,

3



then the QM condition holds for Φ and H = C2

n
XTX.

Proving (1): We have

|Φ′out(Y, f1)− Φ′out(Y, f2)| ≤ C1|f1 − f2| ∀Y, f1, f2,

and

|Φ′trt(A, g1)− Φ′trt(A, g2)| ≤ C2|g1 − g2| ∀A, g1, g2

Then condition (1) in Lemma 2 is satisfied for the outcome and treatment loss functions

with constants C1 and C2, respectively. This implies

|Φ′sum(Y,A, f1, f1)− Φ′sum(Y,A, f2, f2)|

= |Φ′out(Y, f1) + Φ′trt(A, f1)− Φ′out(Y, f2)− Φ′trt(A, f2)|

≤ |Φ′out(Y, f1)− Φ′out(Y, f2)|+ |Φ′trt(A, f1)− Φ′trt(A, f2)|

≤ C1|f1 − f2|+ C2|f1 − f2| ∀Y,A, f1, f2.

To prove (2) in Lemma 1: We have constants C3 and C4 such that Φ′′out(Y, f) ≤ C3 and

Φ′′trt(A, g) ≤ C4 for all Y, f, g. Then

Φ′′sum(Y,A, f, g) = Φ′′out(Y, f) + Φ′′trt(A, g) ≤ C3 + C4.

Finally, to prove (3) in Lemma 1: Assume condition (1) in Lemma 2 is satisfied for, say

(WLOG), Φout with constant C1, and also assume Φtrt satisfies condition (2) in Lemma 2

with constant C2 such that Φ′′trt ≥ CL. Then since Φ′′trt is bounded, we know Φ′trt is Lipschitz

continuous with constant C∗2 (bounded derivative implies Lipschitz continuity). The proof

then concludes following the proof of (1) with constants C1 and C∗2 . �

To use linear and logistic regression to model the outcome and treatment, respectively,
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and (naturally) letting Φout be the squared-error loss function and Φtrt be the loss function

proportional to the binomial log-likelihood, we have Φ′′ls = 1 and Φ′′logit ≤ 1
4
, meaning the

QM condition holds for H = (5/4)
n

ZTZ by Lemma 1 condition (2).

When the QM condition is met (i.e., when the conditions of Lemma 1 are satisfied), we

are able to solve for β in Equation (3) in the main paper using the groupwise-majorization-

descent (GMD) algorithm (for details, see Yang and Zou (2015)), a computationally efficient

and unified algorithm allowing for general design matrices.

Web Appendix B

Here, we provide a proof of Theorem 1 in the main text, which is re-stated here:

Theorem 1 Assume the number of covariates p and sample size n are such that log(2p)
n
≤ 1.

Also assume the Group Stabil condition is satisfied with c0 = 3 and ε = 1
2n

. Let ζ∗ =

2
∑p

g=1 I(α∗g 6= 0). Then, for sufficiently large λn and with high probability, we have

p∑
g=1

∥∥∥(β̂g − β∗g) I(α∗g 6= 0)
∥∥∥

2
≤

max
g∈{1,...,p}

{|vg|}
√

2

(
4

cnk
λnζ

∗ +

(
1 +

1

λn

)
1

2n

)

where 0 < k < 1 is defined in Definition 1 (pg. 12), and

cn = min
[|x|<L(9B+ 1

n
)]∩Θ

{
Ψ′′out(x) + Ψ′′trt(x)

2

}
.

We recall that λn is the penalty, β̂ is the group lasso estimator in our set-up, β∗ is the vector

of true/least false coefficient parameters in the outcome and treatment models, and β∗g is the

sub-vector of β∗ associated with group g (in our case, covariate g). We let p∗ be the total

number of columns in the design matrices of the outcome and treatment models (i.e, p∗ is the

length of β∗), which we denote by Zout and Ztrt, respectively. We assume (Zout,i,Ztrt,i,Yi,Ai)

are i.i.d. copies of (Zout,Ztrt,Y ,A) for i = 1, . . . , n, where Y |Zout and A|Ztrt are modeled
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by distributions Fout and Ftrt both on R and from the exponential family, respectively, and

Zout,i and Ztrt,i are the ith rows of Zout and Ztrt, respectively. The natural parameter space

is denoted by Θ := Θout ∪Θtrt, where

Θout =

{
θ ∈ R :

∫
exp(θx)Fout(dx) <∞

}

and

Θtrt =

{
θ ∈ R :

∫
exp(θx)Ftrt(dx) <∞

}
.

L and B apply to assumptions (H.1–3):

(H.1): the pair of variables (Zout, Ztrt) are almost surely bounded by a constant L, i.e.,

there exists a constant L > 0 such that

||(Zout, Ztrt)||∞ ≤ L a.s.

(H.2): for all x ∈ [−L,L]p
∗
, β∗Tx ∈ Int(Θ)

(H.3): There exists a constant B > 0 such that
∑Gn

g=1

√
dg||β∗g ||2 ≤ B

We consider Λ =
{
β ∈ Rp∗ : ∀x ∈ [−L,L]p

∗
, βTx ∈ Θ

}
. We define dg to be the size of group

g, g ∈ {1, . . . , Gn}, and let dmin := min
g∈{1,...,Gn}

dg and dmax := max
g∈{1,...,Gn}

dg denote the smallest

and largest group sizes, respectively. Letting Φsum(β) = Φsum(Y,A,Z; β), the empirical

process (Pn − P)(Φsum(β)) can be written as:

(Pn − P)(Φsum(β)) = (Pn − P)[Φout(β) + Φtrt(β)]

= (Pn − P)[Φout,l(β)] + (Pn − P)[Φout,Ψ(β)]

+ (Pn − P)[Φtrt,l(β)] + (Pn − P)[Φtrt,Ψ(β)],

where Φout,l = −Y α′Zout, Φout,Ψ = Ψout(α
′Zout), Φtrt,l = −Aγ′Ztrt, and Φtrt,Ψ = Ψtrt(γ

′Ztrt);

Ψ′′out(x) and Ψ′′trt(x) in Theorem 1 denote the second derivatives of Ψout(x) and Ψtrt(x),

respectively. Φ.,l is used to denote the linear part of Φ and Φ.,Ψ is used to denote the
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part which depends on the link function between the canonical parameter and the linear

predictor. For example, if modeling the outcome with linear regression (i.e., using squared

error loss), then Φout,Ψ = α′Zout, and if modeling the treatment with logistic regression,

Φtrt,Ψ ∝ n log(1 + exp(γ′Ztrt))).

We define

Lg :=

∥∥∥∥∥ β̂lsg√
dg

1

n

n∑
i=1

{(
Yi

sd(Y )
Zg
out,i, AiZ

g
trt,i

)T
− E

(
Y

sd(Y )
Zg
out, AZ

g
trt

)T}∥∥∥∥∥
2

for all g ∈ {1, . . . , Gn}, where Zg
out,i and Zg

trt,i denote the elements on the ith rows and gth

columns of Zout and Ztrt, respectively. We also define

A =
Gn⋂
g=1

{
Lg ≤

λn
2

}

and

B =

 sup

β:
∑Gn
g=1

√
dg

β̂lsg
||βg−β∗g ||2≤M

|vn(β, β∗)| ≤ λn
2


where

vn =
(Pn − P) ([Φout,Ψ(β∗)− Φout,Ψ(β)] + [Φtrt,Ψ(β∗)− Φtrt,Ψ(β)])∑Gn

g=1

√
dg

β̂lsg
||βg − β∗g ||2 + εn

with M = 8

(
min
g∈Gn

{
β̂lsg

})
B + εn and εn = 1

n
.

We can then adapt the following propositions of Blazère, Loubes, and Gamboa (2014):

Proposition 1 Provided the penalty term λn is chosen suitably large enough,

P (A ∩ B) ≥ 1− 2(C + 2)

(2Gn)A2/2

for any A >
√

2, where C is a universal constant.

(Proof at the end of this section) In other words, for some suitable values of λn and provided
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Gn → ∞, the event A ∩ B happens with probability tending to one, implying the events

A and B each also have probability tending to one. Propositions 2 and 3 below provide

upper bounds for the linear and non-linear parts of the empirical process on the events A

and A ∩ B, each occurring with high probability (by Proposition 1), respectively:

Proposition 2 On the event A,

(Pn − P)(Φsum,l(β
∗)− Φsum,l(β̂)) ≤ λn

2

Gn∑
g=1

√
dg

β̂lsg
||β̂g − β∗g ||2.

Proof. We have

(Pn − P)(Φsum,l(β
∗)− Φsum,l(β̂))

=
Gn∑
g=1

(β̂g − β∗g)T
[

1

n

n∑
i=1

(
Yi

sd(Y )
Zg
out,i, AiZ

g
trt,i

)T
− E

(
Y

sd(Y )
Zg
out, AZ

g
trt

)T]

≤
Gn∑
g=1

√
dg

β̂lsg

∥∥∥β̂g − β∗g∥∥∥
2

∥∥∥∥∥ β̂lsg√
dg

1

n

n∑
i=1

(
Yi

sd(Y )
Zg
out,i, AiZ

g
trt,i

)T
− E

(
Y

sd(Y )
Zg
out, AZ

g
trt

)T∥∥∥∥∥
2

.

The last line follows from the Cauchy-Schwarz inequality, and the proposition follows on the

event A. �

Lemma 3 On the event A ∩ B we have
∑Gn

g=1

√
dg

β̂lsg
||β̂g − β∗g ||2 ≤ M , where we recall that

M = 8

(
min
g∈Gn

{
β̂lsg

})
B + εn with εn = 1

n
.

Lemma 3 bounds the difference between the estimated and true coefficients and is proved

at the end of this section. The next proposition provides an upper bound for (Pn −

P)(Φsum,ψ(β∗)− Φsum,ψ(β̂)) and directly results from Lemma 3 and definition of B.

Proposition 3 On the event A ∩ B,

(Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β̂)) ≤ λn
2

(
Gn∑
g=1

√
dg

β̂lsg
||β̂g − β∗g ||2 + εn

)
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Lemma 4 Assume assumptions (H.1-3) are fulfilled. For all k ∈ N∗, there exists constants

Cout
L,B and Ctrt

L,B (which both only depend on L and B) such that E(|Y |k) ≤ k!(Cout
L,B)k and

E(|A|k) ≤ k!(Ctrt
L,B)k.

L applies to assumption (H.1) and is a uniform bound for the maximum magnitude of the

covariates, and B applies to assumption (H.3) and bounds the l2 norm of the true (grouped)

covariates. Lemma 4 provides moment bounds for outcome Y and treatment A and follows

from Lemma 3.2 in Blazère et al. (2014) when
√
dg in assumption (H.2) in Blazère et al.

(2014) is replaced with

√
dg

β̂lsg
.

Theorem 1 requires that the Group Stabil Condition be satisfied. We state it here:

Definition 1 Let Σ = E[(Zout, Ztrt)(Zout, Ztrt)
T ]. Define H∗ = {g : β∗g 6= 0}, the index set

of the groups for which the corresponding sub vectors of β∗ are non-zero. Let c0 and ε > 0

be given. Then Σ satisfies the Group Stabil condition if there exists 0 < k < 1 such that

δTΣδ ≥ k
∑
g∈H∗
||δg||22 − ε

for any δ ∈ S(c0, ε), where S(c0, ε) is called the restricted set and is defined for c0 and ε > 0

as S(c0, ε) = {δ :
∑

g∈H∗c

√
dg

β̂lsg
||δg||2 ≤ c0

∑
g∈H∗

√
dg

β̂lsg
||δg||2 + ε}. A Σ which satisfies the

Group Stabil Condition is said to be GS(c0, ε, k).

Definition 1 is similar to the Group Stabil Condition proposed in Blazère et al. (2014), the

only difference is that
√
dg in the restricted set in Blazère et al. (2014) is replaced here

by

√
dg

β̂lsg
in the restricted set, S(c0, ε). The Group Stabil Condition places a lower bound

on the eigenvalues of the variance matrix, with the lower bound depending on the number

of non-zero covariate groups. In other words, it restricts the degree of correlation between

covariates in the design matrix.

We can now prove Theorem 1 presented in Section 4.2 in the main manuscript:

Proof of Theorem 1:

The proof uses arguments similar to those in Blazère et al. (2014). Using the definition of
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β̂, where we recall from the main manuscript that

β̂ = argmin
β

{
Pn(Φsum(β)) + λn

Gn∑
g=1

√
dg

β̂lsg
||βg||2

}
,

we have

PnΦsum(β̂) + 2λn

Gn∑
g=1

√
dg

β̂lsg
||β̂g||2 ≤ PnΦsum(β∗) + 2λn

Gn∑
g=1

√
dg

β̂lsg
||β∗g ||2. (2)

Hence we get (adding P(Φsum(β̂)− Φsum(β∗)) to both sides)

P(Φsum(β̂)− Φsum(β∗)) + 2λn

Gn∑
g=1

√
dg

β̂lsg
||β̂g||2

≤ (Pn − P)(Φsum(β∗)− Φsum(β̂)) + 2λn

Gn∑
g=1

√
dg

β̂lsg
||β∗g ||2. (3)

From Proposition 2 and 3 and by adding λn
∑Gn

g=1

√
dg

β̂lsg
||β̂g − β∗g ||2 to both sides of the in-

equality (3) we find, on A ∩ B, that

λn

Gn∑
g=1

√
dg

β̂lsg
||β̂g − β∗g ||2 + P(Φsum(β̂)− Φsum(β∗))

≤ 2λn

Gn∑
g=1

√
dg

β̂lsg
(||β̂g − β∗g ||2 + ||β∗g ||2 − ||β̂g||2) +

λn
2
εn.

If g /∈ H∗, where we recall from Definition 1 that H∗ = {g : β∗g 6= 0} (i.e., the index set of

the groups for which the corresponding sub vectors of β∗ are non-zero), then ||β̂g − β∗g ||2 +

||β∗g ||2 − ||β̂g||2 = 0 and otherwise ||β∗g ||2 − ||β̂g||2 ≤ ||β̂g − β∗g ||2. So the last inequality can

be bounded by

4λn
∑
g∈H∗

√
dg

β̂lsg
||β̂g − β∗g ||2 +

λn
2
εn. (4)
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By the definition of β∗ we have P(Φsum(β̂)− Φsum(β∗)) > 0 and therefore

∑
g/∈H∗

√
dg

β̂lsg
||β̂g − β∗g ||2 ≤ 3

∑
g∈H∗

√
dg

β̂lsg
||β̂g − β∗g ||2 +

εn
2
,

i.e., β̂ − β∗ ∈ S(3, εn
2

). The next proposition provides a lower bound for P(Φsum(β̂) −

Φsum(β∗)).

Proposition 4 On the event A ∩ B we have

P(Φsum(β̂)− Φsum(β∗)) ≥ cnE
[
(β̂T (Zout, Ztrt)− β∗T (Zout, Ztrt))

2
]

with cn := min{
|x|≤L

(
min
g∈Gn
{β̂lsg }M+B

)}
∩Θout

{
Ψ′′out(x)

2

}
+ min{

|x|≤L
(

min
g∈Gn
{β̂lsg }M+B

)}
∩Θtrt

{
Ψ′′trt(x)

2

}

Proof. We have

P(Φsum(β̂)− Φsum(β∗))

= P(Φout(β̂)− Φout(β
∗)) + P(Φtrt(β̂)− Φtrt(β

∗))

= P(Φout(β̂)− Φout(β
∗)) + P(Φtrt(β̂)− Φtrt(β

∗)).

Recall β = (α, γ)T where α are the regression parameters in the outcome model and γ are

the regression parameters in the treatment model, and note that

P(Φout(β̂)− Φout(β
∗))

= −E
[
E (Y |Zout)

(
α̂TZout − α∗TZout

)]
+E

[
ψ′out(α

∗TZout)
(
α̂TZout − α∗TZout

)]
+E

[
ψ′′out(α̃

TZout)

2

(
α̂TZout − α∗TZout

)2
]
,

where α̃TZout is an intermediate point between α̂TZout and α∗TZout given by a second order
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Taylor expansion of ψout. Since ψ′out(α
∗TZout) = E(Y |Zout) we find

P(Φout(α̂)− Φout(α
∗)) = E

[
ψ′′out(α̃

TZout)

2

(
α̂TZout − α∗TZout

)2
]
.

Besides we have

|α̃TZout| ≤ |α̃TZout − α∗TZout|+ |α∗TZout|

≤
Gn∑
g=1

|α̃gTZg
out − α∗gTZ

g
out|+

Gn∑
g=1

|α∗gTZout|

≤
Gn∑
g=1

|α̂gTn Zg
out − α∗gTZ

g
out|+

Gn∑
g=1

|α∗gTZout|

≤
Gn∑
g=1

∥∥α̂g − α∗g∥∥2
‖Zg

out‖2 +
Gn∑
g=1

∥∥α∗g∥∥2
‖Zg

out‖2 ,

where the first inequality and second line follows from the triangle inequality, the third line

follows because α̃TZout is between α̂TnZout and α∗TZout, and the fourth line follows from

Hölder’s inequality. Applying (H.1), we find

‖Zout‖2 ≤ L
√
dg →

|α̃TZout| ≤ L

(
Gn∑
g=1

∥∥α̂g − α∗g∥∥2

√
dg +

Gn∑
g=1

∥∥α∗g∥∥2

√
dg

)
.

Then using Lemma 3 and (H.3) we find

|α̃TZout| ≤ L

(
min
g∈Gn

{
β̂lsg

}
M +B

)
a.s.

Moreover, α∗ and α̂ belong to Λout, which is a convex set, so we know α̃ ∈ Λout, and therefore,

α̃TZout ∈ Θout a.s. It follows that

P(Φout(α̂)− Φout(α
∗)) ≥ c1nE

[
(α̂Zout − α∗Zout)2]
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where c1n := min{
|x|≤L

(
min
g∈Gn
{β̂lsg }M+B

)}
∩Θout

{
Ψ′′out(x)

2

}
.

We can use a similar argument to show

P(Φtrt(γ̂)− Φtrt(γ
∗)) ≥ c2nE

[
(γ̂Ztrt − γ∗Ztrt)2]

where c2n := min{
|x|≤L

(
min
g∈Gn
{β̂lsg }M+B

)}
∩Θtrt

{
Ψ′′trt(x)

2

}
.

Therefore,

P(Φsum(β̂)− Φtrt(β
∗)) ≥ (c1n + c2n)E

[
(α̂Zout − α∗Zout)2 + (γ̂Ztrt − γ∗Ztrt)2]

≥ (c1n + c2n)E
[
(β̂T (Zout, Ztrt)− β∗T (Zout, Ztrt))

2
]
.

�

From Proposition 4 and (4) we deduce that

λn

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2 + cnE

[(
β̂T (Zout, Ztrt)− β∗T (Zout, Ztrt)

)2
]

≤ 4λn
∑
g∈H∗

√
dg

|β̂lsg |
||β̂g − β∗g ||2 +

λn
2
εn. (5)

Let Σ = E
[
(Zout, Ztrt)(Zout, Ztrt)

T
]

be the covariance matrix. We have

E
[(
β̂Tn (Zout, Ztrt)− β∗T (Zout, Ztrt)

)2
]

= (β̂ − β∗)TΣ(β̂ − β∗).

Because condition GS(3, εn
2
, k) is satisfied (by assumption) we have

cn(β̂ − β∗)TΣ(β̂ − β∗) ≥ cnk
∑
g∈H∗
||β̂g − β∗g ||

2

2
− εn

2

13



which implies from (5) that

λn

Gn∑
g=1

√
dg

|β̂lsg |

∥∥∥β̂g − β∗g∥∥∥
2

+ cnk
∑
g∈H∗

∥∥∥β̂g − β∗g∥∥∥2

2

≤ 4λn
∑
g∈H∗

√
dg

|β̂lsg |

∥∥∥β̂g − β∗g∥∥∥
2

+
λn
2
εn +

εn
2
.

Then using the Cauchy-Schwarz inequality on the line above we find

λn

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2 + cnk

∑
g∈H∗
||β̂g − β∗g ||

2

2

≤ 4λn

√∑
g∈H∗

dg

(β̂lsg )2

√∑
g∈H∗
||β̂g − β∗g ||

2

2
+ (λn + 1)

εn
2
.

Now the fact that 2xy ≤ tx2 + y2/t for all t > 0 leads to the following inequality (with

x = 2λn
√∑

g∈H∗
dg

(β̂lsg )2
, y =

√∑
g∈H∗ ||β̂g − β∗g ||

2

2
, and recalling that ζ∗ =

∑
g∈H∗

dg

(β̂lsg )2
):

λn

Gn∑
g=1

√
dg||β̂g − β∗g ||2 + cnk

∑
g∈H∗
||β̂g − β∗g ||

2

2

≤ 4tλ2
nζ
∗ +

1

t

∑
g∈H∗
||β̂g − β∗g ||

2

2
+ (λn + 1)

εn
2
. (6)

Replacing t by 1
cnk

in (6) (and dividing by λn) we obtain

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2 ≤

4

cnk
λnζ

∗ +

(
1 +

1

λn

)
εn
2
.

What is more, letting Wg =

√
dg

|β̂lsg |
, we have

Gn∑
g=1

Wg

∥∥∥(β̂g − β∗g) I(α∗g 6= 0)
∥∥∥

2
≤

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2.

14



This yields

∑
g:α∗g 6=0

∥∥∥(β̂g − β∗g)∥∥∥
2
≤ 4

min
g:α∗g 6=0

{Wg}cnk
λnζ

∗ +

(
1 +

1

λn

)
1

min
g:α∗g 6=0

{Wg}2n
.

Finally we conclude the proof using Proposition 1.

Proof of Proposition 1:

Let A >
√

2. Recall that we have assumed Gn and n are such that log (2Gn)
n

≤ 1. We deduce

Proposition 1 from the following two lemmas:

Lemma 5 Let

λn ≥

(
8
√

2ALCL,B

√
log (2Gn)

n

)
∨
(

16A2LCL,B
log (2Gn)

n

)

with A > 1. Then

P{A} ≥ 1− 2dmax(2Gn)1−A2

Lemma 6 Let

λn ≥ 20AL

(
max

(|x|≤Lκn)∩Θ
|Ψ′sum(x)|

)√
2 log (2Gn)

n

where A ≥ 1. Then

P{B} ≥ 1− 2C(2Gn)−A
2/2

where we recall κn := 17B + 2
n

. We can notice that P(B) tends to 1 as n goes to ∞.

Thus if

λn ≥ AKL

{
C∗L,B ∨ max

{|x|≤Lκn}∩Θ
|Ψ′sum(x)|

}√
2 log (2Gn)

n

with K chosen such that

λn ≥ max(C1, C2, C3)

where

C1 := 8
√

2ALC∗L,B

√
log (2Gn)

n

15



C2 := 16A2LC∗L,B
log (2Gn)

n

and

C3 := 20AL

(
max

(|x|≤Lκn)∩Θ
|Ψ′sum(x)|

)√
2 log (2Gn)

n

then P(A ∩ B) ≥ 1− (2dmax + 2C)(2Gn)−A
2/2. �

Proof of Lemma 3

The proof of Lemma 3 is based on convexity of the loss function and of the penalty, as

in Blazère et al. (2014), where the main idea is similar to the one used by Bühlmann

and van de Geer (2011) for the lasso to show consistency of the excess risk. Define t :=

M

M+
∑Gn
g=1

√
dg

|β̂lsg |
||β̂g−β∗g ||2

and β̃ := tβ̂ + (1 − t)β∗. By convexity of Φsum and the L2 norm, in

addition to the fact that β̂ satisfies (2), we find

P(Φsum(β̃)− Φsum(β∗)) + 2λn

Gn∑
g=1

√
dg

|β̂lsg |
||β̃g||2

≤ (Pn − P)(Φsum(β∗)− Φsum(β̃)) + 2λn

Gn∑
g=1

√
dg

|β̂lsg |
||β∗g ||2.

On the event A ∩ B we have (from Propositions 2 and 3)

P(Φsum(β̃)− Φsum(β∗)) + 2λn

Gn∑
g=1

√
dg

|β̂lsg |
||β̃g||2

≤ λn

Gn∑
g=1

√
dg

|β̂lsg |
||β̃g − β∗g ||2 + λn

εn
2

+ 2λn

Gn∑
g=1

√
dg

|β̂lsg |
||β∗g ||2.

Because P(Φsum(β̃)−Φsum(β∗)) ≥ 0, by adding to both sides of the inequality 2λn
∑Gn

g=1

√
dg

|β̂lsg |
||β∗g ||2

and by using the triangle inequality, we have

Gn∑
g=1

√
dg

|β̂lsg |
||β̃g − β∗g ||2 ≤

εn
2

+ 4
Gn∑
g=1

√
dg

|β̂lsg |
||β∗g ||2.

16



Therefore, using (H.3), we have

Gn∑
g=1

√
dg

|β̂lsg |
||β̃g − β∗g ||2 ≤

εn
2

+ 4min
g∈Gn

{
β̂lsg

}
B =

M

2
,

i.e.,

t

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2 ≤

M

2
,

and then the definition of t leads to

Gn∑
g=1

√
dg

|β̂lsg |
||β̂g − β∗g ||2 ≤M.

�

Proof of Lemma 5:

Proof. We have

P(AC) ≤

Gn∑
g=1

P


∥∥∥∥∥ 1

n

n∑
i=1

{(
Yi

sd(Y )
Zg
out,i, AiZtrt,i

)
− E

(
Y

sd(Y )
Zg
out, AZtrt

)}∥∥∥∥∥
2

2

>
λ2
n

4
dg

 ≤
Gn∑
g=1

dg∑
j=1

P

{
1

n

∣∣∣∣∣
n∑
i=1

{(
Yi

sd(Y )
Zg
out,i, AiZtrt,i

)
− E

(
Y

sd(Y )
Zg
out, AZtrt

)}∣∣∣∣∣ > λn
2

}
. (7)

We will define random variables {W g
ij} with j = 1, 2 (more generally, j = 1, . . . , dg) and

i = 1, . . . , n such that

W g
i1 :=

Yi
sd(Y )

Zg
out,i − E

(
Yi

sd(Y )
Zg
out

)
and

W g
i2 := AiZ

g
trt,i − E(AiZ

g
out)

for i = 1, . . . , n. The random variables {Wij}i=1,...,n are independent, identically distributed

17



and centered, and for all m ≥ 2,

E|W g
i1|m ≤

m∑
k=0

(
m

k

)
E
∣∣∣∣ Yi
sd(Y )

Zout,i

∣∣∣∣k (E ∣∣∣∣ Yi
sd(Y )

Zout,i

∣∣∣∣)m−k

and

E|W g
i2|m ≤

m∑
k=0

(
m

k

)
E|AiZtrt,i|k(E|AiZtrt,i|)m−k.

By Jensen’s inequality, we obtain

E|W g
i1|m ≤ 2m max

k=1,...,m

{
E
∣∣∣∣ Yi
sd(Y )

Zout,i

∣∣∣∣k E ∣∣∣∣ Yi
sd(Y )

Zout,i

∣∣∣∣m−k
}

and

E|W g
i2|m ≤ 2m max

k=1,...,m
{E|AiZtrt,i|kE|AiZtrt,i|m−k}.

For all k ∈ N, by (H.1) and Lemma 4 we have

E
∣∣∣∣ Yi
sd(Y )

Zout,i

∣∣∣∣k ≤ Lkk!(Cout
L,B)k

and

E|AiZtrt,i|k ≤ Lkk!(Ctrt
L,B)k.

Therefore E|W g
ij|m ≤ m!(2LC∗L,B)m, where C∗L,B = max{Cout

L,B, C
trt
L,B}. Hence the conditions

are satisfied to apply Bernstein’s concentration inequality (Bennett, 1962) with K = 2LC∗L,B

and σ2 = 8(LC∗L,B)2. Thus we obtain

P

(
1

n

∣∣∣∣∣
n∑
i=1

W g
ij

∣∣∣∣∣ > λn/2

)

≤ 2

(
exp

(
−nλn

16LC∗L,B

)
+ exp

(
−nλ2

n

32(2LC∗L,B)2

))
. (8)
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Finally, from (7) and (8), we deduce that P(Ac) is bounded by

2dmaxGn

(
exp

(
−nλn

16LC∗L,B

)
+ exp

(
−nλ2

n

32(2LC∗L,B)2

))
.

Therefore if

λn ≥ A216LC∗L,B
log (2Gn)

n
∨ A8

√
2LC∗L,B

√
log (2Gn)

n

with A > 1 then

P{Ac} ≤ 2dmax(2Gn)1−A2

.

�

Proof of Lemma 6:

Proof. The proof rests on the following Lemma:

Lemma 7 Let R > 0 be given. Define

ZR := sup∑Gn
g=1

√
dg

|β̂lsg |
||βg−β∗g ||2≤R

{|(Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))|} .

If A ≥ 1 then

P

(
ZR ≥ A5DLR

√
2 log (2Gn)

n

)
≤ 2(2Gn)−A

2

where D := max

{
max

{|x|≤L(R+B)}∩Θ
{|Ψ′out(x) + Ψ′trt(x)|}

}
.

Proof. Let R > 0 be given and β satisfy
∑Gn

g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤ R. Then we know

ZR,out :=
∑Gn

g=1

√
dg

|β̂lsg |
||αg − α∗g||2 ≤ R (and similarly, ZR,trt :=

∑Gn
g=1

√
dg

|β̂lsg |
||γg − γ∗g ||2 ≤ R).

Notice that if we change Xi by X ′i while keeping the others fixed then Zout,R is modified by

at most

2

n

(
min

g∈{1,...,Gn}

{
|β̂lsg |

}
/
√
dg

)
LR exp(L( min

g∈{1,...,Gn}

{
|β̂lsg |

}
R +B)).

19



To see this let

Pn =
1

n

n∑
j=1

1Xj ,Yj

and

P′n =
1

n

n∑
j=1

1Xj ,Yj + 1X′j ,Y ′j

then we have

(Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))− (P′n − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))

= (Pn − P)(Φout,Ψout(α
∗)− Φout,Ψout(α))− (P′n − P)(Φout,Ψout(α

∗)− Φout,Ψout(α))

+(Pn − P)(Φout,Ψout(γ
∗)− Φout,Ψout(γ))− (P′n − P)(Φout,Ψout(γ

∗)− Φout,Ψout(γ))

=
1

n
(Φout,Ψout(α

∗, Zout,i)− Φout,Ψout(α,Zout,i)− Φout,Ψout(α
∗, Z ′out,i) + Φout,Ψout(α,Z

′
out,i))

+
1

n
(Φtrt,Ψtrt(γ

∗, Ztrt,i)− Φtrt,Ψtrt(γ, Ztrt,i)− Φtrt,Ψtrt(γ
∗, Z ′trt,i) + Φtrt,Ψtrt(γ, Z

′
trt,i))

≤ 1

n
|Ψ′(α̃TZout,i)||α∗TZout,i − αTZout,i|+

1

n
|Ψ′(α̃TZ ′out,i)||α∗TZ ′out,i − αTZ ′out,i|

+
1

n
|Ψ′(γ̃TZtrt,i)||γ∗TZtrt,i − γTZtrt,i|+

1

n
|Ψ′(γ̃TZ ′trt,i)||γ∗TZ ′trt,i − γTZ ′trt,i|

where α̃Zout,i is an intermediate point between αTZout,i and α∗TZout,i (using a first order

Taylor expansion of the exponential function, as in the proof to Proposition 4). Then,

applying (H.1), we find

‖Zout‖2 ≤ L
√
dg →

|α̃TZout| ≤ L

(
Gn∑
g=1

∥∥α̂g − α∗g∥∥2

√
dg +

Gn∑
g=1

∥∥α∗g∥∥2

√
dg

)
.

Then using (H.3) we find

|α̃TZout| ≤ L

(
min
g∈Gn

{
β̂lsg

}
R +B

)
.
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Similarly, it can be shown that

|γ̃TZtrt| ≤ L

(
min
g∈Gn

{
β̂lsg

}
R +B

)
.

Therefore

(Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))− (P′n − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))

≤ 1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

|Ψ′(α̃TZout,i)||α∗TZout,i − αTZout,i|

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

|Ψ′(α̃TZ ′out,i)||α∗TZ ′out,i − αTZ ′out,i|

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

|Ψ′(γ̃TZtrt,i)||γ∗TZtrt,i − γTZtrt,i|

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

|Ψ′(γ̃TZ ′trt,i)||γ∗TZ ′trt,i − γTZ ′trt,i|

≤ 1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

|Ψ′(α̃TZout,i)|
Gn∑
g=1

||α∗ − α||2||Zg
out||2

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

|Ψ′(α̃TZ ′out,i)|
Gn∑
g=1

||α∗ − α||2||Zg
out||2

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

|Ψ′(γ̃TZtrt,i)|
Gn∑
g=1

||γ∗ − γ||2||Zg
trt||2

+
1

n
max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

|Ψ′(γ̃TZ ′trt,i)|
Gn∑
g=1

||γ∗ − γ||2||Zg
trt||2

≤ 2

n

(
min

g∈{1,...,Gn}

{
|β̂lsg |

}
/
√
dg

)
LR max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

{|Ψ′out(x)|}
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+
2

n

(
min

g∈{1,...,Gn}

{
|β̂lsg |

}
/
√
dg

)
LR max

{|x|≤L
(

min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

{|Ψ′trt(x)|}

=
4

n
MwLRD

where Mw =

(
min

g∈{1,...,Gn}

{
|β̂lsg |

}
/
√
dg

)
.

We can apply McDiarmid’s inequality (also called the bounded difference inequality) to ZR

and obtain

P(ZR − EZR ≥ u) ≤ exp

(
− nu2

8M2
wR

2L2D2

)
.

Therefore if λn ≥ ADMwLR
√

8 log 2Gn
n

with A > 0 then

P(ZR,out − EZR,out ≥ λn) ≤ (2Gn)−A
2

. (9)

Now we have to bound the mean EZR. To do this, we need the Symmetrization theorem and

the contraction principle (see Appendix A of Blazère et al. (2014)), and then let ε1, . . . , εn

be a Rademacher sequence independent of Zout,1, . . . , Zout,n and Ztrt,1, . . . Ztrt,n and let SR :=

{β ∈ Rp :
∑Gn

g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤ R}. Then by the Symmetrization theorem and the

Contraction principle (since ψ is D-lipschitz on the compact set SR) we have

EZR ≤ 4DE

(
sup
β∈SR

1

n

n∑
i=1

|εi(β∗TZi − βTZi)|

)

≤ 4DRE

(
max

g∈{1,...,Gn}

∣∣∣∣∣ 1n
n∑
i=1

εi
|β̂lsg |||Z

g
i ||2√

dg

∣∣∣∣∣
)
,

where the last bound follows from Holder’s inequality. By applying the theorem below from

Blazère et al. (2014) that’s a consequence of Hoeffding’s inequality, we obtain

E

(
max

g∈{1,...,Gn}

∣∣∣∣∣ 1n
n∑
i=1

εi
|β̂lsg |||Z

g
i ||2√

dg

∣∣∣∣∣
)
≤MwL

√
2 log (2Gn)

n
.

Theorem. (Blazère et al., 2014) Let X1, . . . , Xn be independent random variables on χ and
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f1, . . . , fn real-valued functions on χ which satisfies for all j = 1, . . . , p and all i = 1, . . . , p

and all i = 1, . . . , n

Efj(Xi) = 0, |fj(Xi)| ≤ aij.

Then

E

(
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

fj(Xi)

∣∣∣∣∣
)
≤
√

2 log(2p)max
1≤j≤p

√√√√ n∑
i=1

a2
ij.

It follows that

EZR ≤ 4MwRLD

√
2 log (2Gn)

n
. (10)

�

Thus from (9) and (10) we know that if A ≥ 1 then

P

(
ZR ≥ ADMwLR

(√
8 log 2Gn

n
+

√
2 log (2Gn)

n

))
≤ (2Gn)−A

2

for all R > 0. �

Split up {
β ∈ Rp :

Gn∑
g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤M

}
,

where M = 8

(
min
g∈Gn

{
β̂lsg

})
B + εn, into two sets which are

E1 =

{
β :

Gn∑
g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤ εn

}

and

E2 =

{
β :

Gn∑
g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤M

}

⊆
jn⋃
j=1

{
β : 2j−1εn <

Gn∑
g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 ≤ 2jεn

}
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where jn := [log2 (nM)] + 1 is the smaller integer such that 2jnεn ≥M . We recall that

vn :=
(Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))∑Gn

g=1

√
dg

|β̂lsg |
||βg − β∗g ||2 + εn

and to simplify notation let

α(β, β∗) := (Pn − P)(Φsum,Ψ(β∗)− Φsum,Ψ(β))

and

Ω(t) := max{ max
{|x|≤L

(
min
g∈Gn
{β̂lsg }R+B

)
}∩Θout

{|Ψ′out(x)|},

max
{|x|≤L

(
min
g∈Gn
{β̂lsg }R+B

)
}∩Θtrt

{|Ψ′trt(x)|}}.

Let A ≥ 1. Recall that κn := 17B + 2
n

= 2M +B. On the event E1,

P

(
sup
β∈E1

|vn(β, β∗)| ≥ A10LΩ(Lκn)

√
2 log (2Gn)

n

)

≤ P

(
sup
β∈E1

|α(β, β∗)| ≥ A10LΩ(Lκn)εn

√
2 log (2Gn)

n

)

≤ P

(
sup
β∈E1

|α(β, β∗)| ≥ A5LΩ(L(εn +B))εn

√
2 log (2Gn)

n

)
given that 2M ≥ εn. From Lemma 7 with R = εn we deduce

P

(
sup
β∈E1

|vn(β, β∗)| ≥ A10LΩ(Lκn)εn

√
2 log (2Gn)

n

)

≤ 2(2Gn)−A
2

. (11)

On the event E2, using the same type of argument as (11) with R = 2jεn (given that
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2M ≥ 2jεn) for all j = 1, . . . , jn, we find

P

(
sup
β∈E2

|vn(β, β∗)| ≥ A10LΩ(Lκn)εn

√
2 log (2Gn)

n

)

≤ jn2(2Gn)−A
2

.

Finally we have

≤ C ′2(2Gn)−
A2

2 (12)

where C ′ is a constant (because jn = [log2(nM)] + 1 and n << Gn) and the result of Lemma

6 follows from (11) and (12) with C = 1 + C ′. �

Web Appendix C

In Section 5 of the main paper, simulations are presented comparing the performance of

GLiDeR, the two-stage model averaged double robust estimator proposed by Cefalu et al.

(2016) (which we abbreviate as “MADR”), two standard doubly robust estimators – one

using all covariates (“saturated method”) and another which selects covariates via “backward

selection” (p-stay = 0.05) on the outcome model – and a non-doubly robust method using

the adaptive lasso on only the outcome model to select covariates and estimate the average

causal effect for ten scenarios (“Scenarios 1–10” presented in Section 5.1 of the main paper)

with p = 10 covariates (independent and correlated) and sample size n = 500. Additional

simulation scenarios are presented here exploring the effects of adjusting the number of

covariates and sample size in Scenarios 1–9.

Ratio of mean squared error (MSEs) of the doubly robust average causal treatment effect

of GLiDeR, backward selection, MADR, and adaptive lasso (denominator) relative to the

saturated variable selection method (numerator) for 5 independent covariates and sample

size n = 500 and for 10 independent covariates and sample size n = 250 are shown in Tables

1 and 2, respectively.
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Table 1: Ratio of MSE (saturated model MSE / alternative method MSE) for each sce-
nario with independent data, 5 covariates, and sample size n = 500 over 1,000 Monte Carlo
datasets.

Scenario GLiDeR Backward Selection MADR Adaptive Lasso
MSE Ratio MSE Ratio MSE Ratio MSE Ratio

1 1.09 1.01 1.10 1.11
2 1.08 1.00 1.10 1.11
3 2.77 1.00 2.88 3.00
4 1.00 1.00 1.01 0.66
5 1.63 1.04 1.62 1.64
6 16.82 0.91 18.15 16.00
7 1.10 1.03 1.09 1.13
8 1.21 1.03 1.21 1.29
9 1.02 1.02 1.02 1.02

Bold indicates significant difference (5% significance level) between MSEs (testing equality) from
the saturated method (full model) vs. the alternative method using the paired t-test.

Table 2: Ratio of MSE (saturated model MSE / alternative method MSE) for each scenario
with independent data, 10 covariates, and sample size n = 250 over 1,000 Monte Carlo
datasets.

Scenario GLiDeR Backward Selection MADR Adaptive Lasso
MSE Ratio MSE Ratio MSE Ratio MSE Ratio

1 1.13 1.03 1.15 1.18
2 1.12 1.04 1.14 1.14
3 3.59 1.17 3.77 3.97
4 1.04 1.02 1.05 0.90
5 1.81 0.93 1.79 1.78
6 24.31 1.27 24.77 21.81
7 1.19 1.06 1.16 1.21
8 1.39 1.10 1.38 1.46
9 1.11 1.08 1.12 1.12

Bold indicates significant difference (5% significance level) between MSEs (testing equality) from
the saturated method (full model) vs. the alternative method using the paired t-test.

The same results are shown for 25 independent covariates and sample size n = 500 in

Table 3, but results were not calculated for MADR due to the relatively large number of co-

variates. The MSE ratios with 5 covariates (Table 1) are slightly smaller for all methods and

scenarios compared to 10 covariates (Table 2 in main manuscript) as the alternative meth-

ods (GLiDeR, backward selection, MADR, and adaptive lasso) are generally more efficient

than the saturated method when there are more irrelevant variables. This is further seen

for GLiDeR, adaptive lasso, and backward selection with 25 covariates (Table 3) as these
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Table 3: Ratio of MSE (saturated model MSE / alternative method MSE) for each scenario
with independent data, 25 covariates, and sample size n = 500 over 1,000 Monte Carlo
datasets.

Scenario GLiDeR Backward Selection Adaptive Lasso
MSE Ratio MSE Ratio MSE Ratio

1 1.13 1.12 1.15
2 1.18 1.17 1.20
3 3.57 3.49 4.06
4 1.06 1.06 0.98
5 1.94 1.80 1.89
6 24.71 9.41 22.30
7 1.23 1.11 1.25
8 1.45 1.34 1.53
9 1.13 1.11 1.15

Bold indicates significant difference (5% significance level) between MSEs (testing equality) from
the saturated method (full model) vs. the alternative method using the paired t-test.

methods obtain much greater MSE ratios for all scenarios than with 5 and 10 covariates.

When the sample size is cut in half (n = 250) with 10 covariates (Table 2), the MSE ratios

increase in nearly all scenarios for all alternative methods. In other words, the MSE ratios

are further away from 1 for all methods and scenarios when the sample size is halved, which

seems to suggest the gap in performance between methods is increased with a smaller sample

size. As in the main manuscript, the adaptive lasso only considers the outcome model and

under-selects an important confounder weakly related to the outcome but strongly associ-

ated to the treatment in Scenario 4 and is less efficient than the saturated method even with

25 covariates.

Results are presented below testing generalized cross-validation (GCV) and k-fold cross-

validation (kCV) for k = 2, 5, and 10 folds on the outcome model for Scenarios 1–10 with

10 independent covariates for Scenarios 1–9 and 100 independent covariates for Scenario 10

and a sample size of 500 for all scenarios. GCV is performed as discussed in Section 3.4 in

the main manuscript and k-fold cross-validation chooses the tuning parameter value λ∗ as

the value λ yielding the smallest average mean squared prediction error across the k test

folds. Performance is generally similar for all procedures, but GCV demonstrates the best

performance overall at estimating the causal treatment effect in these scenarios, and also has
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a computational advantage over kCV (especially for larger k) as it requires the method to

be computed only once on the data. Consequently, we recommend using GCV over kCV for

model selection.

Table 4: Comparison of tuning parameter selection procedures.
GCV 2-fold 5-fold 10-fold

Scenario MSE Bias SD MSE Bias SD MSE Bias SD MSE Bias SD

1 0.0081 0.00 0.09 0.0081 0.00 0.09 0.0081 0.00 0.09 0.0081 0.00 0.09
2 0.0090 0.00 0.09 0.0089 0.00 0.09 0.0090 0.00 0.10 0.0090 0.00 0.09
3 0.0085 0.00 0.09 0.0091 0.00 0.10 0.0094 0.00 0.10 0.0091 0.00 0.10
4 0.0100 0.00 0.10 0.0100 0.00 0.10 0.0100 0.00 0.10 0.0101 0.01 0.10
5 0.4008 -0.04 0.63 0.4368 -0.05 0.66 0.4371 -0.06 0.66 0.4433 -0.06 0.66
6 0.0958 0.00 0.31 0.1350 -0.01 0.37 0.1057 0.00 0.33 0.1275 0.00 0.36
7 0.7040 -0.05 0.84 0.7175 -0.05 0.85 0.7213 -0.05 0.85 0.7268 -0.05 0.85
8 0.0143 0.01 0.12 0.0141 0.01 0.12 0.0144 0.01 0.12 0.0143 0.01 0.12
9 0.0117 0.00 0.11 0.0117 0.00 0.11 0.0118 0.00 0.11 0.0118 0.00 0.11
10 0.0603 0.00 0.26 0.0638 -0.07 0.24 0.0644 -0.08 0.24 0.0906 -0.15 0.26

Table 5: Covariates selected (average across 1000 samples) by GLiDeR. Though p = 100
covariates are considered for Scenario 10, only results for the first two irrelevant variables
(X9 and X10) are shown here.

Scenario X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
2 1.00 0.12 1.00 1.00 0.04 0.04 0.04 0.04 0.03 0.04
3 1.00 1.00 0.07 0.06 0.06 0.02 0.01 0.01 0.01 0.01
4 1.00 1.00 1.00 1.00 1.00 0.05 0.04 0.04 0.04 0.04
5 0.28 0.28 0.80 0.79 0.80 0.06 0.05 0.05 0.06 0.06
6 0.16 0.17 0.08 0.09 0.16 0.02 0.02 0.02 0.02 0.03
7 0.51 0.11 1.00 0.92 0.09 0.06 0.06 0.08 0.06 0.06
8 1.00 1.00 0.59 0.06 0.06 0.05 0.04 0.05 0.05 0.06
9 1.00 0.06 1.00 1.00 0.04 0.05 0.04 0.06 0.05 0.06
10 1.00 0.99 1.00 1.00 0.21 0.20 0.21 0.19 0.01 0.01
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Table 6: Bootstrap 95% percentile confidence interval coverage rates by GLiDeR for all
scenarios with sample size n = 500 and p = 10 covariates (except Scenario 10, which has
p = 100 covariates) across 1, 000 Bootstrap samples. Note that correlated covariates are not
considered for Scenario 10.

Scenario Independent Covariates Correlated Covariates
Coverage Rate Coverage Rate

1 95.1 95.2
2 94.4 94.8
3 94.3 94.1
4 93.5 95.2
5 95.2 94.5
6 94.3 95.5
7 94.4 91.9
8 95.0 93.6
9 94.8 94.7
10 97.1 -
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Table 7: Covariates (potential confounders) considered in the lung transplant registry. Each
variable is continuous or binary. The mean and standard deviation (if continuous) or fre-
quency and proportion (if binary) of each covariate for BLT and SLT is also shown.

BLT SLT
Mean (sd)/ Mean (sd)/

Name Description N (%) N (%)
Patient characteristics

AgeP Age (yrs) 63.6 (2.9) 64.2 (3.1)
BmiP Body Mass Index 24.5 (7.4) 24.8 (7.4)
DiabP Diabetes 64 (13%) 41 (9%)
HgtP Height (cm) 169.8 (9.1) 169.3 (9.3)
O2amt Oxygen delivered 4.07 (3.07) 3.43 (1.93)
Karn Karnofsky score > 60 155 (31%) 188 (42%)
LAS Lung allocation score 35.8 (7.6) 34.0 (3.6)
WhtP Race (white) 455 (92%) 416 (94%)
SexP Gender (female) 211 (43%) 208 (47%)
LifeS Life support ventilator needed 27 (5%) 4 (1%)
Vent Assisted ventilation needed 68 (14%) 49 (11%)
Vol Center volume 94.5 (66.5) 71.3 (45.8)
Walk 6 minute walking distance 746.7 (390.7) 719.2 (322.2)
O2rest Oxygen needed at rest 31 (6%) 36 (8%)

Donor characteristics

AgeD Age (yrs) 36.3 (14.4) 33.7 (14.4)
BlckD Race (black) 92 (19%) 87 (20%)
BmiD Body Mass Index 26.0 (5.2) 25.4 (4.9)
Cig History of cigarette use 74 (15%) 57 (13%)
CMV Positive cytomegalovirus (CMV) test 302 (61%) 266 (60%)
Cod Cause of death - traumatic brain injury 224 (45%) 243 (55%)
DiabD Diabetes 38 (8%) 24 (5%)
ExpD Expanded donor 65 (13%) 52 (12%)
HgtD Height (cm) 175.5 (9.4) 175.3 (9.2)
SexD Gender (female) 146 (30%) 135 (30%)
Dist Donor to treatment center distance 206 (243.8) 203.3 (246.9)
Po2 Lung PO2 387.2 (148.4) 364.5 (151.3)

Other characteristics

Allo Local or regional (vs. national) allocation 146 (30%) 114 (26%)
HgtR Height ratio 1.03 (0.05) 1.04 (0.05)
Isch Ischemic time 5.5 (1.6) 4.0 (1.4)
SexM Matching gender 125 (25%) 131 (30%)
RaceM Matching race 330 (67%) 274 (62%)

30



References

Bennett, G. (1962). Probability inequalities for the sum of independent random variables.

Journal of the American Statistical Association 57, 33–55.

Blazère, M., Loubes, J. M., and Gamboa, F. (2014). Oracle inequalities for a Group Lasso

procedure applied to generalized linear models in high dimension. IEEE Transactions on

Information Theory 60, 2303–2318.
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